Math 0106 Basic Mathematics in Class Worksheets Spring 2015

Total Page:16

File Type:pdf, Size:1020Kb

Math 0106 Basic Mathematics in Class Worksheets Spring 2015 Math 0106 Basic Mathematics In Class Worksheets Spring 2015 Math 0106 Worksheets 2015 Houston Community College Table of Contents Geometric Formulas ..................................................................................................................................... 1 Algebraic Formulas ....................................................................................................................................... 2 Statistical Formulas ....................................................................................................................................... 3 Syllabus Quiz ................................................................................................................................................. 4 Student Information Sheet ........................................................................................................................... 5 Multiples and Divisibility ............................................................................................................................... 7 Prime Factorization ....................................................................................................................................... 9 Prime Factorization − Pracce .................................................................................................................... 10 Understanding Fractions ............................................................................................................................. 11 Reducing Fractions ...................................................................................................................................... 12 Multiplying Fractions .................................................................................................................................. 13 Dividing Fractions ........................................................................................................................................ 14 Least Common Multiples ............................................................................................................................ 15 Adding and Subtracting Fractions – Common Denominators .................................................................... 16 Adding and Subtracting Fractions – Unlike Fractions ................................................................................. 17 Decimal Notation – Order and Rounding.................................................................................................... 18 Adding and Subtracting Decimals ............................................................................................................... 19 Multiplying Decimals ................................................................................................................................... 20 Dividing Decimals ........................................................................................................................................ 21 Using Fractional Notation with Decimal Notation ...................................................................................... 22 Ratio and Proportion................................................................................................................................... 23 Percent Notation ......................................................................................................................................... 24 Solving Percent Problems and Applications ............................................................................................... 26 Order of Operations .................................................................................................................................... 28 Review of Order of Operations Worksheet ................................................................................................ 29 Getting Ready for Factoring Polynomials 1 ................................................................................................ 30 Getting Ready for Factoring Polynomials 2 ................................................................................................ 31 Week 1 Quiz ................................................................................................................................................ 32 Week 1 Quiz - Solutions .............................................................................................................................. 34 Math 0106 Worksheets 2015 Houston Community College Week 2 Quiz ................................................................................................................................................ 35 Week 2 Quiz - Solutions .............................................................................................................................. 37 Week 3 Quiz ................................................................................................................................................ 38 Week 3 Quiz - Solutions .............................................................................................................................. 40 Worksheet Answer Key ............................................................................................................................... 41 Math 0106 Worksheets 2015 Houston Community College Geometric Formulas PLANE GEOMETRY SOLID GEOMETRY Rectangle Area: A = lw Rectangular Solid Perimeter: P = 2 l + 2 w Volume: V = lwh w SA = 2lw+2wh+2lh w l h Square 2 l Area: A = s s Perimeter: P = 4 s Cube s 3 Triangle s Volume: V = s s s SA = 6s 2 Area: b • h A = h 2 b Sum of Angle Measures Right Circular Cylinder o Volume: V = πr2h h A + B + C = 180 C A 2 SA =2 πr + 2 πrh Right Triangle r B Pythagorean Theorem: c a2 + b2 = c2 a b Right Circular Cone h Parallelogram 1 2 Volume: V = /3πr h Area: A = bh h SA = πr2 + πrh r Trapezoid b a 1 Area: A = /2h(a+b ) h Sphere r Volume: b 4 3 Circle V = /3πr Area: A = πr2 SA = 4πr Circumference: d r angle = π or = 2 π arc length C d C r = 0 22 circumfere nce 360 π.= /7 or π.=3.14 Math 0106 Worksheets 1 2015 Houston Community College Algebraic Formulas Interest Formula: I= Prt ⋅ ⋅ r nt Compound Interest Formula: A= P 1 + n part % Percent Formulas: = whole 100 Amount of Change New Amount − Original Amo unt Percent Increase/Decrease = = Original Amount Original Amount rise y− y Slope Formula m = = 2 1 run x2− x 1 To find the x-intercept of a line, complete the ordered pair (___, 0). To find the y-intercept of a line, complete the ordered pair (0, ___). Slope-Intercept Form of an Equation of a Straight Line: y= mx + b Point-Slope Form of an Equation of a Straight Line: y− y1 = mx( − x 1 ) 2 2 Distance Formula: d=()() xx21 − +− yy 21 −b ± b2 − 4 ac Quadratic Formula: If ax2 + bx + c = 0 then x = 2a Math 0106 Worksheets 2 2015 Houston Community College Statistical Formulas n! P = n r n− r ! Permutation of n things taken r at a time () n! Combination of n things taken r at a time C = n r r!() n− r ! number of outcomes of an event Theoretical Probability P( E ) = total number of possible outcomes number of observed outcomes Empirical Probability P( E ) = total number of observed occurrences ∑ x Mean = x = n ∑( xf ) Mean of a Frequency Distribution = x = n min + max Midrange = 2 ∑()x− x 2 Standard Deviation =s = n −1 data value - mean z−score x = standard deviation Math 0106 Worksheets 3 2015 Houston Community College Syllabus Quiz Student Name ________________________________________________ 1) What is the course instructor’s office phone number? 2) On what day(s) and time(s) are office hours held? 3) What is the attendance policy for the course? 4) What overall percentage will result in a C grade for the semester? 5) True or False? For any false statement, please correct the statement. a) Attendance is crucial for success in this course. b) You will complete the entire midterm and the entire final exam in class. c) Late assignments can be handed in up to three weeks after the due date. d) Any student who attends class, takes good notes, completes assignments, and studies outside of class should receive a good grade in this course. 6) What are the criteria for receiving maximum points for participation? 7) Homework assignments account for what portion of your final grade? 8) When are the tests scheduled for this class? Math 0106 Worksheets 4 2015 Houston Community College Student Information Sheet Personal Full name: Current address: Contact information (please complete at least one): Home phone: Cell phone: Email: Other: Do you work? (yes / no) If yes: full-time or part-time? How many hours? Are there other outside obligations you would like for me to know about? Academic What is your major? (put “undeclared” if relevant): Where did you go to high school? What year did you graduate from high school? Do you plan to transfer from this college? circle one: Yes / No If yes, where do you plan to transfer? What other colleges (if any) have you attended? Math 0106 Worksheets 5 2015 Houston Community College Course Specific Have you taken a math course at the community college level? When was the last time you took a math course? What course was it? Where did you take this course? What is your level of comfort with math? 1 2 3 4 5 6 7 8 9 10 Not comfortable Very comfortable List the courses you are enrolled in this semester What grade do you intend to earn in this course? What strengths or assets do you have that will help you achieve your goal in this course? These strengths/assets can include things
Recommended publications
  • Black Hills State University
    Black Hills State University MATH 341 Concepts addressed: Mathematics Number sense and numeration: meaning and use of numbers; the standard algorithms of the four basic operations; appropriate computation strategies and reasonableness of results; methods of mathematical investigation; number patterns; place value; equivalence; factors and multiples; ratio, proportion, percent; representations; calculator strategies; and number lines Students will be able to demonstrate proficiency in utilizing the traditional algorithms for the four basic operations and to analyze non-traditional student-generated algorithms to perform these calculations. Students will be able to use non-decimal bases and a variety of numeration systems, such as Mayan, Roman, etc, to perform routine calculations. Students will be able to identify prime and composite numbers, compute the prime factorization of a composite number, determine whether a given number is prime or composite, and classify the counting numbers from 1 to 200 into prime or composite using the Sieve of Eratosthenes. A prime number is a number with exactly two factors. For example, 13 is a prime number because its only factors are 1 and itself. A composite number has more than two factors. For example, the number 6 is composite because its factors are 1,2,3, and 6. To determine if a larger number is prime, try all prime numbers less than the square root of the number. If any of those primes divide the original number, then the number is prime; otherwise, the number is composite. The number 1 is neither prime nor composite. It is not prime because it does not have two factors. It is not composite because, otherwise, it would nullify the Fundamental Theorem of Arithmetic, which states that every composite number has a unique prime factorization.
    [Show full text]
  • RATIO and PERCENT Grade Level: Fifth Grade Written By: Susan Pope, Bean Elementary, Lubbock, TX Length of Unit: Two/Three Weeks
    RATIO AND PERCENT Grade Level: Fifth Grade Written by: Susan Pope, Bean Elementary, Lubbock, TX Length of Unit: Two/Three Weeks I. ABSTRACT A. This unit introduces the relationships in ratios and percentages as found in the Fifth Grade section of the Core Knowledge Sequence. This study will include the relationship between percentages to fractions and decimals. Finally, this study will include finding averages and compiling data into various graphs. II. OVERVIEW A. Concept Objectives for this unit: 1. Students will understand and apply basic and advanced properties of the concept of ratios and percents. 2. Students will understand the general nature and uses of mathematics. B. Content from the Core Knowledge Sequence: 1. Ratio and Percent a. Ratio (p. 123) • determine and express simple ratios, • use ratio to create a simple scale drawing. • Ratio and rate: solve problems on speed as a ratio, using formula S = D/T (or D = R x T). b. Percent (p. 123) • recognize the percent sign (%) and understand percent as “per hundred” • express equivalences between fractions, decimals, and percents, and know common equivalences: 1/10 = 10% ¼ = 25% ½ = 50% ¾ = 75% find the given percent of a number. C. Skill Objectives 1. Mathematics a. Compare two fractional quantities in problem-solving situations using a variety of methods, including common denominators b. Use models to relate decimals to fractions that name tenths, hundredths, and thousandths c. Use fractions to describe the results of an experiment d. Use experimental results to make predictions e. Use table of related number pairs to make predictions f. Graph a given set of data using an appropriate graphical representation such as a picture or line g.
    [Show full text]
  • 4Fractions and Percentages
    Fractions and Chapter 4 percentages What Australian you will learn curriculum 4A What are fractions? NUMBER AND ALGEBRA (Consolidating) 1 Real numbers 4B Equivalent fractions and Compare fractions using equivalence. Locate and represent fractions and simplifi ed fractions mixed numerals on a number line (ACMNA152) 4C Mixed numbers Solve problems involving addition and subtraction of fractions, including (Consolidating) those with unrelated denominators (ACMNA153) 4D Ordering fractions Multiply and divide fractions and decimals using ef cient written 4E Adding fractions strategies and digital technologies (ACMNA154) 4F Subtracting fractions Express one quantity as a fraction of another with and without the use of UNCORRECTEDdigital technologies (ACMNA155) 4G Multiplying fractions 4H Dividing fractions Connect fractions, decimals and percentages and carry out simple 4I Fractions and percentages conversions (ACMNA157) 4J Percentage of a number Find percentages of quantities and express one quantity as a percentage 4K Expressing aSAMPLE quantity as a of another, with and without digital PAGES technologies. (ACMNA158) proportion Recognise and solve problems involving simple ratios. (ACMNA173) 2 Money and nancial mathematics Investigate and calculate ‘best16x16 buys’, with and without digital32x32 technologies (ACMNA174) Uncorrected 3rd sample pages • Cambridge University Press © Greenwood et al., 2015 • 978-1-107-56882-2 • Ph 03 8671 1400 COP_04.indd 2 16/04/15 11:34 AM Online 173 resources • Chapter pre-test • Videos of all worked examples • Interactive widgets • Interactive walkthroughs • Downloadable HOTsheets • Access to HOTmaths Australian Curriculum courses Ancient Egyptian fractions 1 The ancient Egyptians used fractions over 4000 years thought (eyebrow closest to brain) 8 ago. The Egyptian sky god Horus was a falcon-headed 1 hearing (pointing to ear) man whose eyes were believed to have magical healing 16 powers.
    [Show full text]
  • Continued Fractions: Properties and Invariant Measure (Kettingbreuken: Eigenschappen En Invariante Maat)
    Delft University of Technology Faculty Electrical Engineering, Mathematics and Computer Science Delft Institute of Applied Mathematics Continued fractions: Properties and invariant measure (Kettingbreuken: Eigenschappen en invariante maat) Bachelor of science thesis by Angelina C. Lemmens Delft, Nederland 14 februari 2014 Inhoudsopgave 1 Introduction 1 2 Continued fractions 2 2.1 Regular continued fractions . .2 2.1.1 Convergence of the regular continued fraction . .4 2.2 N-expansion . .9 2.3 a/b-continued fractions . 11 3 Invariant measures 12 3.1 Definition of invariant measure . 12 3.2 Invariant measure of the regular continued fraction . 13 4 The Ergodic Theorem 15 4.1 Adler's Folklore Theorem . 15 4.2 Ergodicity of the regular continued fraction . 17 5 A new continued fraction 19 5.1 Convergence of the new continued fraction . 20 5.2 Invariant measure and ergodicity of the new continued fraction . 25 5.3 Simulation of the density of the new continued fraction . 28 6 Appendix 30 1 Introduction An irrational number can be represented in many ways. For example the repre- sentation could be a rational approximation and could be more convenient to work with than the original number. Representations can be for example the decimal expansion or the binary expansion. These representations are used in everyday life. Less known is the representation by continued fractions. Continued fractions give the best approximation of irrational numbers by rational numbers. This is something that Christiaan Huygens already knew (and used to construct his planetarium). Number representations like the decimal expansion and continued fractions have relations with probability theory and dynamical systems.
    [Show full text]
  • Maths Revision & Practice Booklet
    Maths Revision & Practice Booklet Name: Fractions, Decimals and Percentages visit twinkl.com Maths Revision & Practice Booklet Revise Using Common Factors to Simplify Fractions Fractions that have the same value but represent this using different denominators and numerators are equivalent. We can recognise and find equivalent fractions by multiplying or dividing the numerator and denominator by the same amount. When we simplify a fraction, we use the highest common factor of the numerator and denominator to reduce the fraction to the lowest term equivalent fraction (simplest form). Factors of 21: 1 3 7 The highest 21 common factor 36 Factors of 36: 1 2 3 4 6 9 12 18 36 is 3. 21 ÷ 3 = 7 7 36 ÷ 3 = 12 12 Using Common Multiples to Express Fractions in the Same Denomination To compare or calculate with fractions, we often need to give them a common denominator. We do this by looking at the denominators and finding their lowest common multiple. 3 4 5 × 7 = 35 5 7 35 is the lowest common multiple. Remember that whatever we do 3 3 × 7 = 21 4 4 × 5 = 20 to the denominator, we have to 5 × 7 = 35 7 × 5 = 35 5 7 do to the numerator. Page 2 of 11 visit twinkl.com Maths Revision & Practice Booklet Comparing and Ordering Fractions, Including Fractions > 1 To compare and order ...look at the fractions with the same 5 2 numerators. denominators… 9 > 9 …change the 5 3 fractions into and To compare and order 9 5 equivalent fractions with different 5 9 fractions with the × × denominators… lowest common 25 27 denominator.
    [Show full text]
  • The Least Common Multiple of a Quadratic Sequence
    The least common multiple of a quadratic sequence Javier Cilleruelo Abstract For any irreducible quadratic polynomial f(x) in Z[x] we obtain the estimate log l.c.m. (f(1); : : : ; f(n)) = n log n + Bn + o(n) where B is a constant depending on f. 1. Introduction The problem of estimating the least common multiple of the ¯rstPn positive integers was ¯rst investigated by Chebyshev [Che52] when he introduced the function ª(n) = pm6n log p = log l.c.m.(1; : : : ; n) in his study on the distribution of prime numbers. The prime number theorem asserts that ª(n) » n, so the asymptotic estimate log l.c.m.(1; : : : ; n) » n is equivalent to the prime number theorem. The analogous asymptotic estimate for any linear polynomial f(x) = ax + b is also known [Bat02] and it is a consequence of the prime number theorem for arithmetic progressions: q X 1 log l.c.m.(f(1); : : : ; f(n)) » n ; (1) Á(q) k 16k6q (k;q)=1 where q = a=(a; b). We address here the problem of estimating log l.c.m.(f(1); : : : ; f(n)) when f is an irreducible quadratic polynomial in Z[x]. When f is a reducible quadratic polynomial the asymptotic estimate is similar to that we obtain for linear polynomials. This case is studied in section x4 with considerably less e®ort than the irreducible case. We state our main theorem. Theorem 1. For any irreducible quadratic polynomial f(x) = ax2 + bx + c in Z[x] we have log l.c.m.
    [Show full text]
  • Eureka Math™ Tips for Parents Module 2
    Grade 6 Eureka Math™ Tips for Parents Module 2 The chart below shows the relationships between various fractions and may be a great Key Words tool for your child throughout this module. Greatest Common Factor In this 19-lesson module, students complete The greatest common factor of two whole numbers (not both zero) is the their understanding of the four operations as they study division of whole numbers, division greatest whole number that is a by a fraction, division of decimals and factor of each number. For operations on multi-digit decimals. This example, the GCF of 24 and 36 is 12 expanded understanding serves to complete because when all of the factors of their study of the four operations with positive 24 and 36 are listed, the largest rational numbers, preparing students for factor they share is 12. understanding, locating, and ordering negative rational numbers and working with algebraic Least Common Multiple expressions. The least common multiple of two whole numbers is the least whole number greater than zero that is a What Came Before this Module: multiple of each number. For Below is an example of how a fraction bar model can be used to represent the Students added, subtracted, and example, the LCM of 4 and 6 is 12 quotient in a division problem. multiplied fractions and decimals (to because when the multiples of 4 and the hundredths place). They divided a 6 are listed, the smallest or first unit fraction by a non-zero whole multiple they share is 12. number as well as divided a whole number by a unit fraction.
    [Show full text]
  • Maths Module 3 Ratio, Proportion and Percent
    Maths Module 3 Ratio, Proportion and Percent This module covers concepts such as: • ratio • direct and indirect proportion • rates • percent www.jcu.edu.au/students/learning-centre Module 3 Ratio, Proportion and Percent 1. Ratio 2. Direct and Indirect Proportion 3. Rate 4. Nursing Examples 5. Percent 6. Combine Concepts: A Word Problem 7. Answers 8. Helpful Websites 2 1. Ratio Understanding ratio is very closely related to fractions. With ratio comparisons are made between equal sized parts/units. Ratios use the symbol “ : “ to separate the quantities being compared. For example, 1:3 means 1 unit to 3 units, and the units are the same size. Whilst ratio can be expressed as a fraction, the ratio 1:3 is NOT the same as , as the rectangle below illustrates 1 3 The rectangle is 1 part grey to 3 parts white. Ratio is 1:3 (4 parts/units) The rectangle is a total of 4 parts, and therefore, the grey part represented symbolically is and not 1 1 4 3 AN EXAMPLE TO BEGIN: My two-stroke mower requires petrol and oil mixed to a ratio of 1:25. This means that I add one part oil to 25 parts petrol. No matter what measuring device I use, the ratio must stay the same. So if I add 200mL of oil to my tin, I add 200mL x 25 = 5000mL of petrol. Note that the total volume (oil and petrol combined) = 5200mL which can be converted to 5.2 litres. Ratio relationships are multiplicative. Mathematically: 1:25 is the same as 2:50 is the same as 100:2500 and so on.
    [Show full text]
  • 5 Working with Proportionality and Ratio
    5 Working with proportionality and ratio Key words: proportional, directly proportional, line graph, origin, gradient, slope, horizontal axis, vertical axis, x-axis, y-axis, x-coordinate, y-coordinate, rate, constant, constant of proportionality, reciprocal, inverse, inversely proportional, ratio, percentage, scale, scale drawing, scale factor, linear dimension. There are many different kinds of relationship between variables. A very common relationship is when one variable is proportional to another and this section focuses on this kind of relationship. It also considers the related ideas of ratio, percentage and scale. 5.1 Meaning of proportional A formal way of expressing proportionality would be that variable A is proportional to variable B when the values of the two variables are related by a constant multiplier. It is easier to understand the idea of proportionality through an example. Banks count coins by weighing them. Suppose a coin has a mass of 5 g. Then two coins have a mass of 10 g. Doubling the number of coins doubles the mass. If there are 10 coins then they have 10 times the mass of one coin (i.e. 100 g). This is expressed by saying that the mass of coins is proportional to the number of coins. A proportional relationship also works the other way round. The number of coins is proportional to the mass of the coins. A bag with 100 g of coins contains 10 coins. If you have double the mass (200 g) then you have double the number of coins (20). This is essentially what the bank is doing when it weighs coins to count them.
    [Show full text]
  • Hardin Middle School Math Cheat Sheets
    Name: __________________________________________ 7th Grade Math Teacher: ______________________________ 8th Grade Math Teacher: ______________________________ Hardin Middle School Math Cheat Sheets You will be given only one of these books. If you lose the book, it will cost $5 to replace it. Compiled by Shirk &Harrigan - Updated May 2013 Alphabetized Topics Pages Pages Area 32 Place Value 9, 10 Circumference 32 Properties 12 22, 23, Comparing 23, 26 Proportions 24, 25, 26 Pythagorean Congruent Figures 35 36 Theorem 14, 15, 41 Converting 23 R.A.C.E. Divisibility Rules 8 Range 11 37, 38, 25 Equations 39 Rates Flow Charts Ratios 25, 26 32, 33, 10 Formulas 34 Rounding 18, 19, 20, 21, 35 Fractions 22, 23, Scale Factor 24 Geometric Figures 30, 31 Similar Figures 35 Greatest Common 22 Slide Method 22 Factor (GF or GCD) Inequalities 40 Substitution 29 Integers 18, 19 Surface Area 33 Ladder Method 22 Symbols 5 Least Common Multiple 22 Triangles 30, 36 (LCM or LCD) Mean 11 Variables 29 Median 11 Vocabulary Words 43 Mode 11 Volume 34 Multiplication Table 6 Word Problems 41, 42 Order of 16, 17 Operations 23, 24, Percent 25, 26 Perimeter 32 Table of Contents Pages Cheat Sheets 5 – 42 Math Symbols 5 Multiplication Table 6 Types of Numbers 7 Divisibility Rules 8 Place Value 9 Rounding & Comparing 10 Measures of Central Tendency 11 Properties 12 Coordinate Graphing 13 Measurement Conversions 14 Metric Conversions 15 Order of Operations 16 – 17 Integers 18 – 19 Fraction Operations 20 – 21 Ladder/Slide Method 22 Converting Fractions, Decimals, & 23 Percents Cross Products 24 Ratios, Rates, & Proportions 25 Comparing with Ratios, Percents, 26 and Proportions Solving Percent Problems 27 – 28 Substitution & Variables 29 Geometric Figures 30 – 31 Area, Perimeter, Circumference 32 Surface Area 33 Volume 34 Congruent & Similar Figures 35 Pythagorean Theorem 36 Hands-On-Equation 37 Understanding Flow Charts 38 Solving Equations Mathematically 39 Inequalities 40 R.A.C.E.
    [Show full text]
  • Table of Contents
    Index Mathematics Methodology November 2014 S&P Dow Jones Indices: Index Methodology Table of Contents Introduction 4 Different Varieties of Indices 4 The Index Divisor 5 Capitalization Weighted Indices 6 Definition 6 Adjustments to Share Counts 7 Divisor Adjustments 7 Necessary Divisor Adjustments 9 Capped Indices 11 Equal Weighted Indices 12 Definition 12 Corporate Actions and Index Adjustments 13 Index Actions 14 Corporate Actions 14 Modified Market Capitalization Weighted Indices 15 Definition 15 Corporate Actions and Index Adjustments 16 Index Actions 16 Corporate Actions 17 Capped Market Capitalization Indices 18 Definition 18 Corporate Actions and Index Adjustments 19 Different Capping Methods 19 Attribute Weighted Indices 22 Corporate Actions 24 S&P Dow Jones Indices: Index Mathematics Methodology 1 Leveraged and Inverse Indices 26 Leveraged Indices for Equities 26 Leveraged Indices without Borrowing Costs for Equities 27 Inverse Indices for Equities 27 Inverse Indices without Borrowing Costs for Equities 28 Leveraged and Inverse Indices for Futures 28 Daily Rebalanced Leverage or Inverse Futures Indices 29 Periodically Rebalanced Leverage or Inverse Futures Indices 30 Total Return Calculations 31 Index Fundamentals 32 Fund Strategy Indices 33 Total Return and Synthetic Price Indices 34 Index and Corporate Actions 35 Dividend Indices 36 Excess Return Indices 37 Risk Control Indices 38 Exponentially-Weighted Volatility 41 Simple-Weighted Volatility 43 Futures-Based Risk Control Indices 44 Exponentially-Weighted Volatility for Futures-Based
    [Show full text]
  • Fundamental Arithmetic
    FUNDAMENTAL ARITHMETIC Prime Numbers Prime numbers are any whole numbers greater than 1 that can only be divided by 1 and itself. Below is the list of all prime numbers between 1 and 100: 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 Prime Factorization Prime factorization is the process of changing non-prime (composite) numbers into a product of prime numbers. Below is the prime factorization of all numbers between 1 and 20. 1 is unique 6 = 2 ∙ 3 11 is prime 16 = 2 ∙ 2 ∙ 2 ∙ 2 2 is prime 7 is prime 12 = 2 ∙ 2 ∙ 3 17 is prime 3 is prime 8 = 2 ∙ 2 ∙ 2 13 is prime 18 = 2 ∙ 3 ∙ 3 4 = 2 ∙ 2 9 = 3 ∙ 3 14 = 2 ∙ 7 19 is prime 5 is prime 10 = 2 ∙ 5 15 = 3 ∙ 5 20 = 2 ∙ 2 ∙ 5 Divisibility By using these divisibility rules, you can easily test if one number can be evenly divided by another. A Number is Divisible By: If: Examples 2 The last digit is 5836 divisible by two 583 ퟔ ퟔ ÷ 2 = 3, Yes 3 The sum of the digits is 1725 divisible by three 1 + 7 + 2 + 5 = ퟏퟓ ퟏퟓ ÷ 3 = 5, Yes 5 The last digit ends 885 in a five or zero 88 ퟓ The last digit ends in a five, Yes 10 The last digit ends 7390 in a zero 739 ퟎ The last digit ends in a zero, Yes Exponents An exponent of a number says how many times to multiply the base number to itself.
    [Show full text]