Actuarial Modelling of Extremal Events Using Transformed Generalized Extreme Value Distributions and Generalized Pareto Distributions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Overview of the Extremal Index Nicholas Moloney, Davide Faranda, Yuzuru Sato
An overview of the extremal index Nicholas Moloney, Davide Faranda, Yuzuru Sato To cite this version: Nicholas Moloney, Davide Faranda, Yuzuru Sato. An overview of the extremal index. Chaos: An Interdisciplinary Journal of Nonlinear Science, American Institute of Physics, 2019, 29 (2), pp.022101. 10.1063/1.5079656. hal-02334271 HAL Id: hal-02334271 https://hal.archives-ouvertes.fr/hal-02334271 Submitted on 28 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. An overview of the extremal index Nicholas R. Moloney,1, a) Davide Faranda,2, b) and Yuzuru Sato3, c) 1)Department of Mathematics and Statistics, University of Reading, Reading RG6 6AX, UKd) 2)Laboratoire de Sciences du Climat et de l’Environnement, UMR 8212 CEA-CNRS-UVSQ,IPSL, Universite Paris-Saclay, 91191 Gif-sur-Yvette, France 3)RIES/Department of Mathematics, Hokkaido University, Kita 20 Nishi 10, Kita-ku, Sapporo 001-0020, Japan (Dated: 5 January 2019) For a wide class of stationary time series, extreme value theory provides limiting distributions for rare events. The theory describes not only the size of extremes, but also how often they occur. In practice, it is often observed that extremes cluster in time. -
Using Extreme Value Theory to Test for Outliers Résumé Abstract
Using Extreme Value Theory to test for Outliers Nathaniel GBENRO(*)(**) (*)Ecole Nationale Supérieure de Statistique et d’Economie Appliquée (**) Université de Cergy Pontoise [email protected] Mots-clés. Extreme Value Theory, Outliers, Hypothesis Tests, etc Résumé Dans cet article, il est proposé une procédure d’identification des outliers basée sur la théorie des valeurs extrêmes (EVT). Basé sur un papier de Olmo(2009), cet article généralise d’une part l’algorithme proposé puis d’autre part teste empiriquement le comportement de la procédure sur des données simulées. Deux applications du test sont conduites. La première application compare la nouvelle procédure de test et le test de Grubbs sur des données générées à partir d’une distribution normale. La seconde application utilisent divers autres distributions (autre que normales) pour analyser le comportement de l’erreur de première espèce en absence d’outliers. Les résultats de ces deux applications suggèrent que la nouvelle procédure de test a une meilleure performance que celle de Grubbs. En effet, la première application conclut au fait lorsque les données sont générées d’une distribution normale, les deux tests ont une erreur de première espèces quasi identique tandis que la nouvelle procédure a une puissance plus élevée. La seconde application, quant à elle, indique qu’en absence d’outlier dans un échantillon de données issue d’une distribution autre que normale, le test de Grubbs identifie quasi-systématiquement la valeur maximale comme un outlier ; La nouvelle procédure de test permettant de corriger cet fait. Abstract This paper analyses the identification of aberrant values using a new approach based on the extreme value theory (EVT). -
Extreme Value Theory Page 1
SP9-20: Extreme value theory Page 1 Extreme value theory Syllabus objectives 4.5 Explain the importance of the tails of distributions, tail correlations and low frequency / high severity events. 4.6 Demonstrate how extreme value theory can be used to help model risks that have a low probability. The Actuarial Education Company © IFE: 2019 Examinations Page 2 SP9-20: Extreme value theory 0 Introduction In this module we look more closely at the tails of distributions. In Section 2, we introduce the concept of extreme value theory and discuss its importance in helping to manage risk. The importance of tail distributions and correlations has already been mentioned in Module 15. In this module, the idea is extended to consider the modelling of risks with low frequency but high severity, including the use of extreme value theory. Note the following advice in the Core Reading: Beyond the Core Reading, students should be able to recommend a specific approach and choice of model for the tails based on a mixture of quantitative analysis and graphical diagnostics. They should also be able to describe how the main theoretical results can be used in practice. © IFE: 2019 Examinations The Actuarial Education Company SP9-20: Extreme value theory Page 3 Module 20 – Task list Task Completed Read Section 1 of this module and answer the self-assessment 1 questions. Read: 2 Sweeting, Chapter 12, pages 286 – 293 Read the remaining sections of this module and answer the self- 3 assessment questions. This includes relevant Core Reading for this module. 4 Attempt the practice questions at the end of this module. -
Going Beyond the Hill: an Introduction to Multivariate Extreme Value Theory
Motivation Basics MRV Max-stable MEV PAM MOM BHM Spectral Going beyond the Hill: An introduction to Multivariate Extreme Value Theory Philippe Naveau [email protected] Laboratoire des Sciences du Climat et l’Environnement (LSCE) Gif-sur-Yvette, France Books: Coles (1987), Embrechts et al. (1997), Resnick (2006) FP7-ACQWA, GIS-PEPER, MIRACLE & ANR-McSim, MOPERA 22 juillet 2014 Motivation Basics MRV Max-stable MEV PAM MOM BHM Spectral Statistics and Earth sciences “There is, today, always a risk that specialists in two subjects, using languages QUIZ full of words that are unintelligible without study, (A) Gilbert Walker will grow up not only, without (B) Ed Lorenz knowledge of each other’s (C) Rol Madden work, but also will ignore the (D) Francis Zwiers problems which require mutual assistance”. Motivation Basics MRV Max-stable MEV PAM MOM BHM Spectral EVT = Going beyond the data range What is the probability of observingHauteurs data de abovecrête (Lille, an high1895-2002) threshold ? 100 80 60 Precipitationen mars 40 20 0 1900 1920 1940 1960 1980 2000 Années March precipitation amounts recorded at Lille (France) from 1895 to 2002. The 17 black dots corresponds to the number of exceedances above the threshold un = 75 mm. This number can be conceptually viewed as a random sum of Bernoulli (binary) events. Motivation Basics MRV Max-stable MEV PAM MOM BHM Spectral An example in three dimensions Air pollutants (Leeds, UK, winter 94-98, daily max) NO vs. PM10 (left), SO2 vs. PM10 (center), and SO2 vs. NO (right) (Heffernan& Tawn 2004, Boldi -
Extreme Value Theory and Backtest Overfitting in Finance
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Bowdoin College Bowdoin College Bowdoin Digital Commons Honors Projects Student Scholarship and Creative Work 2015 Extreme Value Theory and Backtest Overfitting in Finance Daniel C. Byrnes [email protected] Follow this and additional works at: https://digitalcommons.bowdoin.edu/honorsprojects Part of the Statistics and Probability Commons Recommended Citation Byrnes, Daniel C., "Extreme Value Theory and Backtest Overfitting in Finance" (2015). Honors Projects. 24. https://digitalcommons.bowdoin.edu/honorsprojects/24 This Open Access Thesis is brought to you for free and open access by the Student Scholarship and Creative Work at Bowdoin Digital Commons. It has been accepted for inclusion in Honors Projects by an authorized administrator of Bowdoin Digital Commons. For more information, please contact [email protected]. Extreme Value Theory and Backtest Overfitting in Finance An Honors Paper Presented for the Department of Mathematics By Daniel Byrnes Bowdoin College, 2015 ©2015 Daniel Byrnes Acknowledgements I would like to thank professor Thomas Pietraho for his help in the creation of this thesis. The revisions and suggestions made by several members of the math faculty were also greatly appreciated. I would also like to thank the entire department for their support throughout my time at Bowdoin. 1 Contents 1 Abstract 3 2 Introduction4 3 Background7 3.1 The Sharpe Ratio.................................7 3.2 Other Performance Measures.......................... 10 3.3 Example of an Overfit Strategy......................... 11 4 Modes of Convergence for Random Variables 13 4.1 Random Variables and Distributions...................... 13 4.2 Convergence in Distribution.......................... -
View Article
Fire Research Note No. 837 SOME POSSIBLE APPLICATIONS OF THE THEORY OF EXTREME VALUES FOR THE ANALYSIS OF FIRE LOSS DATA . .' by G. RAMACHANDRAN September 1970 '. FIRE "RESEARCH STATION © BRE Trust (UK) Permission is granted for personal noncommercial research use. Citation of the work is allowed and encouraged. " '.. .~ t . i\~ . f .." ~ , I "I- I Fire Research Station, Borehamwood, He-rts. Tel. 81-953-6177 F.R.. Note No.837. t".~~. ~ . ~~:_\": -~: SOME POSSIBLE APPLIC AT 10m OF THE THEORY OF EXTREME VALUES ,'c'\ .r: FOR THE ANALYSIS OF FIRE LOSS DATA by G. Ramachandran SUMMARY This paper discusses the possibili~ of applying the statistical theory of extreme values to data on monetary losses due to large fires in buildings • ." The theory is surveyed in order to impart the necessary background picture. With the logarithm of loss as the variate, an initial distribution of the exponential type is assumed. Hence use of the first asymptotic distribution of largest values is illustrated. Extreme order statistics other than the largest are also discussed. Uses of these statistics are briefly outlined. Suggestions for further research are also made. I KEY WORDS: Large fires, loss, fire statistics. i ' ~ Crown copyright .,. ~.~ This repor-t has not been published and should be considerec as confidential odvonce information. No rClferClnce should be made to it in any publication without the written consent of the DirClctor of Fire Research. MINISTRY OF TECHNOLOGY AND FIRE OFFICES' COMMITTEE JOINT FIRE RESEARCH ORGANIZATION F.R. Note ·No.837. SOME POSSIBLE APPLICATIONS OF TliE THEORY OF EXTREME VALUES FOR THE ANALYSIS OF FIRE LOSS DATA by G. -
An Introduction to Extreme Value Statistics
An Introduction to Extreme Value Statistics Marielle Pinheiro and Richard Grotjahn ii This tutorial is a basic introduction to extreme value analysis and the R package, extRemes. Extreme value analysis has application in a number of different disciplines ranging from finance to hydrology, but here the examples will be presented in the form of climate observations. We will begin with a brief background on extreme value analysis, presenting the two main methods and then proceeding to show examples of each method. Readers interested in a more detailed explanation of the math should refer to texts such as Coles 2001 [1], which is cited frequently in the Gilleland and Katz extRemes 2.0 paper [2] detailing the various tools provided in the extRemes package. Also, the extRemes documentation, which is useful for functions syntax, can be found at http://cran.r-project.org/web/packages/extRemes/ extRemes.pdf For guidance on the R syntax and R scripting, many resources are available online. New users might want to begin with the Cookbook for R (http://www.cookbook-r.com/ or Quick-R (http://www.statmethods.net/) Contents 1 Background 1 1.1 Extreme Value Theory . .1 1.2 Generalized Extreme Value (GEV) versus Generalized Pareto (GP) . .2 1.3 Stationarity versus non-stationarity . .3 2 ExtRemes example: Using Davis station data from 1951-2012 7 2.1 Explanation of the fevd input and output . .7 2.1.1 fevd tools used in this example . .8 2.2 Working with the data: Generalized Extreme Value (GEV) distribution fit . .9 2.3 Working with the data: Generalized Pareto (GP) distribution fit . -
Parametric (Theoretical) Probability Distributions. (Wilks, Ch. 4) Discrete
6 Parametric (theoretical) probability distributions. (Wilks, Ch. 4) Note: parametric: assume a theoretical distribution (e.g., Gauss) Non-parametric: no assumption made about the distribution Advantages of assuming a parametric probability distribution: Compaction: just a few parameters Smoothing, interpolation, extrapolation x x + s Parameter: e.g.: µ,σ population mean and standard deviation Statistic: estimation of parameter from sample: x,s sample mean and standard deviation Discrete distributions: (e.g., yes/no; above normal, normal, below normal) Binomial: E = 1(yes or success); E = 0 (no, fail). These are MECE. 1 2 P(E ) = p P(E ) = 1− p . Assume N independent trials. 1 2 How many “yes” we can obtain in N independent trials? x = (0,1,...N − 1, N ) , N+1 possibilities. Note that x is like a dummy variable. ⎛ N ⎞ x N − x ⎛ N ⎞ N ! P( X = x) = p 1− p , remember that = , 0!= 1 ⎜ x ⎟ ( ) ⎜ x ⎟ x!(N x)! ⎝ ⎠ ⎝ ⎠ − Bernouilli is the binomial distribution with a single trial, N=1: x = (0,1), P( X = 0) = 1− p, P( X = 1) = p Geometric: Number of trials until next success: i.e., x-1 fails followed by a success. x−1 P( X = x) = (1− p) p x = 1,2,... 7 Poisson: Approximation of binomial for small p and large N. Events occur randomly at a constant rate (per N trials) µ = Np . The rate per trial p is low so that events in the same period (N trials) are approximately independent. Example: assume the probability of a tornado in a certain county on a given day is p=1/100. -
Handbook on Probability Distributions
R powered R-forge project Handbook on probability distributions R-forge distributions Core Team University Year 2009-2010 LATEXpowered Mac OS' TeXShop edited Contents Introduction 4 I Discrete distributions 6 1 Classic discrete distribution 7 2 Not so-common discrete distribution 27 II Continuous distributions 34 3 Finite support distribution 35 4 The Gaussian family 47 5 Exponential distribution and its extensions 56 6 Chi-squared's ditribution and related extensions 75 7 Student and related distributions 84 8 Pareto family 88 9 Logistic distribution and related extensions 108 10 Extrem Value Theory distributions 111 3 4 CONTENTS III Multivariate and generalized distributions 116 11 Generalization of common distributions 117 12 Multivariate distributions 133 13 Misc 135 Conclusion 137 Bibliography 137 A Mathematical tools 141 Introduction This guide is intended to provide a quite exhaustive (at least as I can) view on probability distri- butions. It is constructed in chapters of distribution family with a section for each distribution. Each section focuses on the tryptic: definition - estimation - application. Ultimate bibles for probability distributions are Wimmer & Altmann (1999) which lists 750 univariate discrete distributions and Johnson et al. (1994) which details continuous distributions. In the appendix, we recall the basics of probability distributions as well as \common" mathe- matical functions, cf. section A.2. And for all distribution, we use the following notations • X a random variable following a given distribution, • x a realization of this random variable, • f the density function (if it exists), • F the (cumulative) distribution function, • P (X = k) the mass probability function in k, • M the moment generating function (if it exists), • G the probability generating function (if it exists), • φ the characteristic function (if it exists), Finally all graphics are done the open source statistical software R and its numerous packages available on the Comprehensive R Archive Network (CRAN∗). -
Multivariate Non-Normally Distributed Random Variables in Climate Research – Introduction to the Copula Approach Christian Schoelzel, P
Multivariate non-normally distributed random variables in climate research – introduction to the copula approach Christian Schoelzel, P. Friederichs To cite this version: Christian Schoelzel, P. Friederichs. Multivariate non-normally distributed random variables in cli- mate research – introduction to the copula approach. Nonlinear Processes in Geophysics, European Geosciences Union (EGU), 2008, 15 (5), pp.761-772. cea-00440431 HAL Id: cea-00440431 https://hal-cea.archives-ouvertes.fr/cea-00440431 Submitted on 10 Dec 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Nonlin. Processes Geophys., 15, 761–772, 2008 www.nonlin-processes-geophys.net/15/761/2008/ Nonlinear Processes © Author(s) 2008. This work is licensed in Geophysics under a Creative Commons License. Multivariate non-normally distributed random variables in climate research – introduction to the copula approach C. Scholzel¨ 1,2 and P. Friederichs2 1Laboratoire des Sciences du Climat et l’Environnement (LSCE), Gif-sur-Yvette, France 2Meteorological Institute at the University of Bonn, Germany Received: 28 November 2007 – Revised: 28 August 2008 – Accepted: 28 August 2008 – Published: 21 October 2008 Abstract. Probability distributions of multivariate random nature can be found in e.g. Lorenz (1964); Eckmann and Ru- variables are generally more complex compared to their uni- elle (1985). -
Limit Theorems for Point Processes Under Geometric Constraints (And
Submitted to the Annals of Probability arXiv: arXiv:1503.08416 LIMIT THEOREMS FOR POINT PROCESSES UNDER GEOMETRIC CONSTRAINTS (AND TOPOLOGICAL CRACKLE) BY TAKASHI OWADA † AND ROBERT J. ADLER∗,† Technion – Israel Institute of Technology We study the asymptotic nature of geometric structures formed from a point cloud of observations of (generally heavy tailed) distributions in a Eu- clidean space of dimension greater than one. A typical example is given by the Betti numbers of Cechˇ complexes built over the cloud. The structure of dependence and sparcity (away from the origin) generated by these distribu- tions leads to limit laws expressible via non-homogeneous, random, Poisson measures. The parametrisation of the limits depends on both the tail decay rate of the observations and the particular geometric constraint being consid- ered. The main theorems of the paper generate a new class of results in the well established theory of extreme values, while their applications are of signifi- cance for the fledgling area of rigorous results in topological data analysis. In particular, they provide a broad theory for the empirically well-known phe- nomenon of homological ‘crackle’; the continued presence of spurious ho- mology in samples of topological structures, despite increased sample size. 1. Introduction. The main results in this paper lie in two seemingly unrelated areas, those of classical Extreme Value Theory (EVT), and the fledgling area of rigorous results in Topological Data Analysis (TDA). The bulk of the paper, including its main theorems, are in the domain of EVT, with many of the proofs coming from Geometric Graph Theory. However, the con- sequences for TDA, which will not appear in detail until the penultimate section of the paper, actually provided our initial motivation, and so we shall start with a brief description of this aspect of the paper. -
Maxima of Independent, Non-Identically Distributed
Bernoulli 21(1), 2015, 38–61 DOI: 10.3150/13-BEJ560 Maxima of independent, non-identically distributed Gaussian vectors SEBASTIAN ENGELKE1,2, ZAKHAR KABLUCHKO3 and MARTIN SCHLATHER4 1Institut f¨ur Mathematische Stochastik, Georg-August-Universit¨at G¨ottingen, Goldschmidtstr. 7, D-37077 G¨ottingen, Germany. E-mail: [email protected] 2Facult´edes Hautes Etudes Commerciales, Universit´ede Lausanne, Extranef, UNIL-Dorigny, CH-1015 Lausanne, Switzerland 3Institut f¨ur Stochastik, Universit¨at Ulm, Helmholtzstr. 18, D-89069 Ulm, Germany. E-mail: [email protected] 4Institut f¨ur Mathematik, Universit¨at Mannheim, A5, 6, D-68131 Mannheim, Germany. E-mail: [email protected] d Let Xi,n, n ∈ N, 1 ≤ i ≤ n, be a triangular array of independent R -valued Gaussian random vectors with correlation matrices Σi,n. We give necessary conditions under which the row-wise maxima converge to some max-stable distribution which generalizes the class of H¨usler–Reiss distributions. In the bivariate case, the conditions will also be sufficient. Using these results, new models for bivariate extremes are derived explicitly. Moreover, we define a new class of stationary, max-stable processes as max-mixtures of Brown–Resnick processes. As an application, we show that these processes realize a large set of extremal correlation functions, a natural dependence measure for max-stable processes. This set includes all functions ψ(pγ(h)), h ∈ Rd, where ψ is a completely monotone function and γ is an arbitrary variogram. Keywords: extremal correlation function; Gaussian random vectors; H¨usler–Reiss distributions; max-limit theorems; max-stable distributions; triangular arrays 1.