Quantum phase transitions of insulators, superconductors and metals in two dimensions

Talk online: sachdev.physics.harvard.edu HARVARD Friday, April 13, 2012 Outline 1. Phenomenology of the cuprate superconductors (and other compounds)

2. QPT of antiferromagnetic insulators (and bosons at rational filling)

3. QPT of d-wave superconductors: Fermi points of massless Dirac fermions

4. QPT of Fermi surfaces: A. Finite wavevector ordering (SDW/CDW): “Hot spots” on Fermi surfaces B. Zero wavevector ordering (Nematic): “Hot Fermi surfaces” Friday, April 13, 2012 Outline 1. Phenomenology of the cuprate superconductors (and other compounds)

2. QPT of antiferromagnetic insulators (and bosons at rational filling)

3. QPT of d-wave superconductors: Fermi points of massless Dirac fermions

4. QPT of Fermi surfaces: A. Finite wavevector ordering (SDW/CDW): “Hot spots” on Fermi surfaces B. Zero wavevector ordering (Nematic): “Hot Fermi surfaces” Friday, April 13, 2012 Max Metlitski

Friday, April 13, 2012 Strategy

1. Write down local field theory for order parameter and fermions

2. Apply group to field theory

Friday, April 13, 2012 Strategy

1. Write down local field theory for order parameter and fermions

2. Apply renormalization group to field theory

Friday, April 13, 2012 Order parameter at a non- zero wavevector: “Hot spots” on the .

Friday, April 13, 2012 T

Strange Fluctuating,Small Fermi Metal pocketspaired Fermi with Large pairingpockets fluctuations Fermi surface

d-wave Magnetic quantum SC criticality Thermally fluctuating gap SDW

SC+ SDW SC

SDW (Small Fermi pockets) M "Normal" (Large Fermi H surface)

Friday, April 13, 2012 T

Strange Fluctuating,Small Fermi Metal pocketspaired Fermi with Large pairingpockets fluctuations Fermi surface

d-wave Theory of SDW Magnetic quantum SC criticality quantum phase Thermally fluctuating Spin gap transition in SDW

metal SC+ SDW SC

SDW (Small Fermi pockets) M "Normal" (Large Fermi H surface)

Friday, April 13, 2012 T

Strange Fluctuating,Small Fermi Metal pocketspaired Fermi with Large pairingpockets fluctuations Fermi surface

d-wave Theory of SDW Magnetic quantum SC criticality quantum phase Thermally fluctuating Spin gap transition in SDW

metal SC+ SDW SC

SDW (Small Fermi pockets) M "Normal" (Large Fermi H surface)

Friday, April 13, 2012 Hole-doped cuprates

Increasing SDW order

Γ Γ Γ Γ

Hole pockets pockets

Large Fermi surface breaks up into electron and hole pockets

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

Friday, April 13, 2012 Hole-doped cuprates

Increasing SDW order

Γ Γ Γ ￿ϕ Γ

Hole Electron pockets pockets

￿ϕ fluctuations act on the large Fermi surface

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

Friday, April 13, 2012 Start from the “spin-fermion” model

= c ￿ϕ exp ( ) Z D αD −S ￿ ∂ = dτ c† ε c S kα ∂τ − k kα ￿ ￿k ￿ ￿ iK r λ dτ c† ￿ϕ ￿σ c e · i − iα i · αβ iβ i ￿ ￿ 2 1 2 ζ 2 s 2 u 4 + dτd r ( r ￿ϕ ) + (∂τ ￿ϕ ) + ￿ϕ + ￿ϕ ￿2 ∇ 2 2 4 ￿ ￿ ￿

Friday, April 13, 2012 ￿ =3 ￿ =2

￿ =4 ￿ =1

Low energy fermions ￿ ￿ ψ1α, ψ2α ￿ =1,...,4

￿ ￿ ￿ ￿ ￿ ￿ = ψ † ζ∂ iv ψ + ψ † ζ∂ iv ψ Lf 1α τ − 1 · ∇r 1α 2α τ − 2 · ∇r 2α ￿v￿=1 =(v ,v ),￿ v￿=1 =( v￿ ,v ) ￿ 1 x y 2 − x y Friday, April 13, 2012 ￿ ￿ ￿ ￿ ￿ ￿ = ψ † ζ∂ iv ψ + ψ † ζ∂ iv ψ Lf 1α τ − 1 · ∇r 1α 2α τ − 2 · ∇r 2α ￿ ￿ ￿ ￿ v1 v2

ψ1 fermions ψ2 fermions occupied occupied

Friday, April 13, 2012 ￿ ￿ ￿ ￿ ￿ ￿ = ψ † ζ∂ iv ψ + ψ † ζ∂ iv ψ Lf 1α τ − 1 · ∇r 1α 2α τ − 2 · ∇r 2α ￿ ￿ ￿ ￿ v1 v2

“Hot spot”

“Cold” Fermi surfaces

Friday, April 13, 2012 ￿ ￿ ￿ ￿ ￿ ￿ = ψ † ζ∂ iv ψ + ψ † ζ∂ iv ψ Lf 1α τ − 1 · ∇r 1α 2α τ − 2 · ∇r 2α ￿ 1 ￿ ζ ￿ s ￿u Order parameter: = ( ￿ϕ )2 + (∂ ￿ϕ )2 + ￿ϕ 2 + ￿ϕ 4 Lϕ 2 ∇r 2 τ 2 4 ￿

Friday, April 13, 2012 ￿ ￿ ￿ ￿ ￿ ￿ = ψ † ζ∂ iv ψ + ψ † ζ∂ iv ψ Lf 1α τ − 1 · ∇r 1α 2α τ − 2 · ∇r 2α ￿ 1 ￿ ζ ￿ s ￿u Order parameter: = ( ￿ϕ )2 + (∂ ￿ϕ )2 + ￿ϕ 2 + ￿ϕ 4 Lϕ 2 ∇r 2 τ 2 4 ￿ ￿ ￿ ￿ ￿ “Yukawa” coupling: = λ￿ϕ ψ † ￿σ ψ + ψ † ￿σ ψ Lc − · 1α αβ 2β 2α αβ 1β ￿ ￿

Friday, April 13, 2012 ￿ ￿ ￿ ￿ ￿ ￿ = ψ † ζ∂ iv ψ + ψ † ζ∂ iv ψ Lf 1α τ − 1 · ∇r 1α 2α τ − 2 · ∇r 2α ￿ 1 ￿ ζ ￿ s ￿u Order parameter: = ( ￿ϕ )2 + (∂ ￿ϕ )2 + ￿ϕ 2 + ￿ϕ 4 Lϕ 2 ∇r 2 τ 2 4 ￿ ￿ ￿ ￿ ￿ “Yukawa” coupling: = λ￿ϕ ψ † ￿σ ψ + ψ † ￿σ ψ Lc − · 1α αβ 2β 2α αβ 1β ￿ ￿ Hertz-Moriya-Millis (HMM) theory Integrate out fermions and obtain non-local corrections to Lϕ

1 2 2 2 ϕ = ￿ϕ q + γ ω /2; γ = L 2 | | πvxvy ￿ ￿ Exponent z = 2 and mean-field criticality (upto logarithms)

Friday, April 13, 2012 ￿ ￿ ￿ ￿ ￿ ￿ = ψ † ζ∂ iv ψ + ψ † ζ∂ iv ψ Lf 1α τ − 1 · ∇r 1α 2α τ − 2 · ∇r 2α ￿ 1 ￿ ζ ￿ s ￿u Order parameter: = ( ￿ϕ )2 + (∂ ￿ϕ )2 + ￿ϕ 2 + ￿ϕ 4 Lϕ 2 ∇r 2 τ 2 4 ￿ ￿ ￿ ￿ ￿ “Yukawa” coupling: = λ￿ϕ ψ † ￿σ ψ + ψ † ￿σ ψ Lc − · 1α αβ 2β 2α αβ 1β ￿ ￿ Hertz-Moriya-Millis (HMM) theory Integrate out fermions and obtain non-local corrections to Lϕ

1 2 2 2 ϕ = ￿ϕ q + γ ω /2; γ = L 2 | | πvxvy ￿ ￿ Exponent z = 2 and mean-field criticality (upto logarithms) But, higher order terms contain an infinite number of marginal couplings ...... Ar. Abanov and A.V. Chubukov, Phys. Rev. Lett. 93, 255702 (2004). Friday, April 13, 2012 ￿ ￿ ￿ ￿ ￿ ￿ = ψ † ζ∂ iv ψ + ψ † ζ∂ iv ψ Lf 1α τ − 1 · ∇r 1α 2α τ − 2 · ∇r 2α ￿ 1 ￿ ζ ￿ s ￿u Order parameter: = ( ￿ϕ )2 + (∂ ￿ϕ )2 + ￿ϕ 2 + ￿ϕ 4 Lϕ 2 ∇r 2 τ 2 4 ￿ ￿ ￿ ￿ ￿ “Yukawa” coupling: = λ￿ϕ ψ † ￿σ ψ + ψ † ￿σ ψ Lc − · 1α αβ 2β 2α αβ 1β ￿ ￿

Perform RG on both fermions and ￿ϕ , using a local field theory.

Friday, April 13, 2012 Order parameter at zero wavevector: “Hot Fermi surface”.

Friday, April 13, 2012 T T* Strange Fluctuating,Fluctuating, Metal pairedpaired FermiFermi Large pocketspockets Fermi surface

Tc d-wave Tsdw SC VBS and/or Fluctuating, Ising nematic order paired Fermi pockets

SC+ SDW SC

Hc2 SDW M Insulator SDW (Small Fermi "Normal" pockets) (Large Fermi H 22 surface)

Friday, April 13, 2012 Broken rotational symmetry in the pseudogap phase of a high-Tc superconductor R. Daou, J. Chang, David LeBoeuf, Olivier Cyr- Choiniere, Francis Laliberte, Nicolas Doiron- Leyraud, B. J. Ramshaw, Ruixing Liang, D. A. Bonn, W. N. Hardy, and Louis Taillefer arXiv: 0909.4430, Nature, in press

Friday, April 13, 2012 Quantum criticality of Pomeranchuk instability y

x

Fermi surface with full square lattice symmetry

Friday, April 13, 2012 Quantum criticality of Pomeranchuk instability y

x

Spontaneous elongation along x direction: Ising order parameter φ > 0.

Friday, April 13, 2012 Quantum criticality of Pomeranchuk instability y

x

Spontaneous elongation along y direction: Ising order parameter φ < 0.

Friday, April 13, 2012 Quantum criticality of Pomeranchuk instability

φ =0 φ =0 ￿ ￿ ￿ ￿￿ λ λc

Pomeranchuk instability as a function of coupling λ

Friday, April 13, 2012 Quantum criticality of Pomeranchuk instability T Quantum critical Tc

φ =0 φ =0 ￿ ￿ ￿ ￿￿ λ λc

Phase diagram as a function of T and λ

Friday, April 13, 2012 Quantum criticality of Pomeranchuk instability T Quantum critical Tc

Classical d=2 Ising criticality

φ =0 φ =0 ￿ ￿ ￿ ￿￿ λ λc

Phase diagram as a function of T and λ

Friday, April 13, 2012 Quantum criticality of Pomeranchuk instability T Quantum critical Tc

φ =0 φ =0 ￿ ￿ D=2+1 ￿ ￿￿ quantum λ criticalityλc ?

Phase diagram as a function of T and λ

Friday, April 13, 2012 Quantum criticality of Pomeranchuk instability

Effective action for Ising order parameter

= d2rdτ (∂ φ)2 + c2( φ)2 +(λ λ )φ2 + uφ4 Sφ τ ∇ − c ￿ ￿ ￿

Friday, April 13, 2012 Quantum criticality of Pomeranchuk instability

Effective action for Ising order parameter

= d2rdτ (∂ φ)2 + c2( φ)2 +(λ λ )φ2 + uφ4 Sφ τ ∇ − c ￿ ￿ ￿

Effective action for :

Nf = dτ c† ∂ c t c† c Sc  iα τ iα − ij iα iα α=1 i i

Friday, April 13, 2012 Quantum criticality of Pomeranchuk instability Coupling between Ising order and electrons

Nf = γ dτφ (cos k cos k )c† c Sφc − x − y kα kα α=1 ￿ ￿ ￿k for spatially independent φ

φ > 0 φ < 0 ￿ ￿ ￿ ￿

Friday, April 13, 2012 Quantum criticality of Pomeranchuk instability Coupling between Ising order and electrons

Nf

φc = γ dτ φq (cos kx cos ky)c† ck q/2,α S − − k+q/2,α − α=1 ￿ ￿ ￿k,q for spatially dependent φ

φ > 0 φ < 0 ￿ ￿ ￿ ￿

Friday, April 13, 2012 Quantum criticality of Pomeranchuk instability

= d2rdτ (∂ φ)2 + c2( φ)2 +(λ λ )φ2 + uφ4 Sφ τ ∇ − c ￿ ￿ ￿ Nf = dτc† (∂ + ε ) c Sc kα τ k kα α=1 ￿ ￿k ￿ Nf

φc = γ dτ φq (cos kx cos ky)c† ck q/2,α S − − k+q/2,α − α=1 ￿ ￿ ￿k,q

Friday, April 13, 2012 A φ fluctuation at wavevector ￿q couples most efficiently to fermions near ￿k . ± 0

Expand fermion kinetic energy at wavevectors about ￿k0

Friday, April 13, 2012 2 2 = ψ+† ζ∂τ i∂x ∂y ψ+ + ψ† ζ∂τ + i∂x ∂y ψ L − − − − − ￿ ￿ 1 ￿ 2 r 2 ￿ λφ ψ+† ψ+ + ψ† ψ + (∂yφ) + φ − − − 2g 2 ￿ ￿

Friday, April 13, 2012 Emergent “Galilean invariance” at low energy (s = ): ± 2 is( θ y+ θ x) φ(x, y) φ(x, y + θx), ψ (x, y) e− 2 4 ψ (x, y + θx) → s → s which implies for the fermion Green’s function

2 G(qx,qy)=G(sqx + qy).

2 Every point on the Fermi surface sqx +qy = 0 has the same singularity: “Hot Fermi surface”.

Friday, April 13, 2012 “Hot” Fermi surfaces

Emergent “Galilean invariance” at low energy (s = ): ± 2 is( θ y+ θ x) φ(x, y) φ(x, y + θx), ψ (x, y) e− 2 4 ψ (x, y + θx) → s → s which implies for the fermion Green’s function

2 G(qx,qy)=G(sqx + qy).

2 Every point on the Fermi surface sqx +qy = 0 has the same singularity: “Hot Fermi surface”.

Friday, April 13, 2012 Hertz-Moriya-Millis (HMM) theory

Integrate out fermions and obtain effective action for φ

1 q2 ω = φ2 y + | | Lφ 2 g 4π q ￿ | y|￿ Exponent z = 3 and mean-field criticality ?

Friday, April 13, 2012 Strategy

1. Write down local field theory for order parameter and fermions

2. Apply renormalization group to field theory

Friday, April 13, 2012 Strategy

1. Write down local field theory for order parameter and fermions

2. Apply renormalization group to field theory

Friday, April 13, 2012 Order parameter at a non- zero wavevector: “Hot spots” on the Fermi surface.

Friday, April 13, 2012 ￿ ￿ ￿ ￿ ￿ ￿ = ψ † ζ∂ iv ψ + ψ † ζ∂ iv ψ Lf 1α τ − 1 · ∇r 1α 2α τ − 2 · ∇r 2α ￿ 1 ￿ ζ ￿ s ￿u Order parameter: = ( ￿ϕ )2 + (∂ ￿ϕ )2 + ￿ϕ 2 + ￿ϕ 4 Lϕ 2 ∇r 2 τ 2 4 ￿ ￿ ￿ ￿ ￿ “Yukawa” coupling: = λ￿ϕ ψ † ￿σ ψ + ψ † ￿σ ψ Lc − · 1α αβ 2β 2α αβ 1β ￿ ￿ ￿ z￿ Under the rescaling x￿ = xe− , τ ￿ = τe− , the spatial gradients are fixed if the fields transform as

(d+z 2)￿/2 (d+z 1)￿/2 ￿ϕ ￿ = e − ￿ϕ ;“ ψ￿ = e − ψ.

Then the Yukawa coupling transforms as

(4 d z)￿/2 λ￿ = e − − λ

For d = 2, with z = 2 the Yukawa coupling is invariant, and the bare time-derivative terms ζ, ζ are irrelevant.

Friday, April 13, 2012 ￿ ￿ ￿ ￿ ￿ ￿ ￿ = ψ † ζ∂ iv ψ + ψ † ζ∂ iv ψ Lf 1α τ − 1 · ∇r 1α 2α τ − 2 · ∇r 2α ￿ 1 ￿ ζ ￿ s ￿u Order parameter: = ( ￿ϕ )2 + (∂ ￿ϕ )2 + ￿ϕ 2 + ￿ϕ 4 Lϕ 2 ∇r 2 τ 2 4 ￿ ￿ ￿ ￿ ￿ “Yukawa” coupling: = ￿ϕ ψ † ￿σ ψ + ψ † ￿σ ψ Lc − · 1α αβ 2β 2α αβ 1β ￿ ￿

With z = 2 scaling, ζ is irrelevant. So we take ζ 0 ( watch for dangerous→ irrelevancy).

Friday, April 13, 2012 ￿ ￿ ￿ ￿ ￿ ￿ = ψ † ζ∂ iv ψ + ψ † ζ∂ iv ψ Lf 1α τ − 1 · ∇r 1α 2α τ − 2 · ∇r 2α ￿ 1 ￿ ζ ￿ s ￿u Order parameter: = ( ￿ϕ )2 + (∂ ￿ϕ )2 + ￿ϕ 2 + ￿ϕ 4 Lϕ 2 ∇r 2 τ 2 4 ￿ ￿ ￿ ￿ ￿ “Yukawa” coupling: = ￿ϕ ψ † ￿σ ψ + ψ † ￿σ ψ Lc − · 1α αβ 2β 2α αβ 1β ￿ ￿

Set ￿ϕ wavefunction renormalization by keeping co-efficient of ( ￿ϕ )2 fixed (as usual). ∇r

Friday, April 13, 2012 ￿ ￿ ￿ ￿ ￿ ￿ = ψ † ζ∂ iv ψ + ψ † ζ∂ iv ψ Lf 1α τ − 1 · ∇r 1α 2α τ − 2 · ∇r 2α ￿ 1 ￿ ζ ￿ s ￿u Order parameter: = ( ￿ϕ )2 + (∂ ￿ϕ )2 + ￿ϕ 2 + ￿ϕ 4 Lϕ 2 ∇r 2 τ 2 4 ￿ ￿ ￿ ￿ ￿ “Yukawa” coupling: = ￿ϕ ψ † ￿σ ψ + ψ † ￿σ ψ Lc − · 1α αβ 2β 2α αβ 1β ￿ ￿

Set fermion wavefunction renormalization by keeping Yukawa coupling fixed.

Y. Huh and S. Sachdev, Phys. Rev. B 78, 064512 (2008).

Friday, April 13, 2012 ￿ ￿ ￿ ￿ ￿ ￿ = ψ † ζ∂ iv ψ + ψ † ζ∂ iv ψ Lf 1α τ − 1 · ∇r 1α 2α τ − 2 · ∇r 2α ￿ 1 ￿ ζ ￿ s ￿u Order parameter: = ( ￿ϕ )2 + (∂ ￿ϕ )2 + ￿ϕ 2 + ￿ϕ 4 Lϕ 2 ∇r 2 τ 2 4 ￿ ￿ ￿ ￿ ￿ “Yukawa” coupling: = ￿ϕ ψ † ￿σ ψ + ψ † ￿σ ψ Lc − · 1α αβ 2β 2α αβ 1β ￿ ￿ We find consistent two-loop RG factors, as ζ 0, for the → velocities vx, vy, and the wavefunction renormalizations.

Consistency check: the expression for the boson damp- 2 ing constant, γ = , is preserved under RG. πvxvy

Friday, April 13, 2012 RG-improved Migdal-Eliashberg theory RG flow can be computed a 1/N expansion (with N fermion species) in terms of a single dimensionless coupling α = vy/vx whose flow obeys dα 3 α2 = d￿ −πN 1+α2

Friday, April 13, 2012 RG-improved Migdal-Eliashberg theory RG flow can be computed a 1/N expansion (with N fermion species) in terms of a single dimensionless coupling α = vy/vx whose flow obeys dα 3 α2 = d￿ −πN 1+α2

The velocities flow as 1 dv (α)+ (α) 1 dv (α)+ (α) x = A B ; y = −A B vx d￿ 2 vy d￿ 2 3 α (α) A ≡ πN 1+α2

1 1 1 1 1 (α) α 1+ α tan− B ≡ 2πN α − α − α ￿ ￿￿ ￿ ￿ ￿

Friday, April 13, 2012 RG-improved Migdal-Eliashberg theory RG flow can be computed a 1/N expansion (with N fermion species) in terms of a single dimensionless coupling α = vy/vx whose flow obeys dα 3 α2 = d￿ −πN 1+α2

The anomalous dimensions of ￿ϕ and ψ are

1 1 1 2 1 1 η = α + + α tan− ϕ 2πN α − α2 α ￿ ￿ ￿ ￿ 1 1 1 1 1 η = α 1+ α tan− ψ −4πN α − α − α ￿ ￿￿ ￿ ￿ ￿

Friday, April 13, 2012 RG-improved Migdal-Eliashberg theory α = v /v 0 logarithmically in the infrared. y x → Dynamical Nesting

v1 v2

Bare Fermi surface

Friday, April 13, 2012 RG-improved Migdal-Eliashberg theory α = v /v 0 logarithmically in the infrared. y x → Dynamical Nesting

Dressed Fermi surface

Friday, April 13, 2012 RG-improved Migdal-Eliashberg theory α = v /v 0 logarithmically in the infrared. y x → Dynamical Nesting

Bare Fermi surface

Friday, April 13, 2012 RG-improved Migdal-Eliashberg theory α = v /v 0 logarithmically in the infrared. y x → Dynamical Nesting

Dressed Fermi surface

Friday, April 13, 2012 RG-improved Migdal-Eliashberg theory α = v /v 0 logarithmically in the infrared. y x →

In ￿ϕ SDW fluctuations, characteristic q and ω scale as

3 ln(1/ω) 3 q ω1/2 exp . ∼ −64π2 N ￿ ￿ ￿ ￿ However, 1/N expansion cannot be trusted in the asymptotic regime.

Friday, April 13, 2012 New infra-red singularities as ζ 0 at higher loops (Breakdown of Migdal-Eliashberg)→

￿ϕ 1 1 N (q2 + γ ω ) | |

fermion propagator 1 1 v2q2 v q + iζω + i √ωF · N√γv ω ￿ ￿

Friday, April 13, 2012 New infra-red singularities as ζ 0 at higher loops (Breakdown of Migdal-Eliashberg)→

￿ϕ propagator 1 1 N (q2 + γ ω ) | |

fermion propagator 1 1 v2q2 v q + iζω + i √ωF · N√γv ω ￿ ￿

Dangerous

Friday, April 13, 2012 New infra-red singularities as ζ 0 at higher loops (Breakdown of Migdal-Eliashberg)→

1 1 1 Ignoring fermion self energy: ∼ N 2 × ζ2 × ω

Friday, April 13, 2012 New infra-red singularities as ζ 0 at higher loops (Breakdown of Migdal-Eliashberg)→

1 1 1 Ignoring fermion self energy: ∼ N 2 × ζ2 × ω 1 Actual order ∼ N 0

Friday, April 13, 2012 Double line representation

• A way to compute the order of a diagram. • Extra powers of N come from the Fermi-surface

• What are the conditions for all to be on the Fermi surface? • Concentrate on diagrams involving a single pair of hot-spots • Any bosonic momentum may be (uniquely) written as

R. Shankar, Rev. Mod. Phys. 66, 129 (1994). S. W. Tsai, A. H. Castro Neto, R. Shankar, and D. K. Campbell, Phys. Rev. B 72, 054531 (2005).

Friday, April 13, 2012 New infra-red singularities as ζ 0 at higher loops (Breakdown of Migdal-Eliashberg)→

=

Singularities as ζ 0 appear when fermions in closed blue and red line loops→ are exactly on the Fermi surface 1 Actual order ∼ N 0

Friday, April 13, 2012 New infra-red singularities as ζ 0 at higher loops (Breakdown of Migdal-Eliashberg)→

=

1 Actual order ∼ N 0 Graph is planar after turning fermion propagators also into double lines by drawing additional dotted single line loops for each fermion loop Sung-Sik Lee, arXiv:0905.4532

Friday, April 13, 2012 New infra-red singularities as ζ 0 at higher loops (Breakdown of Migdal-Eliashberg)→

=

1 Actual order ∼ N 0 A consistent analysis requires resummation of all planar graphs

Friday, April 13, 2012 Theory for the onset of spin density wave order in metals is strongly coupled in two dimensions

Friday, April 13, 2012