Number Theory & Asymmetric Cryptography
Number Theory & Asymmetric Cryptography Modular Arithmetic Notations Ζ={−∞,⋯−2,−1,0,1,2,⋯,∞} Ζm={0,1,2,⋯,m−2,m−1} a≡b mod m⇒ a=b+km, integer k Addition mod m Given a≡b mod m and c≡d mod m (a+c)≡(b+d) mod m a−b=km ,c−d=lm, integers k ,l (a+c)=b+d+(k+l)m=(b+d)+ jm Examples (25+15)≡(1+3)≡0 mod 4 (25+15)≡(4+1)≡5 mod 7 Multiplication mod m a≡b mod m,c≡d mod ac≡bd mod m ac=(b+km)(d+lm)=bd+(bl+kd+klm)m Example 26≡2 mod 4,11≡3 mod 4 26∗11=286≡2 mod 4 2∗3=6≡2 mod 4 What about division? Is division possible in Zm? (A long detour necessary at this point) Group, Abelian Group, Ring and Field Abelian Group Field Ring Group Group, Ring and Field Group: Addition is closed, and associative, additive identity and additive inverse exist Abelian group: Addition is also commutative Ring: Multiplication is closed, associative, commutative, and distributive; multiplicative identity exists Field: Every element except “additive identity” has multiplicative inverse In Zm additive identity is 0, multiplicative identity is 1. Its a Ring. Is Zm a Field? Multiplicative Inverse Consider m = 5, or {0,1,2,3,4} – 2*3 = 3*2 = 1 mod 5. So 2↔3 ● (3 and 2 are multiplicative inverses in Z5) – 4*4 = 1 mod 5, or 4 ↔ 4 – obviously, 1 ↔ 1 Z5 is clearly a field (all elements except additive identity have a multiplicative inverse) Consider m = 6, or {0,1,2,3,4,5} – 5↔5 , 1 ↔ 1 – No inverses for 2,3 and 4? (why?) – Z6 is not a Field (it is a Ring) – (As we shall see soon) the reason for this is that 6 is not a prime mumber Basic Theorems of Arithmetic Any number can be represented as a product th of powers of primes.
[Show full text]