An Analysis of Lightweight Virtualization Technologies for NFV
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Kubernetes Security Guide Contents
Kubernetes Security Guide Contents Intro 4 CHAPTER 1 Securing your container images and CI/CD pipeline 6 Image scanning 6 What is image scanning 7 Docker image scanning open source tools 7 Open source Docker scanning tool: Anchore Engine 8 Securing your CI/CD pipeline 9 Image scanning in CI/CD 10 CHAPTER 2 Securing Kubernetes Control Plane 14 Kubelet security 14 Access to the kubelet API 15 Kubelet access to Kubernetes API 16 RBAC example, accessing the kubelet API with curl 16 Kubernetes API audit and security log 17 Audit log policies configuration 19 Extending the Kubernetes API using security admission controllers 20 Securing Kubernetes etcd 23 PKI-based authentication for etcd 23 etcd peer-to-peer TLS 23 Kubernetes API to etcd cluster TLS 24 Using a trusted Docker registry 24 Kubernetes trusted image collections: Banning non trusted registry 26 Kubernetes TLS certificates rotation and expiration 26 Kubernetes kubelet TLS certificate rotation 27 Kubernetes serviceAccount token rotation 28 Kubernetes user TLS certificate rotation 29 Securing Kubernetes hosts 29 Kubernetes 2 Security Guide Using a minimal host OS 30 Update system patches 30 Node recycling 30 Running CIS benchmark security tests 31 CHAPTER 3 Understanding Kubernetes RBAC 32 Kubernetes role-based access control (RBAC) 32 RBAC configuration: API server flags 34 How to create Kubernetes users and serviceAccounts 34 How to create a Kubernetes serviceAccount step by step 35 How to create a Kubernetes user step by step 37 Using an external user directory 40 CHAPTER 4 Security -
The Next Generation Cloud: the Rise of the Unikernel
The Next Generation Cloud: The Rise of the Unikernel A Xen Project publication April 2015 xenproject.org Docker and Linux container technologies dominate headlines today as a powerful, easy way to package applications, especially as cloud computing becomes more mainstream. While still a work-in-progress, they offer a simple, clean and lean way to distribute application workloads. With enthusiasm continuing to grow for container innovations, a related technology called unikernels is also beginning to attract attention. Known also for their ability to cleanly separate functionality at the component level, unikernels are developing a variety of new approaches to deploy cloud services. Traditional operating systems run multiple applications on a single machine, managing resources and isolating applications from one another. A unikernel runs a single application on a single virtual machine, relying instead on the hypervisor to isolate those virtual machines. Unikernels are constructed by using “library operating systems,” from which the developer selects only the minimal set of services required for an application to run. These sealed, fixed-purpose images run directly on a hypervisor without an intervening guest OS such as Linux. As well as improving upon container technologies, unikernels are also able to deliver impressive flexibility, speed and versatility for cross-platform environments, big data analytics and scale-out cloud computing. Like container-based solutions, this technology fulfills the promise of easy deployment, but unikernels also offer an extremely tiny, specialized runtime footprint that is much less vulnerable to attack. There are several up-and-coming open source projects to watch this year, including ClickOS, Clive, HaLVM, LING, MirageOS, Rump Kernels and OSv among others, with each of them placing emphasis on a different aspect of the unikernel approach. -
Running Legacy VM's Along with Containers in Kubernetes!
Running Legacy VM’s along with containers in Kubernetes Delusion or Reality? Kunal Kushwaha NTT Open Source Software Center Copyright©2019 NTT Corp. All Rights Reserved. About me • Work @ NTT Open Source Software Center • Collaborator (Core developer) for libpod (podman) • Contributor KubeVirt, buildkit and other related projects • Docker Community Leader @ Tokyo Chapter Copyright©2019 NTT Corp. All Rights Reserved. 2 Growth of Containers in Companies Adoption of containers in production has significantly increased Credits: CNCF website Copyright©2019 NTT Corp. All Rights Reserved. 3 Growth of Container Orchestration usage Adoption of container orchestrator like Kubernetes have also increased significantly on public as well private clouds. Credits: CNCF website Copyright©2019 NTT Corp. All Rights Reserved. 4 Infrastructure landscape app-2 app-2 app-M app-1 app-2 app-N app-1 app-1 app-N VM VM VM kernel VM Platform VM Platform Existing Products New Products • The application infrastructure is fragmented as most of old application still running on traditional infrastructure. • Fragmentation means more work & increase in cost Copyright©2019 NTT Corp. All Rights Reserved. 5 What keeps applications away from Containers • Lack of knowledge / Too complex to migrate in containers. • Dependency on custom kernel parameters. • Application designed for a custom kernel. • Application towards the end of life. Companies prefer to re-write application, rather than directly migrating them to containers. https://dzone.com/guides/containers-orchestration-and-beyond Copyright©2019 NTT Corp. All Rights Reserved. 6 Ideal World app-2 app-2 app-M app-1 app-2 app-N app-1 app-1 app-N VM VM VM kernel VM Platform • Applications in VM and containers can be managed with same control plane • Management/ Governance Policies like RBAC, Network etc. -
A Linux in Unikernel Clothing Lupine
A Linux in Unikernel Clothing Hsuan-Chi Kuo+, Dan Williams*, Ricardo Koller* and Sibin Mohan+ +University of Illinois at Urbana-Champaign *IBM Research Lupine Unikernels are great BUT: Unikernels lack full Linux Support App ● Hermitux: supports only 97 system calls Kernel LibOS + App ● OSv: ○ Fork() , execve() are not supported Hypervisor Hypervisor ○ Special files are not supported such as /proc ○ Signal mechanism is not complete ● Small kernel size ● Rumprun: only 37 curated applications ● Heavy ● Fast boot time ● Community is too small to keep it rolling ● Inefficient ● Improved performance ● Better security 2 Can Linux behave like a unikernel? 3 Lupine Linux 4 Lupine Linux ● Kernel mode Linux (KML) ○ Enables normal user process to run in kernel mode ○ Processes can still use system services such as paging and scheduling ○ App calls kernel routines directly without privilege transition costs ● Minimal patch to libc ○ Replace syscall instruction to call ○ The address of the called function is exported by the patched KML kernel using the vsyscall ○ No application changes/recompilation required 5 Boot time Evaluation Metrics Image size Based on: Unikernel benefits Memory footprint Application performance Syscall overhead 6 Configuration diversity ● 20 top apps on Docker hub (83% of all downloads) ● Only 19 configuration options required to run all 20 applications: lupine-general 7 Evaluation - Comparison configurations Lupine Cloud Operating Systems [Lupine-base + app-specific options] OSv general Linux-based Unikernels Kernel for 20 apps -
Governance in Collaborative Open Source Software Development Organizations: a Comparative Analysis of Two Case Studies
Governance in Collaborative Open Source Software Development Organizations: A Comparative Analysis of two Case Studies Master’s thesis Faculty of Business, Economics and Social Sciences University of Bern submitted to Dr. Matthias Stürmer Research Center for Digital Sustainability Institute of Information Systems by Winkelmann, Rahel from Siselen 11th semester Matriculation nr.: 09-127-788 Study address: Huberstrasse 22 3008 Bern (Tel. 078 758 58 96) (e-Mail: [email protected]) Bern, 20.01.2015 Abstract While loose cooperation among several actors is common in the open source sector, companies merging into a professionally governed collaborative open source software development organization across industries is an emerging phenomenon. The purpose of this thesis is to shed light on this new approach of software development by creating a framework for building a collaborative open source software development organization. A comparative analysis examines the governance models of two different collaborative open source software development organizations from the organizational, financial and legal perspective and reveals the autonomous and the affiliated organization type and their key characteristics. Based on these findings and by means of four expert interviews a framework consisting of eight criteria that need to be considered in order to build a collaborative open source software development organization is created. Zusammenfassung In der Open Source Branche ist es gängig, dass sich verschiedene Akteure zur Softwareentwicklung zu losen Konsortien zusammenschliessen. Unternehmen, welche sich im professionellen Rahmen zu einer Organisation zusammenschliessen um gemeinsam Open Source Software zu entwickeln, sind jedoch ein neues Phänomen. Der Zweck dieser Arbeit ist es Aufschluss über diesen neuen Ansatz von Softwareentwicklung zu geben. -
Ovirt and Docker Integration
oVirt and Docker Integration October 2014 Federico Simoncelli Principal Software Engineer – Red Hat oVirt and Docker Integration, Oct 2014 1 Agenda ● Deploying an Application (Old-Fashion and Docker) ● Ecosystem: Kubernetes and Project Atomic ● Current Status of Integration ● oVirt Docker User-Interface Plugin ● “Dockerized” oVirt Engine ● Docker on Virtualization ● Possible Future Integration ● Managing Containers as VMs ● Future Multi-Purpose Data Center oVirt and Docker Integration, Oct 2014 2 Deploying an Application (Old-Fashion) ● Deploying an instance of Etherpad # yum search etherpad Warning: No matches found for: etherpad No matches found $ unzip etherpad-lite-1.4.1.zip $ cd etherpad-lite-1.4.1 $ vim README.md ... ## GNU/Linux and other UNIX-like systems You'll need gzip, git, curl, libssl develop libraries, python and gcc. *For Debian/Ubuntu*: `apt-get install gzip git-core curl python libssl-dev pkg- config build-essential` *For Fedora/CentOS*: `yum install gzip git-core curl python openssl-devel && yum groupinstall "Development Tools"` *For FreeBSD*: `portinstall node, npm, git (optional)` Additionally, you'll need [node.js](http://nodejs.org) installed, Ideally the latest stable version, be careful of installing nodejs from apt. ... oVirt and Docker Integration, Oct 2014 3 Installing Dependencies (Old-Fashion) ● 134 new packages required $ yum install gzip git-core curl python openssl-devel Transaction Summary ================================================================================ Install 2 Packages (+14 Dependent -
Erlang on Physical Machine
on $ whoami Name: Zvi Avraham E-mail: [email protected] /ˈkɒm. pɑː(ɹ)t. mɛntl̩. aɪˌzeɪ. ʃən/ Physicalization • The opposite of Virtualization • dedicated machines • no virtualization overhead • no noisy neighbors – nobody stealing your CPU cycles, IOPS or bandwidth – your EC2 instance may have a Netflix “roommate” ;) • Mostly used by ARM-based public clouds • also called Bare Metal or HPC clouds Sandbox – a virtual container in which untrusted code can be safely run Sandbox examples: ZeroVM & AWS Lambda based on Google Native Client: A Sandbox for Portable, Untrusted x86 Native Code Compartmentalization in terms of Virtualization Physicalization No Virtualization Virtualization HW-level Virtualization Containerization OS-level Virtualization Sandboxing Userspace-level Virtualization* Cloud runs on virtual HW HARDWARE Does the OS on your Cloud instance still supports floppy drive? $ ls /dev on Ubuntu 14.04 AWS EC2 instance • 64 teletype devices? • Sound? • 32 serial ports? • VGA? “It’s DUPLICATED on so many LAYERS” Application + Configuration process* OS Middleware (Spring/OTP) Container Managed Runtime (JVM/BEAM) VM Guest Container OS Container Guest OS Hypervisor Hardware We run Single App per VM APPS We run in Single User mode USERS Minimalistic Linux OSes • Embedded Linux versions • DamnSmall Linux • Linux with BusyBox Min. Linux OSes for Containers JeOS – “Just Enough OS” • CoreOS • RancherOS • RedHat Project Atomic • VMware Photon • Intel Clear Linux • Hyper # of Processes and Threads per OS OSv + CLI RancherOS processes CoreOS threads -
Container and Kernel-Based Virtual Machine (KVM) Virtualization for Network Function Virtualization (NFV)
Container and Kernel-Based Virtual Machine (KVM) Virtualization for Network Function Virtualization (NFV) White Paper August 2015 Order Number: 332860-001US YouLegal Lines andmay Disclaimers not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein. No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps. The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting: http://www.intel.com/ design/literature.htm. Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at http:// www.intel.com/ or from the OEM or retailer. Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system hardware, software or configuration may affect your actual performance. For more complete information about performance and benchmark results, visit www.intel.com/benchmarks. Tests document performance of components on a particular test, in specific systems. -
Kubernetes As an Availability Manager for Microservice Based Applications Leila Abdollahi Vayghan
Kubernetes as an Availability Manager for Microservice Based Applications Leila Abdollahi Vayghan A Thesis in the Department of Computer Science and Software Engineering Presented in Partial Fulfillment of the Requirements for the Degree of Master of Computer Science at Concordia University Montreal, Quebec, Canada August 2019 © Leila Abdollahi Vayghan, 2019 CONCORDIA UNIVERSITY SCHOOL OF GRADUATE STUDIES This is to certify that the thesis prepared By: Leila Abdollahi Vayghan Entitled: Kubernetes as an Availability Manager for Microservice Based Applications and submitted in partial fulfillment of the requirements for the degree of Master in Computer Science complies with the regulations of the University and meets the accepted standards with respect to originality and quality. Signed by the final examining committee: ________________________________________________ Chair Dr. P. Rigby ________________________________________________ Internal Examiner Dr. D. Goswami ________________________________________________ Internal Examiner Dr. J. Rilling ________________________________________________ Co-Supervisor Dr. F. Khendek ________________________________________________ Co-Supervisor Dr. M. Toeroe Approved by: ___________________________________ Dr. L. Narayanan, Chair Department of Computer Science and Software Engineering _______________ 2019___ __________________________________ Dr. Amir Asif, Dean, Faculty of Engineering and Computer Science ii ABSTRACT Kubernetes as an Availability Manager for Microservice Based Applications Leila -
Immutable Infrastructure, Containers, & the Future of Microservices
Immutable infrastructure, containers, & the future of microservices Adam Miller Senior Software Engineer, Red Hat 2015-07-25 What we'll cover in this session ● Define “microservices” ● Define “containers” in the context of Linux systems ● Container Implementations in Linux ● What Immutable Infrastructure is – Example of what Immutable Infrastructure deployment workflow looks like ● Red Hat Enterprise Linux Atomic Host – How RHEL Atomic enables and enhances these concepts ● Kubernetes – Orchestrating the Immutable Infrastructure ● OpenShift – Enabling the development and container building pipeline Microservices Microservices are not entirely new. ● The vocabulary term is “new-ish” (2012 – James Lewis and Martin Fowler) ● The idea is very old – Microkernels have existed since the 1980s – Could argue that system admins have been doing this with shell scripts and pipes for years ● Applying this concept to services higher in Monolithic Kernel Microkernel the stack is a newer trend based Operating System based Operating System – Application Heavily influenced by popular technologies System Call such as web microframeworks and containers. user mode VFS IPC, File System Application UNIX Device File IPC Server Driver Server Scheduler, Virtual Memory kernel mode Device Drivers, Dispatcher, ... Basic IPC, Virtual Memory, Scheduling Hardware Hardware What are Microservices? ● Services, “the UNIX Way” – Do one thing, do it well. – Decouple tightly coupled services, make the architecture more modular. ● Loosely coupled services using programming language agnostic APIs for communication – Example: REST APIs The mythical cloud The mythical cloud Micro services Containers What are containers? ● Operating-system-level Virtualization – We (the greater Linux community) like to call them “containers” ● OK, so what is Operating-system-level Virtualization? – The multitenant isolation of multiple user Traditional OS Containers space instances or namespaces. -
A Comprehensive Overview Last Updated: January
Project ACRN: A Comprehensive Overview Last updated: January 19, 2021 Content ❖ Introduction ❖ Architecture ❖ Value Proposition ❖ Key Capabilities ❖ Scenarios Introduction ACRN™ is a flexible, lightweight reference hypervisor, built with real-time and safety-criticality in mind, optimized to streamline embedded development through an open source platform. - A Linux Foundation Project Launched in March 2018 - Version 1.0 released in May 2019 - Version 2.0 released in June 2020 Overallarchitecture ACRN is a registered trademark of the Linux Foundation. *Other names and brands may be claimed as the property of others. Value Proposition - ACRN Small Footprint • Optimized for resource-constrained devices • Small codebase: less than 40,000 vs. >156,000 lines of code for datacenter-centric hypervisors Functional Safety & Hard Real-time • Heterogeneous Workloads Consolidation • Supports also the most demanding workloads: safety-critical and real- time Open-source with Flexible License • Permissive BSD license enables proprietary Guest OS • Business-friendly to adopt, modify and integrate • True open source with a vibrant Community ACRN reduces system deployment complexity, enables heterogeneous architectures, and provide TCO advantages Key Capabilities Functional Safety Hard Real-time MISRA-C Compliance Support hard or soft RT VM FuSa certification targeted Optimized for RT, e.g. no VMExit*, cache isolation Security & Isolation Rich I/O Mediation Full isolation for mixed criticality workloads Graphics, Audio, USB… Intel VT backed isolation Industry -