Quail News March 2011

Total Page:16

File Type:pdf, Size:1020Kb

Quail News March 2011 QUAIL EWS ISSUE 36 March 2011 Contents Cook’s Scurvy Plants Cook’s Scurvy Plants Colin Burrows. Colin Burrows In the 18th Century people were often afflicted by scurvy (a wasting disease caused by Vitamin C From the Chairman deficiency-fatal if not treated with a proper diet). The medical fraternity in Europe, by the middle Ian MacDonald. of that century, had realised that fresh fruit (e.g. oranges) or green vegetables, especially members of the Brassica (cabbage) family must be eaten to avert scurvy. Crews of ships were especially vulnerable to scurvy because, on long voyages, their diets were limited. Research on Quail Island Dr Stephane Boyer. Among ship captains who were alert to the danger of scurvy and knew how to counter it was James Botanical ews: Flowers, Cook, the great navigator, who commanded three expeditions to New Zealand in the latter part of Fruits and the Future the century. Colin Burrows. During an earlier landing, at Tolaga Bay, in 1769, Cook set the men from the “Endeavour” collecting green “vegetables” from near the shore. These were boiled up with oatmeal and dried 22 February, Earthquake. soup and everyone on the ship made to partake. Two species were gathered. One was a native Workdays, April, May, celery now named Apium prostratum . It belongs to the same genus as garden celery. The second June. plant was a native cress, now named Lepidium oleraceum . (Apium=Celtic apon water, prostratum=close to the ground; Lepidium=Greek lepidos-scale [the seed pods look like scales], poleraceum=Latin olus-garden vegetable). The botanists on the “Endeavour” were Joseph Banks Tony Giles- and Daniel Solander. They would have identified the plants as members, respectively, of the celery Conservationist. and cabbage families but their scientific names for them were never published. Cook called the Apium “sellery” and the Lepidium “scurvy grass”. Of course it is not a grass, so I prefer “plant”. The Team 2011 Allan Williams Patron After his second voyage (1775) Cook was awarded the Copley medal, by the British Royal Society for his work on control of scurvy. Ian MacDonald Chair and Forest and Bird The Otamahua/Quail Island connection with the “scurvy plant” is because it has become a rare Representative . species, confined now to offshore islands. It has been eaten out by domestic stock and rabbits. Nick John Lewis gati Wheke Head found a single site for it on Banks Peninsula, an islet on its eastern side. Seeds were sown by Representative Jorge Santos, at Motukarara and some spare seedlings were brought to Otamahua by Department of Treasurer to be appointed. Conservation threatened species scientist, Anita Spencer. It is now thriving. Peter Anderson Trustee. Mike Bowie Trustee. The second of Cook’s antiscorbutic plants, Apium, has fared much better than Lepidium and, as it Ross Cullen Trustee. happens, grows naturally quite commonly on Otamahua. Its Maori name is tutaekoau, referring to Ian McLennan Trustee. its usual habitat in sites fertilised by seabird droppings (in this case cormorants). Cook’s scurvy Colin Meurk Trustee. plant enjoys such conditions also. It has a very short Maori name, nau. Perhaps we could also call it Tom Veitch Trustee. tutaekaroro after the black-backed gulls that are the main nesting seabirds on the island. Grant Campbell DoC. Colin Burrows Advisor. References. Liz Griffiths Acting Begg, A.C., Begg, N.C. 1969. James Cook and New treasurer. Zealand. Govt. Printer, Wellington Tina Troup Advisor. Marieke Lettink Advisor. Williams, H.W, 1957. A Dictionary of the Maori Laura Molles Advisor. Language. Govt. Printer, Wellington. Bev MacDonald Secretary, ewsletter editor. Wilson, H.D. 2011. Personal communication. Skry Adamson Web site manager. Since Colin wrote this article the 22 February ,2011, earthquake may well have destroyed the sites of the Barbara Price scurvy plants on Otamahua. The seedlings were Administrator planted near the penguin nest boxes and DoC reports that Ken Bain Auditor. there have been major slips in this area. The area is still far too dangerous for close investigation of the damage. Peter Hayward Trust The photo of Cook’s scurvy plant on Quail Island was employee. taken by Ross Cullen prior to the earthquakes. Tony Giles Trust employee. P O Box 33060 Barrington, Christchurch 8244. e-mail: [email protected] phone: 3325 322 www.quailisland.org.nz From the Chairman Ian MacDonald. The last month has been a very difficult time for Christchurch. Our thoughts are with all those people who have lost family, friends or homes. We know that some of our valued volunteers have been seriously affected by the 22 February earthquake and some have moved away. However, The Trust is determined to continue with its planned projects for 2011. Monthly Trust meetings will continue to take place on the fourth Thursday of the month. We will start work parties again in April and continue with the infill planting in August. The bronze plaques showing the peaks and bays of the harbour have been completed and will be taken to the island next week. When they have been mounted on the summit we will organise a celebration to mark the end of this four year project. We plan to raise the money needed to publish Plants of Otamahua/Quail Island written by Colin Burrows and illustrated by Hugh Wilson. Our island is still a popular destination for overseas groups. Although students from Butler University. Indianapolis, USA, have moved their planned visit in May to Otago, we still have a group from University of Florida, USA, planning a day on the island in July. The Wildlife Conservation Society has requested a field day on the island as part of the programme for the International Congress for Conservation Biology in November. For many years Paul Cunneen has been boat master for the Trust. He has collected the boat from Marinetec where it has been stored, has taken our workers to the island early on Monday morning and has returned them to Lyttelton Tuesday evening. Paul is planning to live permanently on the Coast so the Trust must find another boat master. Thank you, Paul, for your time with us. We must also find another home for the boat as the storage area at Marinetec has been red stickered. Fortunately the boat escaped damage. I am negotiating with Stark Bros. for a new storage area. Liz Griffiths, Trust treasurer for the last four years has resigned as a Trustee but has offered to remain as acting Treasurer for the next six months to ensure continuity. The task of treasurer has been very demanding so the Trust has decided to appoint a paid administrator to relieve the work load of the volunteer treasurer and secretary. Barbara Price has been appointed. Liz, Bev and I were enjoying lunch on 22 February, discussing the tasks which Barbara could take over when the table started dancing and we took off outside. John Lewis has been appointed by the runanga Ngati Wheke as their representative on the Trust. We are looking forward to John’s contribution to the work of the Trust. The Trust is very pleased that Lincoln University Department of Ecology is encouraging research on Quail Island, no doubt influenced by Trustee Mike Bowie. Dr Stephane Boyer’s report is printed below. A Masters student, Christine McClure has also carried out research on the most effective methods for tracking lizards. Chris was evacuated from her inner city apartment and had to leave all her data behind. When she finally has access she will report on her findings in a later newsletter. We may all be severely shaken but we are still standing strong . Kia kaha. Research on Otamahua/Quail Island. Dr Stephane Boyer, Department of Ecology, Lincoln University. Restoring ative Vegetation on Quail Island Boosts Endemic Earthworm Populations. Earthworm diversity in New Zealand is comparable to that of the country’s birds; nearly 200 earthworm species have been described to date. The introduction of European grassland and other crops led to the disappearance of our endemic earthworms from most parts of New Zealand’s lowlands. Most are now restricted to native habitats. On Quail Island, three endemic earthworm species were recorded during a recent Lincoln University study. Despite a brief and limited survey, one of the collected species is likely to be new to Collecting earthworms science. Lincoln University researchers have been studying earthworm communities in relation to the on- going replanting effort on Quail Island. Planting done 30 years ago on Quail Island by the Department of Lands and Survey and more recent planting by Quail Island Ecological Restoration Trust offers the opportunity to study how endemic earthworms re-colonise the soil over time when native vegetation is replanted. Preliminary results showed that some replanted areas contain twice as many endemic earthworms than do grassland areas. This has important implications for Quail Island terrestrial ecosystems, as Weighing earthworms endemic earthworms are a major food resource for many native invertebrates and bird species. Researchers also came across three species of introduced European earthworms in Quail Island’s soil. These species are common in New Zealand’s pastures and other agricultural land but the replanting of native vegetation has not put them off. The presence of ‘alien’ earthworms under native vegetation has not been reported before. Potential impacts on the functioning of native ecosystems and their endemic earthworms communities are therefore largely unknown. Photos taken by Mike Bowie and Ian MacDonald. P O Box 33060 Barrington, Christchurch 8244. e-mail: [email protected] phone: 3325 322 www.quailisland.org.nz Botanical ews: Flowers, Fruits and the Future. Colin Burrows. A Spring-Summer with prolific flowering of some of our planted species augurs well for the future.
Recommended publications
  • Blanco-Sanchez Et Al
    1 Phylogeography of a gypsum endemic plant across its entire distribution 2 range in the western Mediterranean 3 Mario Blanco-Sánchez1*, Michael J. Moore2, Marina Ramos-Muñoz1, Beatriz Pías3, Alfredo 4 García-Fernández1, María Prieto1, Lidia Plaza1, Ignacio Isabel1, Adrián Escudero1 and Silvia 5 Matesanz1 6 7 1 Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos. C/ Tulipán s/n, 28933, 8 Móstoles, Spain. 9 2 Department of Biology, Oberlin College, Oberlin, Ohio 44074, U.S.A. 10 3 Departamento de Biodiversidad, Ecología y Evolución. Universidad Complutense de Madrid. 11 C/José Antonio Nováis 2, 28040, Madrid, Spain. 12 *Author for correspondence: [email protected] 13 14 Manuscript received _______; revision accepted _______. 15 16 Running head: Phylogeography of a gypsum endemic plant 1 17 ABSTRACT 18 Premise of the study: Gypsum soils in the Mediterranean Basin house large numbers of edaphic 19 specialists that are adapted to stressful environments. The evolutionary history and standing 20 genetic variation of these taxa have been influenced by the geological and paleoclimatic 21 complexity of this area and the long-standing effect of human activities. However, little is 22 known about the origin of Mediterranean gypsophiles and the factors affecting their genetic 23 diversity and population structure. 24 Methods: Using phylogenetic and phylogeographic approaches based on microsatellites and 25 sequence data from nuclear and chloroplast regions, we evaluated the divergence time, genetic 26 diversity and population structure of 27 different populations of the widespread Iberian 27 gypsophile Lepidium subulatum throughout its entire geographic range. 28 Results: Lepidium subulatum diverged from its nearest relatives ~3 Mya, and the ITS and 29 psbA/matK trees supported the monophyly of the species.
    [Show full text]
  • Trilepidea Newsletter of the New Zealand Plant Conservation Network
    TRILEPIDEA NEWSLETTER OF THE NEW ZEALAND PLANT CONSERVATION NETWORK NO. 118. President’s message September 2013 Several important announcements and articles are presented in this newsletter. First, Deadline for next issue: the AGM on 6 November; we look forward to seeing you there; and secondly, we Monday 14 October 2013 repeat the call for nominations for our awards, which will be presented at the AGM. SUBMIT AN ARTICLE Please forward these to Melissa Hutchison, our awards convener. Congratulations to TO THE NEWSLETTER John Braggins for the 2013 Alan Mere Award, and to Nicholas Head for winning the Contributions are welcome Loder Cup; two very worthy recipients who have contributed enormously to plant to the newsletter at any conservation in New Zealand. time. The closing date for articles for each issue is I was recently lucky enough to approximately the 15th of travel to South Africa—a visit each month. planned quickly to support our Articles may be edited and used in the newsletter and/ son who was selected to compete or on the website news at the World Mountain Bike page. Championships. We visited The Network will publish several areas, including Table almost any article Mountain and Cape of Good about plants and plant conservation with a Hope, and were completely blown particular focus on the plant away by the enormous diversity life of New Zealand and and colours of the South African Oceania. fl ora (and fauna). Th ere are Please send news items or event information to c.33,000 vascular plant species in Ostriches browsing on shrubs beside the Atlantic Ocean, [email protected] South Africa and almost 9,000 near the Cape of Good Hope.
    [Show full text]
  • Brief Observations of Vegetation Following a Fire on Flagstaff, Dunedin
    TRILEPIDEA Newsletter of the New Zealand Plant Conservation Network NO. 198 Brief observations of vegetation following a fi re on Flagstaff , Dunedin May 2020 John Barkla ([email protected]) Deadline for next issue: On Monday 16 September 2019 a fi re swept through c. 30 ha of montane tussock- Friday 19 June 2020 shrub/fl axland on the popular Pineapple Track that traverses Flagstaff (668 m) above SUBMIT AN ARTICLE Dunedin. Billowing smoke and fl ames were clearly evident from the city and it took TO THE NEWSLETTER eight helicopters and 35 fi remen to contain the fi re. Dampening down continued Contributions are welcome through Tuesday, and surveillance of hot spots was ongoing for several days. Th e to the newsletter at any Pineapple Track was closed for a week. time. The closing date for articles for each issue is Evidence from sub-fossil logs suggests there was a cover of montane forest on Flagstaff approximately the 15th of until about 1300 AD. Chionochloa rigida-dominant tussocklands are thought to have each month. been present since at least the mid 19th century and maintained by periodic fi res Articles may be edited and used in the newsletter and/ (Wardle & Mark 1956). A hot spring fi re in late 1976 burnt c. 100 ha. Given its close or on the website news page. proximity to Dunedin, the area around Flagstaff has been a convenient research site The Network will publish for investigating the eff ects of fi re on snow tussock, e.g. Gitay et al. (1991). almost any article about plants and plant conservation I walked through the burn site on 28 September, almost two weeks aft er the fi re with a particular focus on the started (Fig.
    [Show full text]
  • Foraging Workshop Notes
    Southland Foraging Workshop Notes Foraging – “To search widely for food or provisions”. Meet at 183 Grant Road Car Park at 7pm The key to foraging is being able to Identify your plants! Why forage? Basic Rules Higher nutrient value of food Be able to identify your edible or poisonous plants Diverse diet Take only what you need and Being self-reliant sustainably harvest Connect with nature Have Fun! Being thrifty Fruit and Nuts as we walk through Fruit Trees - Apples – scrumping (“Stealing fruit, especially apples, from someone else's trees. British. It's considered less bad than, say, shoplifting, but adults still disapprove”), grafting (Riverton Harvest Festival (28-29 March 2015) and Open orchard project www.sces.org.nz , crab apples - Apple Pressing workshop at the Community Nursery 8th May 2015 www.southlandcommunitynursery.org.nz). Quince, fig. plum, pear, berry fruit (blueberries, raspberrys, black and red currants, gooseberrys – BIRDS!) Nuts – Chestnuts – horse chestnut (poisonous), sweet chestnut (edible) Pine Nuts – Pinus pinea (stonepine or pesto pine), Walnuts, Hazelnuts Herbs – feverfew, parsley, fennel, coriander, lavender, rosemary, sage, bay, thyme, marjoram, wormwood, chamomile, tarragon, borage, nasturtium, comfrey, yarrow, marigold, rue, sorrel, chives, lemon verbena, (hemlock looks like some of these herbs - poisonous!). Weeds – nettle, dandelion, puha, miners lettuce, chickweed, plantain, elder, sorrel, blackberry, hemlock (poisonous), bittersweet (poisonous) Natives – harakeke/flax, horopito/pepperwood,
    [Show full text]
  • BANKS & SOLANDER BOTANICAL COLLECTIONS TAI RAWHITI Ewen
    BANKS & SOLANDER BOTANICAL COLLECTIONS TAI RAWHITI Ewen Cameron, Botanist, Auckland War Memorial Museum In 1769 Garden In Florilegium 1. TAONEROA (POVERTY BAY) FERNS 39: Pteridium esculentum (G.Forst.) Cockayne PTERIS ESCULENTA Ts 220; MS 1533 Pteris esculenta G.Forst. (1786) Fig.pict. (BF 568) Maori - e anuhe [aruhe] "the root is edible after being roasted over a fire and finally bruised with a mallet, serving the natives in place of bread. We have heard the roasted root called he taura by the New Zealanders." Hab. - extremely abundant on the hills - 1,2,3,4,5,6,7 AK 114337, 189113; WELT P9484 ANGIOSPERMS a. (a) Dicotyledons Aizoaceae 50: Tetragonia tetragonioides (Pallas) Kuntze Florilegium TETRAGONIA CORNUTA Ts 115; MS 687 Tetragonia cornuta Gaertn. (1791) Fig.pict. (BF 532) Hab. - in sand and along the seashore - 1,2,3,4,6,7 AK 100180-100181, 184590; WELT 63687 Apiaceae 53: Apium prostratum Labill. ex Vent. var. prostratum APIUM DECUMBENS α SAPIDUM Ts 71; MS 379 Fig.pict. (BF 460) Maori - tutagavai, he tutaiga [tutae-koau] Hab. - by the seashore, abundant throughout - 1-8 AK 189279; WELT 63736 57: Hydrocotyle heteromeria A.Rich. HYDROCOTYLE GLABRATA Ts 64; MS 338 Fig.pict. Maori - he totara, tara Hab. - damp shady places - 1,2,3,4,7 AK 104432; WELT 63735 60: Scandia rosifolia (Hook.) Dawson Florilegium LIGUSTICUM AROMATICUM Ts 70; MS 360 Ligusticum aromaticum Hook.f. (1864) Fig.pict. (BF 461) Maori - koerik [koheriki] Hab. - on forest margins and in meadows - 1,2,3,4,6 AK 189114; WELT 63739 Asteraceae 70: Brachyglottis repanda J.R.Forst.
    [Show full text]
  • First Record of Turnip Mosaic Virus in Cook's Scurvy
    CSIRO PUBLISHING www.publish.csiro.au/journals/apdn Australasian Plant Disease Notes, 2009, 4,9–11 First record of Turnip mosaic virus in Cook’s scurvy grass (Lepidium oleraceum agg.) ” an endangered native plant in New Zealand J. D. Fletcher A,C, S. Bulman A, P. J. Fletcher A and G. J. Houliston B ANew Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch, New Zealand. BManaaki Whenua-Landcare Research, PO Box 40, Lincoln 7640, New Zealand. CCorresponding author. Email: fl[email protected] Abstract. Cook’s scurvy grass (Lepidium oleraceum agg.) is an endangered species of native Brassicaceae that is considered threatened with extinction. Virus-like disease symptoms were observed in a newly introduced plant of L. oleraceum at Stony Bay, Banks Peninsula, Canterbury, New Zealand. This is the first record of a virus in L. oleraceum and the first report of a Turnip mosaic virus infection in a New Zealand native host. Of the indigenous Lepidium species in the Brassicaceae family, (DAS-ELISA) (AS0132, DSMZ, Germany). TuMV infection six are coastal, of which five are endemic to New Zealand was further confirmed by reverse transcriptase polymerase (Lepidium banksii, Lepidium oleraceum agg., Lepidium chain reaction (RT–PCR). RNA was extracted from ~1 cm2 obtusatum, Lepidium tenuicaule, Lepidium naufragorum), leaf discs of five TuMV-infected plants (SB, LD, LF, LG, and whereas Lepidium flexicaule also occurs in Tasmania (Hewson LJ) using the RNeasy Plant Mini Kit (Qiagen, Germantown, MD, 1981). Cook’s scurvy grass (L. oleraceum) is an endangered USA). RNA was reverse transcribed using the SuperScript III species considered to be threatened with extinction (Norton and First-Strand Synthesis System for RT–PCR (Invitrogen, de Lange 1999).
    [Show full text]
  • Allopolyploidization and Evolution of Species with Reduced Floral Structures in Lepidium L
    Allopolyploidization and evolution of species with reduced floral structures in Lepidium L. (Brassicaceae) Ji-Young Lee*, Klaus Mummenhoff†, and John L. Bowman*‡ *Plant Biology, University of California, Davis, CA 95616; and †Fachbereich Biologie, Universita¨t Osnabru¨ck, Spezielle Botanik, Barbarastrasse 11, 49069 Osnabru¨ck, Germany Edited by Peter R. Crane, Royal Botanic Gardens, Kew, Surrey, United Kingdom, and approved October 10, 2002 (received for review July 12, 2002) Understanding the pattern of speciation in a group of plants is intron of trnT-trnF in chloroplast DNA (cpDNA) clarified some critical for understanding its morphological evolution. Lepidium is relationships within the genus (11, 12). In ITS trees, species from the genus with the largest variation in floral structure in Brassi- Eurasia and Australia, which have the typical Brassicaceae floral caceae, a family in which the floral ground plan is remarkably structure, form sister lineages basal to the rest of the species (11), stable. However, flowers in more than half of Lepidium species indicating that reduced floral structures are derived. ITS trees have reduced stamen numbers, and most of these also have suggest that floral structures in Lepidium are rather fluid, and reduced petals. The species with reduced flowers are geographi- that many intercontinental migrations have occurred. Although cally biased, distributed mostly in the Americas and Australia͞ cpDNA trees show a similar pattern of early lineages and agree New Zealand. Previous phylogenetic studies using noncoding re- with the ITS trees on the fluidity of the flower structures in gions of chloroplast DNA and rDNA internal transcribed spacer were Lepidium (12), species from similar geographic regions usually incongruent in most New World species relationships.
    [Show full text]
  • Botany of the Large Islands of the Eastern Bay of Islands, Northern New Zealand
    TANE 30,1984 BOTANY OF THE LARGE ISLANDS OF THE EASTERN BAY OF ISLANDS, NORTHERN NEW ZEALAND by R.E. Beever*, A.E. Eslert and A.E. Wright** * Plant Diseases Division, DSIR, Private Bag, Auckland t Botany Division, DSIR, Private Bag, Auckland ** Auckland Institute and Museum, Private Bag, Auckland SUMMARY The botanical features of the islands of Urupukapuka, Moturua, Motuarohia, Waewaetorea, Motukiekie and Okahu in the eastern Bay of Islands are described briefly. All have a long history of modification by man, first by the Maori and then by Europeans. The islands are now predominantly covered by grassland and Leptospermum scrubland with a coastal fringe dominated by pohutukawa (Metrosideros excelsa); on Motuarohia and Motukiekie substantial areas are planted with exotic conifers. A vascular plant species list is given for each island. A total of 208 indigenous species and 177 adventive species is recorded for the group as a whole. INTRODUCTION Botanical explorations of the Bay of Islands began when the Endeavour visited the region in November and December 1769. However, although Banks and Solander landed on both Motuarohia and Moturua and also visited the mainland, Banks was disappointed. He remarked of Motuarohia,of all the places I have landed in this was the only one which did not produce one new vegetable' (Beaglehole 1962). Nevertheless they found a total of 85 vascular plants (luring their stay (Hatch 1981) including the rare kakabeak (Clianthus puniceus) and the famous Cook's scurvy grass [Lepidium oleraceum) now also, unfortunately, rare. There is ample evidence from both Cook's and Banks' journals that the area was intensively populated by Maoris at the time of their visit.
    [Show full text]
  • Naturally Occurring Differences in CENH3 Affect Chromosome Segregation in Zygotic Mitosis of Hybrids
    UC Davis UC Davis Previously Published Works Title Naturally occurring differences in CENH3 affect chromosome segregation in zygotic mitosis of hybrids. Permalink https://escholarship.org/uc/item/7bv9k2ww Journal PLoS genetics, 11(1) ISSN 1553-7390 Authors Maheshwari, Shamoni Tan, Ek Han West, Allan et al. Publication Date 2015-01-26 DOI 10.1371/journal.pgen.1004970 Peer reviewed eScholarship.org Powered by the California Digital Library University of California RESEARCH ARTICLE Naturally Occurring Differences in CENH3 Affect Chromosome Segregation in Zygotic Mitosis of Hybrids Shamoni Maheshwari1, Ek Han Tan1, Allan West2, F. Chris H. Franklin2, Luca Comai1*, Simon W. L. Chan3,4† 1 Department of Plant Biology and Genome Center, University of California, Davis, Davis, California, United States of America, 2 School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom, 3 Department of Plant Biology, University of California, Davis, Davis, California, United States of America, 4 Howard-Hughes Medical Institute and the Gordon and Betty Moore Foundation, University of California, Davis, Davis, California, United States of America † Deceased. * [email protected] OPEN ACCESS Abstract Citation: Maheshwari S, Tan EH, West A, Franklin The point of attachment of spindle microtubules to metaphase chromosomes is known FCH, Comai L, Chan SWL (2015) Naturally Occurring Differences in CENH3 Affect Chromosome as the centromere. Plant and animal centromeres are epigenetically specified by a centro- Segregation in Zygotic Mitosis of Hybrids. PLoS mere-specific variant of Histone H3, CENH3 (a.k.a. CENP-A). Unlike canonical histones Genet 11(2): e1004970. doi:10.1371/journal. that are invariant, CENH3 proteins are accumulating substitutions at an accelerated rate.
    [Show full text]
  • PDF Hosted at the Radboud Repository of the Radboud University Nijmegen
    PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a postprint version which may differ from the publisher's version. For additional information about this publication click this link. http://repository.ubn.ru.nl/handle/2066/128060 Please be advised that this information was generated on 2021-09-26 and may be subject to change. Oecologia Consequences of combined herbivore feeding and pathogen infection for fitness of Barbarea vulgaris plants --Manuscript Draft-- Manuscript Number: Full Title: Consequences of combined herbivore feeding and pathogen infection for fitness of Barbarea vulgaris plants Article Type: Plant-microbe-animal interactions – original research Corresponding Author: Thure Pavlo Hauser, Ph.D. DENMARK Order of Authors: Tamara van Mölken Vera Kuzina Karen Rysbjerg Munk Carl Erik Olsen Thomas Sundelin Nicole van Dam Thure Pavlo Hauser, Ph.D. Suggested Reviewers: Arjen Biere [email protected] One of the few researchers focusing on interactions of plants with both phytopathogens and arthropod herbivores. Guest editor on the subject in an recent volume of Funct Ecol Ayco Tack [email protected] another ecologist who has published on three-way interactions Valerie Fournier [email protected] has one of the best analyses of three way plant-microbe-arthropod interactions Opposed Reviewers: Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation Manuscript Click here to download Manuscript: Conseq_hxp_Oekologia_Submitted1.doc Click here to view linked References 1 Consequences of herbivore feeding and pathogen infection for fitness of 2 Barbarea vulgaris plants 3 4 5 6 Tamara van Mölken*a, Vera Kuzinaa, Karen Rysbjerg Munka, Carl Erik Olsena, 7 Thomas Sundelina, Nicole M.
    [Show full text]
  • Threatened Plants of Waikato Conservancy Threatened Plants of Waikato Conservancy
    Threatened plants of Waikato Conservancy Threatened plants of Waikato Conservancy Andrea Brandon, Peter de Lange and Andrew Townsend Published by: Department of Conservation P.O. Box 10-420 Wellington, New Zealand This publication was prepared by DOC Science Publishing, Science & Research Unit: editing by Jaap Jasperse and layout by Jeremy Rolfe. Publication was approved by the Manager, Biodiversity Recovery Unit, Science Technology and Information Services, Department of Conservation, Wellington. © April 2004, Department of Conservation ISBN 0-478-22095-2 CONTENTS Acknowledgements 5 Introduction 6 Species profiles 9 Amphibromus fluitans 10 Anzybas carsei 12 Asplenium cimmeriorum 14 Austrofestuca littoralis 15 Brachyglottis kirkii var. kirkii 17 Carex litorosa 18 Carmichaelia williamsii 19 Centipeda minima subsp. minima 21 Cyclosorus interruptus 23 Dactylanthus taylorii 24 Deschampsia cespitosa 26 Desmoschoenus spiralis 28 Epacris sinclairii 30 Euphorbia glauca 31 Gratiola nana 33 Hebe scopulorum 34 Hebe speciosa 35 Lepidium flexicaule 37 Lepidium oleraceum 39 Libertia peregrinans 41 Linguella puberula 42 Lycopodiella serpentina 44 Marattia salicina 45 Mazus novaezeelandiae 47 Melicytus flexuosus 49 Myosotis petiolata var. pansa 51 Olearia pachyphylla 52 Ophioglossum petiolatum 54 Picris burbidgei 55 Pimelea tomentosa 57 Pittosporum kirkii 58 Pittosporum turneri 60 Plumatochilos tasmanicum 62 Pomaderris apetala subsp. maritima 63 Pomaderris phylicifolia 65 Prasophyllum aff. patens 67 Pseudopanax laetus 68 Pterostylis micromega 69 Pterostylis
    [Show full text]
  • Lepidium Oleraceum – a Threatened Herb of Coastal Wellington John Sawyer1 and Peter De Lange2
    Wellington Botanical Society Bulletin, January 2007, No. 50 Lepidium oleraceum – a threatened herb of coastal Wellington John Sawyer1 and Peter de Lange2 Suddenly, as rare things will, it vanished... Robert Browning (‘One word more’, 1855) INTRODUCTION Lepidium oleraceum Sparrm ex G.Forst (Brassicaceae) is a rare thing indeed. Cook’s scurvy grass or nau as it is more commonly known is one of New Zealand’s most famous plants having been harvested by Captain Cook, along with other herbaceous coastal plants, to feed to his crew to protect them from catching scurvy. It may be for that reason the species came top in a 2005 national poll to fi nd New Zealand’s favourite plant. Irrespective, scurvy grass has always been high on New Zealand’s conservation agenda as one of the most endangered elements of the endemic fl ora, and botanists have long acknowledged that to see it in the wild is one of those special botanical moments shared by only a small handful—in the North Island anyway. As we recognise it here, the species is endemic to New Zealand where it is found from the Kermadec and Th ree Kings Island groups, south through the North, South, and Stewart Islands, with a recently discovered Kapiti I (2004) outlier on the Bounty Islands Paraparaumu group. With one notable exception (Mangere Island) we regard plants from the Chatham, Antipodes, Mana I Snares and Auckland Islands as representing other allied but as e yet unnamed potentially distinct g n a R Lake species. Through this range the a Wellington k Wairarapa ta u species is now virtually confined im to off shore islands, islets and rock R stacks.
    [Show full text]