9 the Geometry of the Mathieu Groups
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Math 412. Simple Groups
Math 412. Simple Groups DEFINITION: A group G is simple if its only normal subgroups are feg and G. Simple groups are rare among all groups in the same way that prime numbers are rare among all integers. The smallest non-abelian group is A5, which has order 60. THEOREM 8.25: A abelian group is simple if and only if it is finite of prime order. THEOREM: The Alternating Groups An where n ≥ 5 are simple. The simple groups are the building blocks of all groups, in a sense similar to how all integers are built from the prime numbers. One of the greatest mathematical achievements of the Twentieth Century was a classification of all the finite simple groups. These are recorded in the Atlas of Simple Groups. The mathematician who discovered the last-to-be-discovered finite simple group is right here in our own department: Professor Bob Greiss. This simple group is called the monster group because its order is so big—approximately 8 × 1053. Because we have classified all the finite simple groups, and we know how to put them together to form arbitrary groups, we essentially understand the structure of every finite group. It is difficult, in general, to tell whether a given group G is simple or not. Just like determining whether a given (large) integer is prime, there is an algorithm to check but it may take an unreasonable amount of time to run. A. WARM UP. Find proper non-trivial normal subgroups of the following groups: Z, Z35, GL5(Q), S17, D100. -
The Witt Designs, Golay Codes and Mathieu Groups
The Witt designs, Golay codes and Mathieu groups 1 The Golay codes Let V be a vector space over Fq with fixed basis e1, ..., en. A code C is a subset of V .A linear code is a subspace of V . The vector with all coordinates equal to zero (resp. one) will be denoted by 0 (resp. 1). The Hamming distance dH (u, v) between two vectors u, v ∈ V is the number P P of coordinates where they differ: when u = uiei, v = viei then dH (u, v) = |{i | ui 6= vi}|. The weight of a vector u is its number of nonzero coordinates, i.e., dH (u, 0). The minimum distance d(C) of a code C is min{dH (u, v) | u, v ∈ C, u 6= v}. The support of a vector is the set of coordinate positions where it has a nonzero coordinate. Theorem 1.1 There exist codes, unique up to isomorphism, with the indicated values of n, q, |C| and d(C): n q |C| d(C) name of C (i) 23 2 4096 7 binary Golay code (ii) 24 2 4096 8 extended binary Golay code (iii) 11 3 729 5 ternary Golay code (iv) 12 3 729 6 extended ternary Golay code Let us assume that the codes have been chosen such as to contain 0. Then each of these codes is linear. (The dimensions are 12, 12, 6, 6.) 1 The codes (i) and (iii) are perfect, i.e., the balls with radius 2 (d(C) − 1) around the code words partition the vector space. -
Chapter 25 Finite Simple Groups
Chapter 25 Finite Simple Groups Chapter 25 Finite Simple Groups Historical Background Definition A group is simple if it has no nontrivial proper normal subgroup. The definition was proposed by Galois; he showed that An is simple for n ≥ 5 in 1831. It is an important step in showing that one cannot express the solutions of a quintic equation in radicals. If possible, one would factor a group G as G0 = G, find a normal subgroup G1 of maximum order to form G0/G1. Then find a maximal normal subgroup G2 of G1 and get G1/G2, and so on until we get the composition factors: G0/G1,G1/G2,...,Gn−1/Gn, with Gn = {e}. Jordan and Hölder proved that these factors are independent of the choices of the normal subgroups in the process. Jordan in 1870 found four infinite series including: Zp for a prime p, SL(n, Zp)/Z(SL(n, Zp)) except when (n, p) = (2, 2) or (2, 3). Between 1982-1905, Dickson found more infinite series; Miller and Cole showed that 5 (sporadic) groups constructed by Mathieu in 1861 are simple. Chapter 25 Finite Simple Groups In 1950s, more infinite families were found, and the classification project began. Brauer observed that the centralizer has an order 2 element is important; Feit-Thompson in 1960 confirmed the 1900 conjecture that non-Abelian simple group must have even order. From 1966-75, 19 new sporadic groups were found. Thompson developed many techniques in the N-group paper. Gorenstein presented an outline for the classification project in a lecture series at University of Chicago in 1972. -
12.6 Further Topics on Simple Groups 387 12.6 Further Topics on Simple Groups
12.6 Further Topics on Simple groups 387 12.6 Further Topics on Simple Groups This Web Section has three parts (a), (b) and (c). Part (a) gives a brief descriptions of the 56 (isomorphism classes of) simple groups of order less than 106, part (b) provides a second proof of the simplicity of the linear groups Ln(q), and part (c) discusses an ingenious method for constructing a version of the Steiner system S(5, 6, 12) from which several versions of S(4, 5, 11), the system for M11, can be computed. 12.6(a) Simple Groups of Order less than 106 The table below and the notes on the following five pages lists the basic facts concerning the non-Abelian simple groups of order less than 106. Further details are given in the Atlas (1985), note that some of the most interesting and important groups, for example the Mathieu group M24, have orders in excess of 108 and in many cases considerably more. Simple Order Prime Schur Outer Min Simple Order Prime Schur Outer Min group factor multi. auto. simple or group factor multi. auto. simple or count group group N-group count group group N-group ? A5 60 4 C2 C2 m-s L2(73) 194472 7 C2 C2 m-s ? 2 A6 360 6 C6 C2 N-g L2(79) 246480 8 C2 C2 N-g A7 2520 7 C6 C2 N-g L2(64) 262080 11 hei C6 N-g ? A8 20160 10 C2 C2 - L2(81) 265680 10 C2 C2 × C4 N-g A9 181440 12 C2 C2 - L2(83) 285852 6 C2 C2 m-s ? L2(4) 60 4 C2 C2 m-s L2(89) 352440 8 C2 C2 N-g ? L2(5) 60 4 C2 C2 m-s L2(97) 456288 9 C2 C2 m-s ? L2(7) 168 5 C2 C2 m-s L2(101) 515100 7 C2 C2 N-g ? 2 L2(9) 360 6 C6 C2 N-g L2(103) 546312 7 C2 C2 m-s L2(8) 504 6 C2 C3 m-s -
Geometry of the Mathieu Groups and Golay Codes
Proc. Indian Acad. Sci. (Math. Sci.), Vol. 98, Nos 2 and 3, December 1988, pp. 153-177. 9 Printed in India. Geometry of the Mathieu groups and Golay codes ERIC A LORD Centre for Theoretical Studies and Department of Applied Mathematics, Indian Institute of Science, Bangalore 560012, India MS received 11 January 1988 Abstraet. A brief review is given of the linear fractional subgroups of the Mathieu groups. The main part of the paper then deals with the proj~x-~tiveinterpretation of the Golay codes; these codes are shown to describe Coxeter's configuration in PG(5, 3) and Todd's configuration in PG(11, 2) when interpreted projectively. We obtain two twelve-dimensional representations of M24. One is obtained as the coUineation group that permutes the twelve special points in PC,(11, 2); the other arises by interpreting geometrically the automorphism group of the binary Golay code. Both representations are reducible to eleven-dimensional representations of M24. Keywords. Geometry; Mathieu groups; Golay codes; Coxeter's configuration; hemi- icosahedron; octastigms; dodecastigms. 1. Introduction We shall first review some of the known properties of the Mathieu groups and their linear fractional subgroups. This is mainly a brief resum6 of the first two of Conway's 'Three Lectures on Exceptional Groups' [3] and will serve to establish the notation and underlying concepts of the subsequent sections. The six points of the projective line PL(5) can be labelled by the marks of GF(5) together with a sixth symbol oo defined to be the inverse of 0. The symbol set is f~ = {0 1 2 3 4 oo}. -
Quasi P Or Not Quasi P? That Is the Question
Rose-Hulman Undergraduate Mathematics Journal Volume 3 Issue 2 Article 2 Quasi p or not Quasi p? That is the Question Ben Harwood Northern Kentucky University, [email protected] Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj Recommended Citation Harwood, Ben (2002) "Quasi p or not Quasi p? That is the Question," Rose-Hulman Undergraduate Mathematics Journal: Vol. 3 : Iss. 2 , Article 2. Available at: https://scholar.rose-hulman.edu/rhumj/vol3/iss2/2 Quasi p- or not quasi p-? That is the Question.* By Ben Harwood Department of Mathematics and Computer Science Northern Kentucky University Highland Heights, KY 41099 e-mail: [email protected] Section Zero: Introduction The question might not be as profound as Shakespeare’s, but nevertheless, it is interesting. Because few people seem to be aware of quasi p-groups, we will begin with a bit of history and a definition; and then we will determine for each group of order less than 24 (and a few others) whether the group is a quasi p-group for some prime p or not. This paper is a prequel to [Hwd]. In [Hwd] we prove that (Z3 £Z3)oZ2 and Z5 o Z4 are quasi 2-groups. Those proofs now form a portion of Proposition (12.1) It should also be noted that [Hwd] may also be found in this journal. Section One: Why should we be interested in quasi p-groups? In a 1957 paper titled Coverings of algebraic curves [Abh2], Abhyankar conjectured that the algebraic fundamental group of the affine line over an algebraically closed field k of prime characteristic p is the set of quasi p-groups, where by the algebraic fundamental group of the affine line he meant the family of all Galois groups Gal(L=k(X)) as L varies over all finite normal extensions of k(X) the function field of the affine line such that no point of the line is ramified in L, and where by a quasi p-group he meant a finite group that is generated by all of its p-Sylow subgroups. -
The Mathieu Groups (Simple Sporadic Symmetries)
The Mathieu Groups (Simple Sporadic Symmetries) Scott Harper (University of St Andrews) Tomorrow's Mathematicians Today 21st February 2015 Scott Harper The Mathieu Groups 21st February 2015 1 / 15 The Mathieu Groups (Simple Sporadic Symmetries) Scott Harper (University of St Andrews) Tomorrow's Mathematicians Today 21st February 2015 Scott Harper The Mathieu Groups 21st February 2015 2 / 15 1 2 A symmetry is a structure preserving permutation of the underlying set. A group acts faithfully on an object if it is isomorphic to a subgroup of the 4 3 symmetry group of the object. Symmetry group: D4 The stabiliser of a point in a group G is Group of rotations: the subgroup of G which fixes x. ∼ h(1 2 3 4)i = C4 Subgroup fixing 1: h(2 4)i Symmetry Scott Harper The Mathieu Groups 21st February 2015 3 / 15 A symmetry is a structure preserving permutation of the underlying set. A group acts faithfully on an object if it is isomorphic to a subgroup of the symmetry group of the object. The stabiliser of a point in a group G is Group of rotations: the subgroup of G which fixes x. ∼ h(1 2 3 4)i = C4 Subgroup fixing 1: h(2 4)i Symmetry 1 2 4 3 Symmetry group: D4 Scott Harper The Mathieu Groups 21st February 2015 3 / 15 A group acts faithfully on an object if it is isomorphic to a subgroup of the symmetry group of the object. The stabiliser of a point in a group G is Group of rotations: the subgroup of G which fixes x. -
A FRIENDLY INTRODUCTION to GROUP THEORY 1. Who Cares?
A FRIENDLY INTRODUCTION TO GROUP THEORY JAKE WELLENS 1. who cares? You do, prefrosh. If you're a math major, then you probably want to pass Math 5. If you're a chemistry major, then you probably want to take that one chem class I heard involves representation theory. If you're a physics major, then at some point you might want to know what the Standard Model is. And I'll bet at least a few of you CS majors care at least a little bit about cryptography. Anyway, Wikipedia thinks it's useful to know some basic group theory, and I think I agree. It's also fun and I promise it isn't very difficult. 2. what is a group? I'm about to tell you what a group is, so brace yourself for disappointment. It's bound to be a somewhat anticlimactic experience for both of us: I type out a bunch of unimpressive-looking properties, and a bunch of you sit there looking unimpressed. I hope I can convince you, however, that it is the simplicity and ordinariness of this definition that makes group theory so deep and fundamentally interesting. Definition 1: A group (G; ∗) is a set G together with a binary operation ∗ : G×G ! G satisfying the following three conditions: 1. Associativity - that is, for any x; y; z 2 G, we have (x ∗ y) ∗ z = x ∗ (y ∗ z). 2. There is an identity element e 2 G such that 8g 2 G, we have e ∗ g = g ∗ e = g. 3. Each element has an inverse - that is, for each g 2 G, there is some h 2 G such that g ∗ h = h ∗ g = e. -
Chapter 1 GENERAL STRUCTURE and PROPERTIES
Chapter 1 GENERAL STRUCTURE AND PROPERTIES 1.1 Introduction In this Chapter we would like to introduce the main de¯nitions and describe the main properties of groups, providing examples to illustrate them. The detailed discussion of representations is however demanded to later Chapters, and so is the treatment of Lie groups based on their relation with Lie algebras. We would also like to introduce several explicit groups, or classes of groups, which are often encountered in Physics (and not only). On the one hand, these \applications" should motivate the more abstract study of the general properties of groups; on the other hand, the knowledge of the more important and common explicit instances of groups is essential for developing an e®ective understanding of the subject beyond the purely formal level. 1.2 Some basic de¯nitions In this Section we give some essential de¯nitions, illustrating them with simple examples. 1.2.1 De¯nition of a group A group G is a set equipped with a binary operation , the group product, such that1 ¢ (i) the group product is associative, namely a; b; c G ; a (b c) = (a b) c ; (1.2.1) 8 2 ¢ ¢ ¢ ¢ (ii) there is in G an identity element e: e G such that a e = e a = a a G ; (1.2.2) 9 2 ¢ ¢ 8 2 (iii) each element a admits an inverse, which is usually denoted as a¡1: a G a¡1 G such that a a¡1 = a¡1 a = e : (1.2.3) 8 2 9 2 ¢ ¢ 1 Notice that the axioms (ii) and (iii) above are in fact redundant. -
The Purpose of These Notes Is to Explain the Outer Automorphism Of
The Goal: The purpose of these notes is to explain the outer automorphism of the symmetric group S6 and its connection to the Steiner (5, 6, 12) design and the Mathieu group M12. In view of giving short proofs, we often appeal to a mixture of logic and direct computer-assisted enumerations. Preliminaries: It is an exercise to show that the symmetric group Sn ad- mits an outer automorphism if and only if n = 6. The basic idea is that any automorphism of Sn must map the set of transpositions bijectively to the set of conjugacy classes of a single permutation. A counting argument shows that the only possibility, for n =6 6, is that the automorphism maps the set of transpositions to the set of transpositions. From here it is not to hard to see that the automorphism must be an inner automorphism – i.e., conjugation by some element of Sn. For n = 6 there are 15 transpositions and also 15 triple transpositions, permutations of the form (ab)(cd)(ef) with all letters distinct. This leaves open the possibility of an outer automorphism. The Steiner Design: Let P1(Z/11) denote the projective line over Z/11. The group Γ = SL2(Z/11) consists of those transformations x → (ax + b)/(cx + d) with ad − bc ≡ 1 mod 11. There are 660 = (12 × 11 × 10)/2 elements in this group. Let B∞ = {1, 3, 4, 5, 9, ∞} ⊂ P1(Z/11) be the 6-element subset consisting of the squares mod 11 and the element ∞. Let Γ∞ ⊂ Γ be the stabilizer of B∞. -
2020 Ural Workshop on Group Theory and Combinatorics
Institute of Natural Sciences and Mathematics of the Ural Federal University named after the first President of Russia B.N.Yeltsin N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences The Ural Mathematical Center 2020 Ural Workshop on Group Theory and Combinatorics Yekaterinburg – Online, Russia, August 24-30, 2020 Abstracts Yekaterinburg 2020 2020 Ural Workshop on Group Theory and Combinatorics: Abstracts of 2020 Ural Workshop on Group Theory and Combinatorics. Yekaterinburg: N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, 2020. DOI Editor in Chief Natalia Maslova Editors Vladislav Kabanov Anatoly Kondrat’ev Managing Editors Nikolai Minigulov Kristina Ilenko Booklet Cover Desiner Natalia Maslova c Institute of Natural Sciences and Mathematics of Ural Federal University named after the first President of Russia B.N.Yeltsin N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences The Ural Mathematical Center, 2020 2020 Ural Workshop on Group Theory and Combinatorics Conents Contents Conference program 5 Plenary Talks 8 Bailey R. A., Latin cubes . 9 Cameron P. J., From de Bruijn graphs to automorphisms of the shift . 10 Gorshkov I. B., On Thompson’s conjecture for finite simple groups . 11 Ito T., The Weisfeiler–Leman stabilization revisited from the viewpoint of Terwilliger algebras . 12 Ivanov A. A., Densely embedded subgraphs in locally projective graphs . 13 Kabanov V. V., On strongly Deza graphs . 14 Khachay M. Yu., Efficient approximation of vehicle routing problems in metrics of a fixed doubling dimension . -
Linear Codes and Syndrome Decoding
Linear Codes and Syndrome Decoding José Luis Gómez Pardo Departamento de Matemáticas, Universidade de Santiago de Compostela 15782 Santiago de Compostela, Spain e-mail: [email protected] Introduction This worksheet contains an implementation of the encoding and decoding algorithms associated to an error-correcting linear code. Such a code can be characterized by a generator matrix or by a parity- check matrix and we give procedures to compute a generator matrix from a spanning set of the code and to compute a parity-check matrix from a generator matrix. We introduce, as examples, the [7, 4, 2] binary Hamming code, the [24, 12, 8] and [23, 12, 7] binary Golay codes and the [12, 6, 6] and [11, 6, 5] ternary Golay codes. We give procedures to compute the minimum distance of a linear code and we use them with the Hamming and Golay codes. We show how to build the standard array and the syndrome array of a linear code and we give an implementation of syndrome decoding. In the last section, we simulate a noisy channel and use the Hamming and Golay codes to show how syndrome decoding allows error correction on text messages. The references [Hill], [Huffman-Pless], [Ling], [Roman] and [Trappe-Washington] provide detailed information about linear codes and, in particular, about syndrome decoding. Requirements and Copyright Requirements: Maple 16 or higher © (2019) José Luis Gómez Pardo Generator matrices and parity-check matrices Linear codes are vector spaces over finite fields. Maple has a package called LinearAlgebra:- Modular (a subpackage of the LinearAlgebra m (the integers modulo a positive integer m, henceforth denoted , whose elements we will denote by {0, 1, ..