RNA Virus Diversity in Tropical Mosquitoes and Effects of Virus Interactions in Vectors and Hosts“ Selbstständig Und Ohne Unerlaubte Hilfe Angefertigt Habe

Total Page:16

File Type:pdf, Size:1020Kb

RNA Virus Diversity in Tropical Mosquitoes and Effects of Virus Interactions in Vectors and Hosts“ Selbstständig Und Ohne Unerlaubte Hilfe Angefertigt Habe RNA virus diversity in tropical mosquitoes and effects of virus interactions in vectors and hosts Inaugural-Dissertation to obtain the academic degree Doctor rerum naturalium (Dr. rer. nat.) submitted to the Department of Biology, Chemistry and Pharmacy of Freie Universität Berlin by Kyra Hermanns 2019 This dissertation was conducted from 2015 to 2017 at the Institute of Virology at the University Hospital of Bonn and from 2017 to 2019 at the Institute of Virology at the Charité - Universitätsmedizin Berlin in the research group “Ecology and evolution of arboviruses” of PD Dr. Sandra Junglen. 1st Reviewer: PD Dr. Sandra Junglen 2nd Reviewer: Prof. Dr. Dino McMahon Date of defense: 08.06.2020 This dissertation is based on the following manuscripts: Chapter I: Hermanns, K., Zirkel, F., Junglen S. (2019). Mosquito community composition shapes virus prevalence patterns. (Manuscript in preparation) Author contributions: Conceptualization, S.J. and K.H.; Investigation, K.H. and F.Z.; Formal Analysis, K.H.; Resources, S.J.; Funding Acquisition, S.J.; Writing - Original Draft Preparation, K.H. and S.J.; Writing - Review & Editing, all authors. Chapter II: Hermanns, K., Zirkel, F., Kopp, A., Marklewitz, M., Rwego, I.B., Estrada, A., Gillespie, T.R., Drosten, C., Junglen, S. (2017). Discovery of a novel alphavirus related to Eilat virus. Journal of General Virology 98, 43-49, doi:10.1099/jgv.0.000694. Author contributions: Conceptualization, K.H. and S.J.; Formal Analysis, K.H.; Funding Acquisition, S.J. and C.D.; Investigation, K.H. and F.Z.; Resources, F.Z., A.K., M.M., I.B.R., A.E., T.R.G, S.J. and C.D.; Writing – Original Draft Preparation, K.H.; Writing – Review & Editing, all authors. Chapter III: Hermanns, K., Marklewitz, M., Zirkel, F., Overheul, G.J., Page, R.A., Loaiza, J.R., Drosten, C., van Rij, R.P., Junglen, S. (2019). Agua Salud alphavirus defines a novel lineage of insect-specific alphaviruses discovered in the New World. Journal of General Virology, doi:10.1099/jgv.0.001344. Author contributions: Conceptualization: K.H. and S.J.; Investigation: K.H., M.M., G.J.O. and F.Z.; Formal Analysis: K.H. and R.P.V.R.; Resources: M.M., R.A.P., J.R.L., S.J. and C.D.; Funding Acquisition: S.J. and R.P.V.R; Writing – Original Draft Preparation, K.H.; Writing – Review & Editing, all authors. Chapter IV: Hermanns, K., Zirkel, F., Marklewitz, M., Junglen, S. (2019). Interactions between naturally co-occurring mosquito-associated viruses. (Manuscript in preparation) Author contributions: Conceptualization, K.H. and S.J.; Investigation, K.H. and F.Z.; Formal Analysis, K.H.; Resources, M.M. and S.J.; Funding Acquisition, S.J.; Writing - Original Draft Preparation, K.H.; Writing - Review & Editing, all authors. Chapter V: Hermanns, K., Göhner, C., Kopp, A., Schmidt, A., Merz, W.M., Markert, U.R., Junglen, S., Drosten, C. (2018). Zika virus infection in human placental tissue explants is enhanced in the presence of dengue virus antibodies in-vitro. Emerging Microbes & Infections 7, 198, doi:10.1038/s41426-018-0199-6. Author contributions: C.D., W.M., and U.M. conceived the work. C.D., K.H., C.G., and S.J. designed the work. K.H., C.G., A.K., and A.S. acquired data. K.H., C.D., C.G., and S.J. interpreted the results. K.H. and C.D. drafted the original manuscript. All authors revised the manuscript and approved the final version. Table of Content Summary ...................................................................................................................................... 1 Zusammenfassung ....................................................................................................................... 3 General Introduction .................................................................................................................. 5 Emerging viruses ...................................................................................................................... 5 Arboviruses and insect-specific viruses ................................................................................... 6 Habitat diversity and infections ............................................................................................... 9 Multiple virus infections ........................................................................................................ 11 Objective of the thesis ............................................................................................................. 14 References ............................................................................................................................... 16 Chapter I – A multi-taxa gradient study on virus diversity and prevalence patterns ........ 24 Chapter II – Discovery of Taï Forest alphavirus .................................................................... 52 Chapter III – Characterization of Agua Salud alphavirus .................................................... 65 Chapter IV – Co- and superinfections of mosquito-associated viruses ................................ 85 Chapter V – Enhancement of ZIKV by DENV antibodies in placenta explants ............... 106 General Discussion .................................................................................................................. 122 Mosquito-associated viruses................................................................................................. 122 Interplay between diversity and virus infections ................................................................. 124 Virus interactions in mosquitoes ......................................................................................... 125 Antibody-dependent enhancement ....................................................................................... 127 Conclusion ............................................................................................................................ 129 References ............................................................................................................................. 130 Statement of authorship.......................................................................................................... 139 Acknowledgement ................................................................................................................... 140 List of publications .................................................................................................................. 141 Summary Summary Mosquitoes transmit important infectious diseases such as yellow fever or dengue fever. Understanding emergence processes and knowledge about diversity of mosquito- associated viruses can help to identify control strategies for these viruses. As part of this thesis, novel mosquito viruses were characterized, and the impact of ecological changes and mixed infections was assessed. A large diversity of 49 viruses from the families Flavi-, Rhabdo-, Reo-, Toga-, Mesoni- and Iflaviridae and the order Bunyavirales was detected in mosquitoes that were sampled in Côte d’Ivoire along an anthropogenic disturbance gradient. The majority of these viruses occurred at a low level, but nine viruses were detected frequently. Five of those viruses showed a clear increase in prevalence towards the disturbed habitats. It was shown that virus prevalence was determined by abundance rates of the main mosquito host species and not by changes in host infection rates. In the mosquitoes from Côte d’Ivoire, a previously unknown alphavirus (Taï Forest alphavirus, TALV) was discovered. The complete genome of TALV was sequenced. TALV represents a suggested novel alphavirus species which belongs to the same phylogenetic clade as the only previously detected insect-specific alphavirus Eilat virus (EILV). Since alphaviruses are rarely found in mosquitoes, additional mosquitoes from Panama were tested. Another novel alphavirus (Agua Salud alphavirus, ASALV) was detected in these samples. ASALV was isolated and characterized in cell culture. As ASALV was temperature-sensitive and could not infect cell lines derived from poikilothermic vertebrates, ASALV is likely an insect-specific alphavirus. Phylogenetic analyses placed ASALV on a solitary branch in basal relationship to EILV and TALV as well as to the arboviruses of the Western equine encephalitis complex. Mosquitoes can be simultaneously infected with different viruses possibly resulting in virus interactions. Mixed infections in cell culture with two co-occurring bunyaviruses as well as ASALV and a negevirus detected in the same mosquito showed no effect on replication. However, the cytopathogenicity of ASALV and the negevirus was increased in mixed infections from which the viruses might profit in vivo. In contrast, herbeviruses inhibited a superinfection with another herbevirus. This ability to restrict infections with a related virus might also influence vector competence for arboviruses. 1 Summary When arboviruses infect humans, they can interact with antibodies that were produced against previous virus infections. These antibodies can cross-react with closely related viruses and enhance the infection. This mechanism was suspected after the Zika virus (ZIKV) outbreak in South America as the seroprevalence of the related dengue virus (DENV) was high and a new ZIKV symptom in neonates (microcephaly) was observed. Placenta explants were infected with ZIKV that was pre-incubated with DENV-immune sera or control sera. It was shown that pre-incubation with DENV-immune sera resulted in a faster ZIKV replication and a higher placenta explant
Recommended publications
  • The Viruses of Vervet Monkeys and of Baboons in South Africa
    THE VIRUSES OF VERVET MONKEYS AND OF BABOONS IN SOUTH AFRICA Hubert Henri Malherbe A Thesis Submitted to the Faculty of Medicine University of the Witwatersrand, Johannesburg for the Degree of Doctor of Medicine Johannesburg 1974 11 ABSTRACT In this thesis are presented briefly the results of studies extending over the period 1955 to 1974. The use of vervet monkeys in South Africa for the production and testing of poliomyelitis vaccine made acquaintance with their viruses inevitable; and the subsequent introduction of the baboon as a laboratory animal of major importance also necessitates a knowledge of its viral flora. Since 1934 when Sabin and Wright described the B Virus which was recovered from a fatal human infection contracted as the result of a macaque monkey bite, numerous viral agents have been isolated from monkeys and baboons. In the United States of America, Dr. Robert N. Hull initiated the classification of simian viruses in an SV (for Simian Virus) series according to cytopathic effects as seen in unstained infected tissue cultures. In South Africa, viruses recovered from monkeys and baboons were designated numerically in an SA (for Simian Agent) series on the basis of cytopathic changes seen in stained preparations of infected cells. Integration of these two series is in progress. Simian viruses in South Africa have been recovered mainly through the inoculation of tissue cultures with material obtained by means of throat and rectal swabs, and also through the unmasking of latent agents present in kidney cells prepared as tissue cultures. Some evidence concerning viral activity has been derived from serological tests.
    [Show full text]
  • RNA-Dependent RNA Polymerase Consensus Sequence of the L-A Double-Stranded RNA Virus: Definition of Essential Domains
    Proc. Nati. Acad. Sci. USA Vol. 89, pp. 2185-2189, March 1992 Biochemistry RNA-dependent RNA polymerase consensus sequence of the L-A double-stranded RNA virus: Definition of essential domains JUAN CARLOS RIBAS AND REED B. WICKNER Section on the Genetics of Simple Eukaryotes, Laboratory of Biochemical Pharmacology, National Institute of Diabetes and Digestive and Kidney Diseases, Building 8, Room 207, National Institutes of Health, Bethesda, MD 20892 Communicated by Herbert Tabor, November 27, 1991 (received for review October 2, 1991) ABSTRACT The L-A double-stranded RNA virus of Sac- lacking M1 (reviewed in refs. 10 and 18). M1 depends on L-A charomyces cerevisiac makes a gag-pol fusion protein by a -1 for its coat and replication proteins (19). MAK10 is one of ribosomal frameshift. The pol amino acid sequence includes three chromosomal genes needed for L-A virus propagation consensus patterns typical of the RNA-dependent RNA poly- within yeast cells (20). In a maklO host, L-A proteins merases (EC 2.7.7.48) of (+) strand and double-stranded RNA expressed from a cDNA clone of L-A support the replication viruses of animals and plants. We have carried out "alanine- of the M1 satellite virus but (for unknown reasons) do not scanning mutagenesis" of the region of L-A including the two support propagation of the L-A virus itself (21). Thus, while most conserved polymerase motifs, SG...T...NT..N (. = any L-A requires the MAK10 product itself, M1 requires MAK10 amino acid) and GDD. By constructing and analyzing 46 only because it requires the L-A-encoded proteins.
    [Show full text]
  • Presence of Apis Rhabdovirus-1 in Populations of Pollinators and Their Parasites from Two Continents
    fmicb-08-02482 December 9, 2017 Time: 15:38 # 1 ORIGINAL RESEARCH published: 12 December 2017 doi: 10.3389/fmicb.2017.02482 Presence of Apis Rhabdovirus-1 in Populations of Pollinators and Their Parasites from Two Continents Sofia Levin1,2, David Galbraith3, Noa Sela4, Tal Erez1, Christina M. Grozinger3 and Nor Chejanovsky1,5* 1 Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon LeZion, Israel, 2 Faculty of Agricultural, Food and the Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot, Israel, 3 Department of Entomology – Center for Pollinator Research – Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States, 4 Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization, Rishon LeZion, Israel, 5 Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland The viral ecology of bee communities is complex, where viruses are readily shared among co-foraging bee species. Additionally, in honey bees (Apis mellifera), many viruses are transmitted – and their impacts exacerbated – by the parasitic Varroa Edited by: destructor mite. Thus far, the viruses found to be shared across bee species and Ralf Georg Dietzgen, transmitted by V. destructor mites are positive-sense single-stranded RNA viruses. The University of Queensland, Australia Recently, a negative-sense RNA enveloped virus, Apis rhabdovirus-1 (ARV-1), was Reviewed by: found in A. mellifera honey bees in Africa, Europe, and islands in the Pacific. Here, Emily J. Bailes, we describe the identification – using a metagenomics approach – of ARV-1 in two bee Royal Holloway, University of London, United Kingdom species (A.
    [Show full text]
  • 2020 Taxonomic Update for Phylum Negarnaviricota (Riboviria: Orthornavirae), Including the Large Orders Bunyavirales and Mononegavirales
    Archives of Virology https://doi.org/10.1007/s00705-020-04731-2 VIROLOGY DIVISION NEWS 2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales Jens H. Kuhn1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Gaya K. Amarasinghe5 · Simon J. Anthony6,7 · Tatjana Avšič‑Županc8 · María A. Ayllón9,10 · Justin Bahl11 · Anne Balkema‑Buschmann12 · Matthew J. Ballinger13 · Tomáš Bartonička14 · Christopher Basler15 · Sina Bavari16 · Martin Beer17 · Dennis A. Bente18 · Éric Bergeron19 · Brian H. Bird20 · Carol Blair21 · Kim R. Blasdell22 · Steven B. Bradfute23 · Rachel Breyta24 · Thomas Briese25 · Paul A. Brown26 · Ursula J. Buchholz27 · Michael J. Buchmeier28 · Alexander Bukreyev18,29 · Felicity Burt30 · Nihal Buzkan31 · Charles H. Calisher32 · Mengji Cao33,34 · Inmaculada Casas35 · John Chamberlain36 · Kartik Chandran37 · Rémi N. Charrel38 · Biao Chen39 · Michela Chiumenti40 · Il‑Ryong Choi41 · J. Christopher S. Clegg42 · Ian Crozier43 · John V. da Graça44 · Elena Dal Bó45 · Alberto M. R. Dávila46 · Juan Carlos de la Torre47 · Xavier de Lamballerie38 · Rik L. de Swart48 · Patrick L. Di Bello49 · Nicholas Di Paola50 · Francesco Di Serio40 · Ralf G. Dietzgen51 · Michele Digiaro52 · Valerian V. Dolja53 · Olga Dolnik54 · Michael A. Drebot55 · Jan Felix Drexler56 · Ralf Dürrwald57 · Lucie Dufkova58 · William G. Dundon59 · W. Paul Duprex60 · John M. Dye50 · Andrew J. Easton61 · Hideki Ebihara62 · Toufc Elbeaino63 · Koray Ergünay64 · Jorlan Fernandes195 · Anthony R. Fooks65 · Pierre B. H. Formenty66 · Leonie F. Forth17 · Ron A. M. Fouchier48 · Juliana Freitas‑Astúa67 · Selma Gago‑Zachert68,69 · George Fú Gāo70 · María Laura García71 · Adolfo García‑Sastre72 · Aura R. Garrison50 · Aiah Gbakima73 · Tracey Goldstein74 · Jean‑Paul J. Gonzalez75,76 · Anthony Grifths77 · Martin H. Groschup12 · Stephan Günther78 · Alexandro Guterres195 · Roy A.
    [Show full text]
  • Hantavirus Disease Were HPS Is More Common in Late Spring and Early Summer in Seropositive in One Study in the U.K
    Hantavirus Importance Hantaviruses are a large group of viruses that circulate asymptomatically in Disease rodents, insectivores and bats, but sometimes cause illnesses in humans. Some of these agents can occur in laboratory rodents or pet rats. Clinical cases in humans vary in Hantavirus Fever, severity: some hantaviruses tend to cause mild disease, typically with complete recovery; others frequently cause serious illnesses with case fatality rates of 30% or Hemorrhagic Fever with Renal higher. Hantavirus infections in people are fairly common in parts of Asia, Europe and Syndrome (HFRS), Nephropathia South America, but they seem to be less frequent in North America. Hantaviruses may Epidemica (NE), Hantavirus occasionally infect animals other than their usual hosts; however, there is currently no Pulmonary Syndrome (HPS), evidence that they cause any illnesses in these animals, with the possible exception of Hantavirus Cardiopulmonary nonhuman primates. Syndrome, Hemorrhagic Nephrosonephritis, Epidemic Etiology Hemorrhagic Fever, Korean Hantaviruses are members of the genus Orthohantavirus in the family Hantaviridae Hemorrhagic Fever and order Bunyavirales. As of 2017, 41 species of hantaviruses had officially accepted names, but there is ongoing debate about which viruses should be considered discrete species, and additional viruses have been discovered but not yet classified. Different Last Updated: September 2018 viruses tend to be associated with the two major clinical syndromes in humans, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary (or cardiopulmonary) syndrome (HPS). However, this distinction is not absolute: viruses that are usually associated with HFRS have been infrequently linked to HPS and vice versa. A mild form of HFRS in Europe is commonly called nephropathia epidemica.
    [Show full text]
  • Sindbis Virus Infection in Resident Birds, Migratory Birds, and Humans, Finland Satu Kurkela,*† Osmo Rätti,‡ Eili Huhtamo,* Nathalie Y
    Sindbis Virus Infection in Resident Birds, Migratory Birds, and Humans, Finland Satu Kurkela,*† Osmo Rätti,‡ Eili Huhtamo,* Nathalie Y. Uzcátegui,* J. Pekka Nuorti,§ Juha Laakkonen,*¶ Tytti Manni,* Pekka Helle,# Antti Vaheri,*† and Olli Vapalahti*†** Sindbis virus (SINV), a mosquito-borne virus that (the Americas). SINV seropositivity in humans has been causes rash and arthritis, has been causing outbreaks in reported in various areas, and antibodies to SINV have also humans every seventh year in northern Europe. To gain a been found from various bird (3–5) and mammal (6,7) spe- better understanding of SINV epidemiology in Finland, we cies. The virus has been isolated from several mosquito searched for SINV antibodies in 621 resident grouse, whose species, frogs (8), reed warblers (9), bats (10), ticks (11), population declines have coincided with human SINV out- and humans (12–14). breaks, and in 836 migratory birds. We used hemagglutina- tion-inhibition and neutralization tests for the bird samples Despite the wide distribution of SINV, symptomatic and enzyme immunoassays and hemagglutination-inhibition infections in humans have been reported in only a few for the human samples. SINV antibodies were fi rst found in geographically restricted areas, such as northern Europe, 3 birds (red-backed shrike, robin, song thrush) during their and occasionally in South Africa (12), Australia (15–18), spring migration to northern Europe. Of the grouse, 27.4% and China (13). In the early 1980s in Finland, serologic were seropositive in 2003 (1 year after a human outbreak), evidence associated SINV with rash and arthritis, known but only 1.4% were seropositive in 2004.
    [Show full text]
  • Investigating the Role of Host TTR-Rbps During SFV4 and MHV-68 Infection
    Investigating the role of host TTR-RBPs during SFV4 and MHV-68 infection Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Jamie Casswell October 2019 Contents Figure Contents Page……………………………………………………………………………………7 Table Contents Page…………………………………………………………………………………….9 Acknowledgements……………………………………………………………………………………10 Abbreviations…………………………………………………………………………………………….11 Abstract……………………………………………………………………………………………………..17 1. Chapter 1 Introduction……………………………………………………………………………19 1.1 DNA and RNA viruses ............................................................................. 20 1.2 Taxonomy of eukaryotic viruses ............................................................. 21 1.3 Arboviruses ............................................................................................ 22 1.4 Togaviridae ............................................................................................ 22 1.4.1 Alphaviruses ............................................................................................................................. 23 1.4.1.1 Semliki Forest Virus ........................................................................................................... 25 1.4.1.2 Alphavirus virion structure and structural proteins ......................................................... 26 1.4.1.3 Alphavirus non-structural proteins ................................................................................... 29 1.4.1.4 Alphavirus genome organisation
    [Show full text]
  • Potential Arbovirus Emergence and Implications for the United Kingdom Ernest Andrew Gould,* Stephen Higgs,† Alan Buckley,* and Tamara Sergeevna Gritsun*
    Potential Arbovirus Emergence and Implications for the United Kingdom Ernest Andrew Gould,* Stephen Higgs,† Alan Buckley,* and Tamara Sergeevna Gritsun* Arboviruses have evolved a number of strategies to Chikungunya virus and in the family Bunyaviridae, sand- survive environmental challenges. This review examines fly fever Naples virus (often referred to as Toscana virus), the factors that may determine arbovirus emergence, pro- sandfly fever Sicilian virus, Crimean-Congo hemorrhagic vides examples of arboviruses that have emerged into new fever virus (CCHFV), Inkoo virus, and Tahyna virus, habitats, reviews the arbovirus situation in western Europe which is widespread throughout Europe. Rift Valley fever in detail, discusses potential arthropod vectors, and attempts to predict the risk for arbovirus emergence in the virus (RVFV) and Nairobi sheep disease virus (NSDV) United Kingdom. We conclude that climate change is prob- could be introduced to Europe from Africa through animal ably the most important requirement for the emergence of transportation. Finally, the family Reoviridae contains a arthropodborne diseases such as dengue fever, yellow variety of animal arbovirus pathogens, including blue- fever, Rift Valley fever, Japanese encephalitis, Crimean- tongue virus and African horse sickness virus, both known Congo hemorrhagic fever, bluetongue, and African horse to be circulating in Europe. This review considers whether sickness in the United Kingdom. While other arboviruses, any of these pathogenic arboviruses are likely to emerge such as West Nile virus, Sindbis virus, Tahyna virus, and and cause disease in the United Kingdom in the foresee- Louping ill virus, apparently circulate in the United able future. Kingdom, they do not appear to present an imminent threat to humans or animals.
    [Show full text]
  • Construção E Aplicação De Hmms De Perfil Para a Detecção E Classificação De Vírus
    UNIVERSIDADE DE SÃO PAULO PROGRAMA INTERUNIDADES DE PÓS-GRADUAÇÃO EM BIOINFORMÁTICA Construção e Aplicação de HMMs de Perfil para a Detecção e Classificação de Vírus Miriã Nunes Guimarães SÃO PAULO 2019 Construção e Aplicação de HMMs de Perfil para a Detecção e Classificação de Vírus Miriã Nunes Guimarães Dissertação apresentada à Universidade de São Paulo, como parte das exigências do Programa de Pós-Graduação Interunidades em Bioinformática, para obtenção do título de Mestre em Ciências. Área de Concentração: Bioinformática Orientador: Prof. Dr. Arthur Gruber SÃO PAULO 2019 “Na vida, não existe nada a temer, mas a entender.” Marie Curie Agradecimentos Ao Professor Arthur Gruber pela oportunidade desde o início como estagiária no laboratório, pela orientação neste período de aprendizado no mestrado e por fornecer um ambiente de trabalho favorável. À aluna de doutorado Liliane Santana Oliveira que aguentou todas as minhas amolações diárias no laboratório pelo Hangouts, por dúvidas que eram erros meus em comandos de execução, pela paciência, pela amizade, pela companhia nos bandejões da faculdade com cardápio glutenfree que nem sempre eram tão bons assim. À aluna de mestrado Irina Yuri Kawashima que estava comigo no laboratório diariamente, pelas várias discussões sobre o mundo dos vírus e de conhecimentos da bioinformática, pelas ferramentas para facilitar o andamento do projeto, por todas guloseimas glutenfree que seria impossível eu não agradecer pois tenho ciência que não vou encontrar outra amiga masterchef assim. À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) pelo financiamento durante estes 24 meses de mestrado. Aos meus pais pelo carinho e preocupação comigo durante estes 24 anos, pelo incentivo aos estudos e pelo apoio para eu me manter a uma distância de quase 400km de pura saudade.
    [Show full text]
  • Competition Between Usutu Virus and West Nile Virus During Simultaneous and Sequential Infection of Culex Pipiens Mosquitoes
    Emerging Microbes & Infections ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/temi20 Competition between Usutu virus and West Nile virus during simultaneous and sequential infection of Culex pipiens mosquitoes Haidong Wang , Sandra R. Abbo , Tessa M. Visser , Marcel Westenberg , Corinne Geertsema , Jelke J. Fros , Constantianus J. M. Koenraadt & Gorben P. Pijlman To cite this article: Haidong Wang , Sandra R. Abbo , Tessa M. Visser , Marcel Westenberg , Corinne Geertsema , Jelke J. Fros , Constantianus J. M. Koenraadt & Gorben P. Pijlman (2020) Competition between Usutu virus and West Nile virus during simultaneous and sequential infection of Culexpipiens mosquitoes, Emerging Microbes & Infections, 9:1, 2642-2652, DOI: 10.1080/22221751.2020.1854623 To link to this article: https://doi.org/10.1080/22221751.2020.1854623 © 2020 The Author(s). Published by Informa View supplementary material UK Limited, trading as Taylor & Francis Group, on behalf of Shanghai Shangyixun Cultural Communication Co., Ltd Published online: 14 Dec 2020. Submit your article to this journal Article views: 356 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=temi20 Emerging Microbes & Infections 2020, VOL. 9 https://doi.org/10.1080/22221751.2020.1854623 ORIGINAL ARTICLE Competition between Usutu virus and West Nile virus during simultaneous and sequential infection of Culex pipiens mosquitoes Haidong Wanga, Sandra R. Abboa,
    [Show full text]
  • Downloaded Via Ensembl While Using HISAT2
    viruses Article Interactions of Viral Proteins from Pathogenic and Low or Non-Pathogenic Orthohantaviruses with Human Type I Interferon Signaling Giulia Gallo 1,2, Grégory Caignard 3, Karine Badonnel 4, Guillaume Chevreux 5, Samuel Terrier 5, Agnieszka Szemiel 6, Gleyder Roman-Sosa 7,†, Florian Binder 8, Quan Gu 6, Ana Da Silva Filipe 6, Rainer G. Ulrich 8 , Alain Kohl 6, Damien Vitour 3 , Noël Tordo 1,9 and Myriam Ermonval 1,* 1 Unité des Stratégies Antivirales, Institut Pasteur, 75015 Paris, France; [email protected] (G.G.); [email protected] (N.T.) 2 Ecole Doctorale Complexité du Vivant, Sorbonne Université, 75006 Paris, France 3 UMR 1161 Virologie, Anses-INRAE-EnvA, 94700 Maisons-Alfort, France; [email protected] (G.C.); [email protected] (D.V.) 4 BREED, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; [email protected] 5 Institut Jacques Monod, CNRS UMR 7592, ProteoSeine Mass Spectrometry Plateform, Université de Paris, 75013 Paris, France; [email protected] (G.C.); [email protected] (S.T.) 6 MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK; [email protected] (A.S.); [email protected] (Q.G.); ana.dasilvafi[email protected] (A.D.S.F.); [email protected] (A.K.) 7 Unité de Biologie Structurale, Institut Pasteur, 75015 Paris, France; [email protected] 8 Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, 17493 Greifswald-Insel Riems, Germany; binderfl[email protected] (F.B.); rainer.ulrich@fli.de (R.G.U.) Citation: Gallo, G.; Caignard, G.; 9 Institut Pasteur de Guinée, BP 4416 Conakry, Guinea Badonnel, K.; Chevreux, G.; Terrier, S.; * Correspondence: [email protected] Szemiel, A.; Roman-Sosa, G.; † Current address: Institut Für Virologie, Justus-Liebig-Universität, 35390 Giessen, Germany.
    [Show full text]
  • Study of Chikungunya Virus Entry and Host Response to Infection Marie Cresson
    Study of chikungunya virus entry and host response to infection Marie Cresson To cite this version: Marie Cresson. Study of chikungunya virus entry and host response to infection. Virology. Uni- versité de Lyon; Institut Pasteur of Shanghai. Chinese Academy of Sciences, 2019. English. NNT : 2019LYSE1050. tel-03270900 HAL Id: tel-03270900 https://tel.archives-ouvertes.fr/tel-03270900 Submitted on 25 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N°d’ordre NNT : 2019LYSE1050 THESE de DOCTORAT DE L’UNIVERSITE DE LYON opérée au sein de l’Université Claude Bernard Lyon 1 Ecole Doctorale N° 341 – E2M2 Evolution, Ecosystèmes, Microbiologie, Modélisation Spécialité de doctorat : Biologie Discipline : Virologie Soutenue publiquement le 15/04/2019, par : Marie Cresson Study of chikungunya virus entry and host response to infection Devant le jury composé de : Choumet Valérie - Chargée de recherche - Institut Pasteur Paris Rapporteure Meng Guangxun - Professeur - Institut Pasteur Shanghai Rapporteur Lozach Pierre-Yves - Chargé de recherche - CHU d'Heidelberg Rapporteur Kretz Carole - Professeure - Université Claude Bernard Lyon 1 Examinatrice Roques Pierre - Directeur de recherche - CEA Fontenay-aux-Roses Examinateur Maisse-Paradisi Carine - Chargée de recherche - INRA Directrice de thèse Lavillette Dimitri - Professeur - Institut Pasteur Shanghai Co-directeur de thèse 2 UNIVERSITE CLAUDE BERNARD - LYON 1 Président de l’Université M.
    [Show full text]