Bernoulli 21(1), 2015, 38–61 DOI: 10.3150/13-BEJ560 Maxima of independent, non-identically distributed Gaussian vectors SEBASTIAN ENGELKE1,2, ZAKHAR KABLUCHKO3 and MARTIN SCHLATHER4 1Institut f¨ur Mathematische Stochastik, Georg-August-Universit¨at G¨ottingen, Goldschmidtstr. 7, D-37077 G¨ottingen, Germany. E-mail:
[email protected] 2Facult´edes Hautes Etudes Commerciales, Universit´ede Lausanne, Extranef, UNIL-Dorigny, CH-1015 Lausanne, Switzerland 3Institut f¨ur Stochastik, Universit¨at Ulm, Helmholtzstr. 18, D-89069 Ulm, Germany. E-mail:
[email protected] 4Institut f¨ur Mathematik, Universit¨at Mannheim, A5, 6, D-68131 Mannheim, Germany. E-mail:
[email protected] d Let Xi,n, n ∈ N, 1 ≤ i ≤ n, be a triangular array of independent R -valued Gaussian random vectors with correlation matrices Σi,n. We give necessary conditions under which the row-wise maxima converge to some max-stable distribution which generalizes the class of H¨usler–Reiss distributions. In the bivariate case, the conditions will also be sufficient. Using these results, new models for bivariate extremes are derived explicitly. Moreover, we define a new class of stationary, max-stable processes as max-mixtures of Brown–Resnick processes. As an application, we show that these processes realize a large set of extremal correlation functions, a natural dependence measure for max-stable processes. This set includes all functions ψ(pγ(h)), h ∈ Rd, where ψ is a completely monotone function and γ is an arbitrary variogram. Keywords: extremal correlation function; Gaussian random vectors; H¨usler–Reiss distributions; max-limit theorems; max-stable distributions; triangular arrays 1.