An Overview of Cryptographic Hash Functions MD-5 and SHA
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hash Functions
Hash Functions A hash function is a function that maps data of arbitrary size to an integer of some fixed size. Example: Java's class Object declares function ob.hashCode() for ob an object. It's a hash function written in OO style, as are the next two examples. Java version 7 says that its value is its address in memory turned into an int. Example: For in an object of type Integer, in.hashCode() yields the int value that is wrapped in in. Example: Suppose we define a class Point with two fields x and y. For an object pt of type Point, we could define pt.hashCode() to yield the value of pt.x + pt.y. Hash functions are definitive indicators of inequality but only probabilistic indicators of equality —their values typically have smaller sizes than their inputs, so two different inputs may hash to the same number. If two different inputs should be considered “equal” (e.g. two different objects with the same field values), a hash function must re- spect that. Therefore, in Java, always override method hashCode()when overriding equals() (and vice-versa). Why do we need hash functions? Well, they are critical in (at least) three areas: (1) hashing, (2) computing checksums of files, and (3) areas requiring a high degree of information security, such as saving passwords. Below, we investigate the use of hash functions in these areas and discuss important properties hash functions should have. Hash functions in hash tables In the tutorial on hashing using chaining1, we introduced a hash table b to implement a set of some kind. -
MD5 Collisions the Effect on Computer Forensics April 2006
Paper MD5 Collisions The Effect on Computer Forensics April 2006 ACCESS DATA , ON YOUR RADAR MD5 Collisions: The Impact on Computer Forensics Hash functions are one of the basic building blocks of modern cryptography. They are used for everything from password verification to digital signatures. A hash function has three fundamental properties: • It must be able to easily convert digital information (i.e. a message) into a fixed length hash value. • It must be computationally impossible to derive any information about the input message from just the hash. • It must be computationally impossible to find two files to have the same hash. A collision is when you find two files to have the same hash. The research published by Wang, Feng, Lai and Yu demonstrated that MD5 fails this third requirement since they were able to generate two different messages that have the same hash. In computer forensics hash functions are important because they provide a means of identifying and classifying electronic evidence. Because hash functions play a critical role in evidence authentication, a judge and jury must be able trust the hash values to uniquely identify electronic evidence. A hash function is unreliable when you can find any two messages that have the same hash. Birthday Paradox The easiest method explaining a hash collision is through what is frequently referred to as the Birthday Paradox. How many people one the street would you have to ask before there is greater than 50% probability that one of those people will share your birthday (same day not the same year)? The answer is 183 (i.e. -
BLAKE2: Simpler, Smaller, Fast As MD5
BLAKE2: simpler, smaller, fast as MD5 Jean-Philippe Aumasson1, Samuel Neves2, Zooko Wilcox-O'Hearn3, and Christian Winnerlein4 1 Kudelski Security, Switzerland [email protected] 2 University of Coimbra, Portugal [email protected] 3 Least Authority Enterprises, USA [email protected] 4 Ludwig Maximilian University of Munich, Germany [email protected] Abstract. We present the hash function BLAKE2, an improved version of the SHA-3 finalist BLAKE optimized for speed in software. Target applications include cloud storage, intrusion detection, or version control systems. BLAKE2 comes in two main flavors: BLAKE2b is optimized for 64-bit platforms, and BLAKE2s for smaller architectures. On 64- bit platforms, BLAKE2 is often faster than MD5, yet provides security similar to that of SHA-3: up to 256-bit collision resistance, immunity to length extension, indifferentiability from a random oracle, etc. We specify parallel versions BLAKE2bp and BLAKE2sp that are up to 4 and 8 times faster, by taking advantage of SIMD and/or multiple cores. BLAKE2 reduces the RAM requirements of BLAKE down to 168 bytes, making it smaller than any of the five SHA-3 finalists, and 32% smaller than BLAKE. Finally, BLAKE2 provides a comprehensive support for tree-hashing as well as keyed hashing (be it in sequential or tree mode). 1 Introduction The SHA-3 Competition succeeded in selecting a hash function that comple- ments SHA-2 and is much faster than SHA-2 in hardware [1]. There is nev- ertheless a demand for fast software hashing for applications such as integrity checking and deduplication in filesystems and cloud storage, host-based intrusion detection, version control systems, or secure boot schemes. -
SELECTION of CYCLIC REDUNDANCY CODE and CHECKSUM March 2015 ALGORITHMS to ENSURE CRITICAL DATA INTEGRITY 6
DOT/FAA/TC-14/49 Selection of Federal Aviation Administration William J. Hughes Technical Center Cyclic Redundancy Code and Aviation Research Division Atlantic City International Airport New Jersey 08405 Checksum Algorithms to Ensure Critical Data Integrity March 2015 Final Report This document is available to the U.S. public through the National Technical Information Services (NTIS), Springfield, Virginia 22161. U.S. Department of Transportation Federal Aviation Administration NOTICE This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof. The U.S. Government does not endorse products or manufacturers. Trade or manufacturers’ names appear herein solely because they are considered essential to the objective of this report. The findings and conclusions in this report are those of the author(s) and do not necessarily represent the views of the funding agency. This document does not constitute FAA policy. Consult the FAA sponsoring organization listed on the Technical Documentation page as to its use. This report is available at the Federal Aviation Administration William J. Hughes Technical Center’s Full-Text Technical Reports page: actlibrary.tc.faa.gov in Adobe Acrobat portable document format (PDF). Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT/FAA/TC-14/49 4. Title and Subitle 5. Report Date SELECTION OF CYCLIC REDUNDANCY CODE AND CHECKSUM March 2015 ALGORITHMS TO ENSURE CRITICAL DATA INTEGRITY 6. Performing Organization Code 220410 7. Author(s) 8. Performing Organization Report No. -
Linear-XOR and Additive Checksums Don't Protect Damgård-Merkle
Linear-XOR and Additive Checksums Don’t Protect Damg˚ard-Merkle Hashes from Generic Attacks Praveen Gauravaram1! and John Kelsey2 1 Technical University of Denmark (DTU), Denmark Queensland University of Technology (QUT), Australia. [email protected] 2 National Institute of Standards and Technology (NIST), USA [email protected] Abstract. We consider the security of Damg˚ard-Merkle variants which compute linear-XOR or additive checksums over message blocks, inter- mediate hash values, or both, and process these checksums in computing the final hash value. We show that these Damg˚ard-Merkle variants gain almost no security against generic attacks such as the long-message sec- ond preimage attacks of [10,21] and the herding attack of [9]. 1 Introduction The Damg˚ard-Merkle construction [3, 14] (DM construction in the rest of this article) provides a blueprint for building a cryptographic hash function, given a fixed-length input compression function; this blueprint is followed for nearly all widely-used hash functions. However, the past few years have seen two kinds of surprising results on hash functions, that have led to a flurry of research: 1. Generic attacks apply to the DM construction directly, and make few or no assumptions about the compression function. These attacks involve attacking a t-bit hash function with more than 2t/2 work, in order to violate some property other than collision resistance. Exam- ples of generic attacks are Joux multicollision [8], long-message second preimage attacks [10,21] and herding attack [9]. 2. Cryptanalytic attacks apply to the compression function of the hash function. -
Hash (Checksum)
Hash Functions CSC 482/582: Computer Security Topics 1. Hash Functions 2. Applications of Hash Functions 3. Secure Hash Functions 4. Collision Attacks 5. Pre-Image Attacks 6. Current Hash Security 7. SHA-3 Competition 8. HMAC: Keyed Hash Functions CSC 482/582: Computer Security Hash (Checksum) Functions Hash Function h: M MD Input M: variable length message M Output MD: fixed length “Message Digest” of input Many inputs produce same output. Limited number of outputs; infinite number of inputs Avalanche effect: small input change -> big output change Example Hash Function Sum 32-bit words of message mod 232 M MD=h(M) h CSC 482/582: Computer Security 1 Hash Function: ASCII Parity ASCII parity bit is a 1-bit hash function ASCII has 7 bits; 8th bit is for “parity” Even parity: even number of 1 bits Odd parity: odd number of 1 bits Bob receives “10111101” as bits. Sender is using even parity; 6 1 bits, so character was received correctly Note: could have been garbled, but 2 bits would need to have been changed to preserve parity Sender is using odd parity; even number of 1 bits, so character was not received correctly CSC 482/582: Computer Security Applications of Hash Functions Verifying file integrity How do you know that a file you downloaded was not corrupted during download? Storing passwords To avoid compromise of all passwords by an attacker who has gained admin access, store hash of passwords Digital signatures Cryptographic verification that data was downloaded from the intended source and not modified. Used for operating system patches and packages. -
Cryptographic Checksum
Cryptographic checksum • A function that produces a checksum (smaller than message) • A digest function using a key only known to sender and recipient • Ensure both integrity and authenticity • Used for code-tamper protection and message-integrity protection in transit • The choices of hashing algorithms are Message Digest (MD) by Ron Rivest of RSA Labs or Secure Hash Algorithm (SHA) led by US government • MD: MD4, MD5; SHA: SHA1, SHA2, SHA3 k k message m tag Alice Bob Generate tag: Verify tag: ? tag S(k, m) V(k, m, tag) = `yes’ 4/19/2019 Zhou Li 1 Constructing cryptographic checksum • HMAC (Hash Message Authentication Code) • Problem to solve: how to merge key with hash H: hash function; k: key; m: message; example of H: SHA-2-256 ; output is 256 bits • Building a MAC out of a hash function: Paddings to make fixed-size block https://en.wikipedia.org/wiki/HMAC 4/19/2019 Zhou Li 2 Cryptoanalysis on crypto checksums • MD5 broken by Xiaoyun Input Output Wang et al. at 2004 • Collisions of full MD5 less than 1 hour on IBM p690 cluster • SHA-1 theoretically broken by Xiaoyun Wang et al. at 2005 • 269 steps (<< 280 rounds) to find a collision • SHA-1 practically broken by Google at 2017 • First collision found with 6500 CPU years and 100 GPU years Current Secure Hash Standard Properties https://shattered.io/static/shattered.pdf 4/19/2019 Zhou Li 3 Elliptic Curve Cryptography • RSA algorithm is patented • Alternative asymmetric cryptography: Elliptic Curve Cryptography (ECC) • The general algorithm is in the public domain • ECC can provide similar -
Fast Collision Attack on MD5
Fast Collision Attack on MD5 Marc Stevens Department of Mathematics and Computer Science, Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven, The Netherlands. [email protected] Abstract. In this paper, we present an improved attack algorithm to find two-block colli- sions of the hash function MD5. The attack uses the same differential path of MD5 and the set of sufficient conditions that was presented by Wang et al. We present a new technique which allows us to deterministically fulfill restrictions to properly rotate the differentials in the first round. We will present a new algorithm to find the first block and we will use an al- gorithm of Klima to find the second block. To optimize the inner loop of these algorithms we will optimize the set of sufficient conditions. We also show that the initial value used for the attack has a large influence on the attack complexity. Therefore a recommendation is made for 2 conditions on the initial value of the attack to avoid very hard situations if one has some freedom in choosing this initial value. Our attack can be done in an average of about 1 minute (avg. complexity 232.3) on a 3Ghz Pentium4 for these random recommended initial values. For arbitrary random initial values the average is about 5 minutes (avg. complexity 234.1). With a reasonable probability a collision is found within mere seconds, allowing for instance an attack during the execution of a protocol. Keywords: MD5, collision, differential cryptanalysis 1 Introduction Hash functions are among the primitive functions used in cryptography, because of their one- way and collision free properties. -
FIPS 198, the Keyed-Hash Message Authentication Code (HMAC)
ARCHIVED PUBLICATION The attached publication, FIPS Publication 198 (dated March 6, 2002), was superseded on July 29, 2008 and is provided here only for historical purposes. For the most current revision of this publication, see: http://csrc.nist.gov/publications/PubsFIPS.html#198-1. FIPS PUB 198 FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION The Keyed-Hash Message Authentication Code (HMAC) CATEGORY: COMPUTER SECURITY SUBCATEGORY: CRYPTOGRAPHY Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8900 Issued March 6, 2002 U.S. Department of Commerce Donald L. Evans, Secretary Technology Administration Philip J. Bond, Under Secretary National Institute of Standards and Technology Arden L. Bement, Jr., Director Foreword The Federal Information Processing Standards Publication Series of the National Institute of Standards and Technology (NIST) is the official series of publications relating to standards and guidelines adopted and promulgated under the provisions of Section 5131 of the Information Technology Management Reform Act of 1996 (Public Law 104-106) and the Computer Security Act of 1987 (Public Law 100-235). These mandates have given the Secretary of Commerce and NIST important responsibilities for improving the utilization and management of computer and related telecommunications systems in the Federal government. The NIST, through its Information Technology Laboratory, provides leadership, technical guidance, and coordination of government efforts in the development of standards and guidelines in these areas. Comments concerning Federal Information Processing Standards Publications are welcomed and should be addressed to the Director, Information Technology Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8900, Gaithersburg, MD 20899-8900. William Mehuron, Director Information Technology Laboratory Abstract This standard describes a keyed-hash message authentication code (HMAC), a mechanism for message authentication using cryptographic hash functions. -
SHA-3 Conference, March 2012, Efficient Hardware Implementations
Efficient Hardware Implementations and Hardware Performance Evaluation of SHA-3 Finalists Kashif Latif, M Muzaffar Rao, Arshad Aziz and Athar Mahboob National University of Sciences and Technology (NUST), H-12 Islamabad, Pakistan [email protected], [email protected], [email protected], [email protected] Abstract. Cryptographic hash functions are at the heart of many information security applications like digital signatures, message authentication codes (MACs), and other forms of authentication. In consequence of recent innovations in cryptanalysis of commonly used hash algorithms, NIST USA announced a publicly open competition for selection of new standard Secure Hash Algorithm called SHA-3. An essential part of this contest is hardware performance evaluation of the candidates. In this work we present efficient hardware implementations and hardware performance evaluations of SHA-3 finalists. We implemented and investigated the performance of SHA-3 finalists on latest Xilinx FPGAs. We show our results in the form of chip area consumption, throughput and throughput per area on most recently released devices from Xilinx on which implementations have not been reported yet. We have achieved substantial improvements in implementation results from all of the previously reported work. This work serves as performance investigation of SHA-3 finalists on most up-to-date FPGAs. Keywords: SHA-3, Performance Evaluation, Cryptographic Hash Functions, High Speed Encryption Hardware, FPGA. 1 Introduction A cryptographic hash function is a deterministic procedure whose input is an arbitrary block of data and output is a fixed-size bit string, which is known as the (Cryptographic) hash value. Cryptographic hash functions are widely used in many information security applications like digital signatures, message authentication codes (MACs), and other forms of authentication. -
Modified SHA1: a Hashing Solution to Secure Web Applications Through Login Authentication
36 International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019 Modified SHA1: A Hashing Solution to Secure Web Applications through Login Authentication Esmael V. Maliberan Graduate Studies, Surigao del Sur State University, Philippines Abstract: The modified SHA1 algorithm has been developed by attack against the SHA-1 hash function, generating two expanding its hash value up to 1280 bits from the original size of different PDF files. The research study conducted by [9] 160 bit. This was done by allocating 32 buffer registers for presented a specific freestart identical pair for SHA-1, i.e. a variables A, B, C and D at 5 bytes each. The expansion was done by collision within its compression function. This was the first generating 4 buffer registers in every round inside the compression appropriate break of the SHA-1, extending all 80 out of 80 function for 8 times. Findings revealed that the hash value of the steps. This attack was performed for only 10 days of modified algorithm was not cracked or hacked during the experiment and testing using powerful online cracking tool, brute computation on a 64-GPU. Thus, SHA1 algorithm is not force and rainbow table such as Cracking Station and Rainbow anymore safe in login authentication and data transfer. For Crack and bruteforcer which are available online thus improved its this reason, there were enhancements and modifications security level compared to the original SHA1. being developed in the algorithm in order to solve these issues [10, 11]. [12] proposed a new approach to enhance Keywords: SHA1, hashing, client-server communication, MD5 algorithm combined with SHA compression function modified SHA1, hacking, brute force, rainbow table that produced a 256-bit hash code. -
Table of Contents Local Transfers
Table of Contents Local Transfers......................................................................................................1 Checking File Integrity.......................................................................................................1 Local File Transfer Commands...........................................................................................3 Shift Transfer Tool Overview..............................................................................................5 Local Transfers Checking File Integrity It is a good practice to confirm whether your files are complete and accurate before you transfer the files to or from NAS, and again after the transfer is complete. The easiest way to verify the integrity of file transfers is to use the NAS-developed Shift tool for the transfer, with the --verify option enabled. As part of the transfer, Shift will automatically checksum the data at both the source and destination to detect corruption. If corruption is detected, partial file transfers/checksums will be performed until the corruption is rectified. For example: pfe21% shiftc --verify $HOME/filename /nobackuppX/username lou% shiftc --verify /nobackuppX/username/filename $HOME your_localhost% sup shiftc --verify filename pfe: In addition to Shift, there are several algorithms and programs you can use to compute a checksum. If the results of the pre-transfer checksum match the results obtained after the transfer, you can be reasonably certain that the data in the transferred files is not corrupted. If