Cambridge University Press 0521663040 - Biotic Response to Global Change: The Last 145 Million Years Edited by Stephen J. Culver and Peter F. Rawson Index More information

Index

Page numbers in italics refer to ®gures, page numbers in bold refer to tables.

Abaristophora 299 effects of collision with Eurasia 161±2, 356 Abatus pseudoviviparus 187 Late Miocene mammalian fauna 364±5 Abingdon Afro-Arabia and south-west Asia radio carbon dates for organic deposits 268 early Miocene land bridge 356 tundra vegetation pollen 268 few Late Miocene sites 360±1 acanthomorphs, ®rst appearance 112 agriculture Aconeceras 100, 104, 106 early, Upper Thames basin 279 Acteonella borneensis 158 clearance of land for 283±4 Acteonella crassa 158 intensi®cation of 285 Actinacis 174, 178 Alaska, coal seams, entire leaves 247 adaptation, functional 59 algal symbiosis 164, 165 adaptive advantage 59 and global change 177±8 adaptive radiation in scleractinian corals 169±75 bivalves 135, 136±7 evidence of 170, 171, 172±3 slowness of 137 from the K±T boundary to the Africa Paleocene 174 change in fauna during the Miocene 365 historical overview 170, 172±3 dispersal routes for Homo sapiens 387 z-corals 172±3,180 early Homo sapiens 386 background 169±70 Early Miocene mammal faunas 357±8 disruption of habitats 177 East Africa, two assemblages 357 extant 170 Mid Miocene faunas, spatial analysis and Lazarus corals 174, 175, 177±8, 180 shows palaeoenvironmental change see also corals; reef communities 358, 359, 361±2 Alligator mississippiensis 330 see also El Kef, Tunisia; Ethiopia; Kenya Alligator sinensis 330 Africa, West alligators 330 and eastern Brazil allopatric speciation 120 ®sh show no special relationship 115 Almucidaris 187 similar fossil ®sh faunas 113±14 Alnus 278, 286 Africa±Europe land link 320, 322 little pollen found on drier terrace gravel African-Arabian Shield 9 soils 278 African plate, result of northward movement main expansion 278 21 - and -diversity Afro±Arabian plate covariation of 146

© Cambridge University Press www.cambridge.org Cambridge University Press 0521663040 - Biotic Response to Global Change: The Last 145 Million Years Edited by Stephen J. Culver and Peter F. Rawson Index More information

INDEX 475

need for -diversity 146, 148 background 207±9 -diversity, bivalves 145 close relationship with climate 246, 249 amber diversi®cation, causal factors 219±21 Baltic, earliest records of extant 298 angiosperm biology 219±20 insects preserved in 288, 294 palynological patterns and mid Americas, human colonization debate 389 global events 220±1 ammonites early, association with ephidroids 219 boreal families died out by early Aptian establishing the pattern of vegetational 100 change 209±19 distributions distinguish Mesozoic faunal discrepancies and recognition problems realms 99, 100 211±12 diversity linked to long-term sea-level diversity and abundance through the changes 102, 103 Cretaceous, mid-palaeolatitudes effect on faunas of periodic rapid rises in 211±13 sea level 102±3 in situ macro¯oras preserved, Wyoming late Barremian event 104±5 213 mid Hauterivian event 104 rapid diversi®cation of pollen species mid Valangian event 103±4 215, 218 environmental disposition 98 rapid mid Cretaceous increase in modes of life 98±9 diversity and abundance 213 uncoiling forms 99 studies 209±10 Ammonoidea 97 temporal trends and palaeolatitudes declines and extinction 98 215±19 amphibians ®rst recognition, based on fossil pollen Laurasian and Gondwana faunas distinct grains 209 in Cretaceous 317±18 and high turn over of Early Cretaceous Pleistocene, North America 331 insects 289±90 range contraction during glacial phases 331 and turnover in the Early Cretaceous amphibians, reptiles and birds, a 289±90 biogeographical review 316±32, 393 radiation of affecting insects 297, 298 Cretaceous events 321±5 within-¯ora diversity climates 323±4 geographical patterns 216, 217±8 corridors 322±3 trends in 211, 212, 214 eustatic sea-level changes 324 see also ¯owering plants, Cenozoic fragmentation of Gondwana 321±2 Anisomyon 150 K±T extinction event 325 Anomalinoides newmanae, survived the K±T distribution patterns linked to those of extinctions 65 continental areas 316 anomalodesmatans 136, 137 Early Cretaceous faunas 317±19, 320 Arctic forms 144 Neogene events 329±31 deep sea 140 geographical 329±30 shallow water 140 Miocene climate 330±1 anoxia Pliocene cooling, Pleistocene glaciations in shallow-water facies 8 in Northern continents 331 in warm deep saline water 9±10 Paleogene events 326±9 see also oceanic anoxia events (OAEs) Early Paleogene 326±8 Antarctica 334 Paleocene±Oligocene climate bivalves 142, 142 deterioration 328±9 critical separation from Australia 31 Andrias 322, 328 deglaciation of 28 Anemia 236 polar ice at Terminal Eocene Event 342 Angaria 157 polar ice sheets 26, 58 angiosperms 207 Apodemus sylvaticus 370

© Cambridge University Press www.cambridge.org Cambridge University Press 0521663040 - Biotic Response to Global Change: The Last 145 Million Years Edited by Stephen J. Culver and Peter F. Rawson Index More information

476 INDEX

Aquilapollenites-type pollen 219 continued to widen during the Cenozoic Arabia, eastern, Acteonellidae 158 21 Arabian Plate 357 Atlantic/Sub-Boreal transition, delimited by Late Miocene sites 364 decline in lime pollen 284 pivotal for mammalian dispersal out of Atmospheric General Circulation Models Africa 364 (AGCMs) 245 archosaurs Atractosteus strausi 117 distribution across Pangeae 319 Australasia 334 endemism and dispersal, Laurasia and Australia Gondwana 320 colonization by Homo sapiens 387 Gondwana fauna, vicariant origin and proximity to south-east Asia 330 diversi®cation 319 Riversleigh locality, lizard diversity 330 arcoids 136, 137, 139, 143 Southeast, Cretaceous 18O-isotope Arctic Ocean, present, and global climate temperatures suggest polar freezing change 32 48±9 Ardipithecus ramidus 381 Australia±Paci®c plate boundary 21 aridity 330 australopithecines 379 Arabia 364 robust 379, 382 Cenozoic 28, 29 Australopithecus anamensis 381 Cretaceous 10, 15 Late Pleistocene, and extinctions 120 -diversity, in bivalves 145±6 and the Messinian salinity crisis 351, 360 Babylonia lutosa, shell damage 152 Quaternary, expansion and contraction of Beaufort Formation, Arctic Canada, insect desert zones 368 assemblages 309 Artemisia 268, 269, 273 belemnites 97 suggests aridity 272 bipolar distribution, late Cretaceous 101, Artiodactyla 339 102 Arvicola terrestris 370 boreal families died out by early Aptian Asia 100 central, spread of stage three fauna from nektonic 99 375 Northern Hemisphere, Tethyan spread 99 Cretaceous, placentals dominant 334 rise of Dimitobelidae 100, 101 deposition in Himalayan foredeep 357 Tethyan families died out by end- East, Mid Miocene 100 high species diversity 364 Bering corridor 322, 328, 345 Siwalik deposits, faunal trends 364 Bering Strait 101, 106, 160, 234 eastern, drop in mammalian diversity opening and closure of, effects on 395 gastropod faunas 160±1, 162 effects of Cretaceous climates 323 Beringia 368 likely source of North American human colonization of the Americas via immigrant Puercan mammals 339 389 Mongolia and insect refugia 300 E±O boundary, faunal turnover at 344 Betula 268, 269, 275, 286 P±E boundary, extinction and Betula nana 268 origination at 339±40 bicarbonates (HCO3), utilization by West 365 photosynthesis 36 Mid Miocene faunal community biogeography structure 363 amphibians, reptiles and birds, a review Astarte 144 316±32, 393 Astraea 157 controls on, nannoplankton 38±42 Atlantic north±south passage 6, 17, 19 Tertiary insect taxa cf. extant relatives, Atlantic Ocean 20 changes in distributions 298±9

© Cambridge University Press www.cambridge.org Cambridge University Press 0521663040 - Biotic Response to Global Change: The Last 145 Million Years Edited by Stephen J. Culver and Peter F. Rawson Index More information

INDEX 477

vicariance 118 poor showing of epifaunal groups in see also palaeobiogeography polar faunas 143 biotic and environmental evolution, imposing present day Arctic and Antarctic faunas limitations on CLAMP 260±1 142, 142 relations between key features may change tropical high diversity of, associated over time 260 with coral reefs 141±2 biotic factors temporal pattern 136±40 extrinsic, response to 395 general considerations 136±7 intrinsic, response to 396 taxonomic trends through time 137±40 evolutionary innovations 396 black bands, Cretaceous 122 biotic response to abiotic variables black shales, organic-rich 9, 16, 18 marine organisms 394±5 body size, in mammalian studies 346 terrestrial organisms 392±3 bolide impacts 2, 7±8, 24±6 bipedalism, research on thermoregulatory K±T boundary event 25±6, 125, 325, 394 bene®ts of 381±2 Tertiary 22 birds Bolivina midwayensis 123 diatrymid, distribution of 328 Bolton Fell Moss, proxy-climate curve 285 enantiornithines, dominant in Cretaceous Boreal±Atlantic transition 286 319 Bos primigenius 370 last record of giant ¯ightless carnivorous Bracklesham Group 170 rails 330 Brazos Core, foraminiferal test size variation modern ratite, restricted to southern across the K±T boundary 62, 63,65 continents 321 Britain North America, invasion of advanced human occupation at Boxgrove 385 passerines 330 insect faunas during the Devensian 310±15 Biscutum constans 41,43 enigmatic periods after sudden climatic bison 373, 377 amelioration 310, 313 Bison priscus 371 period of intense continentality inferred bivalves 313, 315 biotic radiation linked to climatic decay Quaternary 135 importance of precipitation patterns 392 coevolutionary process with predators 145 present climate a thermal maximum 368 displacement of many taxa into deep seas Quaternary mammals 369±78 140 biogeographical considerations 371±2 diversi®cation 135±6 faunal assemblages 369±71 division into Subclasses 136, 137±8 global in¯uences on distribution 367±9 group shell composition originally last interglacial mammals 372±3 aragonitic 139 Late Cold Stage mammals 373±7 epifaunal expansion, Palaeozoic 137 Bronze Age 284, 287 extinctions at or near the K±T boundary bryozoan±hermit crab association 200 139 bryozoans 396 family level little affected by K±T mass cheilostomes 187, 196 extinction 140 deceleration in radiation coincides with infaunal expansion, Mesozoic±Cenozoic 137 change to icehouse conditions 202 rise in global diversity 396 family origins 197, 198 -diversity 145 lunulitiform 201 - and -diversity 145±6 radiation in Late Albian±Cenomanian rise in number of taxa 135, 136 196, 201±2, 205 spatial patterns: the latitudinal diversity community species richness, long-term gradient 140±5 changes in 198±9, 200 may represent a present day cline in Cretaceous±Recent pattern of evolution productivity 144 196±202

© Cambridge University Press www.cambridge.org Cambridge University Press 0521663040 - Biotic Response to Global Change: The Last 145 Million Years Edited by Stephen J. Culver and Peter F. Rawson Index More information

478 INDEX

bryozoans (cont.) positive excursions 17 ecological patterns 199±201 connected with OAEs 16 interpretation 201±2 carbon cycle, Cretaceous, relationship to taxic diversity patterns 196±9 climate 16±17 ctenostomes, lack mineralized skeleton 196 carbon dioxide cyclostomes 197 atmospheric diversity decline 199 changes during glacials 32 radiation into Cretaceous 196 concentration of increased by diversity, global and local, rise in, possible calci®cation 36, 37 bias? 201 Cretaceous 4, 17±18, 44 factors controlling local distributions 195 effect of increased weathering on 37±8 fossil record disappointing 196 emitted by volcanic activity 23 have responded to global change 202 carbonate accumulation rates 36 and the K±T transition 197 carbonate platforms Lunulitidae and Cupuladriidae 201 and echinoid diversity 182, 184 Mediterranean, evolution of 202±4 Late Cretaceous 156, 157 interpretation 203±4 platform drowning events 5, 11, 182, 192±3 Neogene and Quaternary species ranges carbonates 202±3 metamorphic recycling of 37 rate of species additions 203±4, 203 pelagic, liable to subduction 37 Recent 202 Carcharocles 111 species diversity, originations and Carcharodon 111 extinctions 204 Carnivora 334, 355 modern fauna 195 seals, sea lions and walruses 335 additions through time 197, 199 Carpinus 279 possible role of environmental change in Carychium minimum 269 evolutionary radiations 205 Castanopsis 228 tube-building symbioses 200 Catopsalis 339 Buccella inusitata 123 Catostomus discobolus 118 Bug Creek interval 337, 337±9 Catostomus platyrhynchus 118 Bulimina 26, 122 Catostomus spp., phylogeny and tectonic Bulimina jacksonensis cuneata 123 history accord 118 Buscot Lock, dense Alnus woodland 278 CCA see Canonical Correspondence Analysis Byelorussia, insect response to climatic (CCA) change 299±300 Cenomanian±Turonian boundary decline of ephedroid and Classopollis CA see Correspondence Analysis (CA) pollen 221, 294 calci®cation 36±8 rates of upwelling 11 pelagic, dominated by coccolithophores Central American Seaway, closure of 84, 162 37 cephalopods, Cretaceous 97±106, 394 Camp Century, Greenland 285 an overview 97±8 rise in 18O values 273, 278 ecology 98±9 Campanile 157, 160 major controls on distributions 101±6 Campanile symbolicum 160 palaeobiogeography 99±101 Canadian Arctic Archipelago, Neogene ¯oras Ceratocystis ulmi 283 241 Ceratopteris 236 Canary Current circulation 87 cereal pollen 280±1, 284 Canis lupus (wolf) 371, 373 cereal production 283±4 Canonical Correspondence Analysis (CCA) Ceriops, occurs with Nypa in London Clay 252±3, 256, 258 ¯ora 237 13C Cervus elaphus 370 Late Maastrichtian 57 Cetacea 355, 372

© Cambridge University Press www.cambridge.org Cambridge University Press 0521663040 - Biotic Response to Global Change: The Last 145 Million Years Edited by Stephen J. Culver and Peter F. Rawson Index More information

INDEX 479

chalk facies and nannofossils, Cretaceous Indian deep water 9 Ocean (case study) 44±50 global persistence of 10±11 nannoplankton Gulf Coast and Western Interior, USA 9 as agents of 36±8 chemical weathering 17, 31, 84 as recorders of 38±42 Chesapeake bay, evidence for meteorite Neogene, response of Old World terrestrial impact 26 vertebrate biotas to 350±66 Chiasmolithus 43 Paleocene±Oligocene climate deterioration Chicxulub Impact Structure 7±8 328±9 and the K±T boundary event 25, 325 Paleogene, climatic ¯uctuations 336 Chiloguembelina waiparaensis, patterns of test Pliocene cooling and Pleistocene size change 65 glaciations 331 Chiroptera 339 Quaternary 28±30 choristoderes 319, 323, 328 and British insect faunas 310±15 ®nal extinction 330 high-frequency, global correlation and Cibicides lobatulus 123 synchronous nature of 30 Cibicidoides wuellerstor® 27 and the insect record 299±302 Cixius 290 orbitally driven 367 Cladium mariscus 269 recorded quickly by Coleoptera 296, 305 CLAMP see Climate Leaf Multivariate and salinity of inland waters 301 Program (CLAMP) through bolide impact 24 Classopollis pollen 218, 219 understanding pattern and process of clastic material, decrease through time in 244±5 chalk successions 10 and uplift of the Tibetan Plateau 30±1, 351, clay mineral suites 15 364, 365 Clethrionomys glareolus 370 Climate Leaf Multivariate Program CLIMAP project 2, 91 (CLAMP) 249±58 climate change Canonical Correspondence Analysis affecting human evolution 389±90 (CCA) 252±3, 256, 258 anthropogenically induced 244±5 Correspondence Analysis (CA) 252±3, 255 Cenozoic current data sets biased 261 acting on plant communities 242 current methodology 254 controls on 30±3, 223 growth in number of reference sites 261 long-term 28 Asian/Alaskan fossil sites analysis climatic deterioration 241±2 results cf. climate model results 263±4 and the Cretaceous and Cenozoic record of leaf margin categories and their scoring insects 288±302 252 and Cretaceous climates 12±17 limitations of 258±64 controls on 17±19 comparability of results 261±4 demonstrated by Boreal and Tethyan imposed by biotic and environmental faunal migrations 13±14, 99, 101 evolution 260±1 a critical factor for mammals 333 imposed by methodology 258±9 and decline in Ulmus 282±3 imposed by taphonomy 259±60 and evolutionary change in planktonic phytogeographic factors 261 foraminifera 81 specialized environments 261±3 forcing mechanism for biotic change sub-alpine nest example 261, 262, 263 391 climate system, global, large-scale shift in 95 and leaf physiognomy 244±64 climates long-term, important in community Cenozoic 28±30 evolution 349 long-term climate change 28 Mid Miocene, Europe and West Asia Quaternary climate change 28±30 363 Cretaceous 391

© Cambridge University Press www.cambridge.org Cambridge University Press 0521663040 - Biotic Response to Global Change: The Last 145 Million Years Edited by Stephen J. Culver and Peter F. Rawson Index More information

480 INDEX

climates (cont.) competitive exclusion 345 affecting amphibian, reptile and bird of neogastropods 156 biogeography 323±4 condensed sequences, Cretaceous 8, 11 control on Cephalopod distribution conifers 216 101±2, 105 Cretaceous diversity 213 Cretaceous, and climatic change 12±17, 44 during the Cenozoic 230 arid and humid zones 15±16 Coniophis 323 Boreal vs. Tethyan faunas 13±14 continental collision 20 carbon cycle and its relation to climate Afro±Arabia and Eurasia 161±2 16±17 India±Asia 22 oxygen isotopes from marine carbonates see also plate tectonics and fossils 14±15 continental ¯ood basalts (CFBs) polar ice? 12±13 Cretaceous 5, 6±7 Supertethys and hot tropical oceans 16 Tertiary 23 global, controlled by Milankovitch-driven Conus 156 ice volume variations 95 corals 164 Miocene 330±1 and algal symbiosis 164, 165, 397 north-west Europe, warming following ice- az-corals 174±5 sheet retreat 375, 377 diversity and extinction patterns 175±7 past, perceptions and assumptions 351 and Ecological Evolutionary Ecological climatic forcing, high-latitude 87 Units (EEUs) 168 `climatic optimum' 277 extinctions climatic stability, and DMS production 38 K±T boundary 176, 179 Cnemedaria 236 no easy explanations 175±6 coal 12, 15 vicariance, isolation and endemicity coccoliths 176±7, 179 blooms produce high-re¯ectance waters 38 origins of modern faunas 168 Cretaceous 10±11 palaeocology reef-based 168 dominate pelagic calci®cations 37 reefs or corals? 168±9 in global climate-change research 35 scleractinian primary production 36 and algal symbiosis 169±75 see also nannoplankton boom and bust cycles 167, 176, 180 Coccolithus pelagicus 39, 43 environmental distribution 169 wide biogeographical range 38 environmental range 175 cockroaches, as general environmental extinctions 167 indicators 293 Gosau-type fauna 167 Coelodonta antiquitatis (woolly rhinoceros) microstructural groups 166, 167 371, 373, 375 outline history 165±8 Colchidites 105 taxonomic richness 165±7 coleoids 97, 98 z-corals 169±70, 180 Coleoptera ability to grow in high-nutrient Late Cenozoic, palaeoclimatological conditions 175, 178±9 signi®cance of 303±15 and climatic ¯uctuation 175 British insect faunas during the last and Lazarus corals 174, 175, 177±8, 397 glaciation 310±15 see also algal symbiosis; reef communities geological longevity of species of 306±10 cordyline lizards 327 nature of the Quaternary insect record Correspondence Analysis (CA) 252±3, 255 304±5 corridors 322±3 as palaeoenvironmental indicators 305±6 Africa±Europe 320, 322 Late Cretaceous 295, 295, 296, 301±2 Beringia/Bering corridor 322, 328, 345, collecting and taphonomic bias, Europe 351, 368, 389 362 invasions of North America via 322

© Cambridge University Press www.cambridge.org Cambridge University Press 0521663040 - Biotic Response to Global Change: The Last 145 Million Years Edited by Stephen J. Culver and Peter F. Rawson Index More information

INDEX 481

Early Paleogene 326 Dansgaard±Oeschger (D±O) cooling cycles Eurasian continuity and the Grande 29 Coupure 328 de Geer route 115 Europe±Africa±Asia 327 Deccan traps, India 7 North America±Greenland±Europe 328 extruded around the K±T boundary 23, North America±South America 326 325 South America±Africa 326±7 deep sea sediment cores, importance of Gibraltar corridor 327 81 Levant, north±south population dispersals deer 375, 377 386±7 deglaciation, Mid Pliocene, Antarctica 28 Neogene, North America±South America Dendrophyllia 175 link 329±30 dental enamel, mammalian 340±1 see also land bridges; Panama Isthmus Dentoglobigerina altispira 88, 89 Corylus 286 deserti®cation 368 early Flandrian, rapid migration and diapause (hibernation) 294±5, 295±6 expansion 275, 277 Dichotomites 105 Corylus woodland 275 Dicrostonyx torquatus 370 Cothill Fen dimethyl sulphide (DMS), and global albedo biotic response to Loch Lomond Stadial 38 273, 274 Dimlington Stadial 268 changes in woodland 275 dinosaurs 319, 320, 322 expansion of pioneer arboreal vegetation Cretaceous global distributions 323±4 275 demise of 25 pre-clearance climax woodland 274, 278 endemism in East Asia 319 crabs, causing damage to gastropod shells North America, evolution and extinctions 150, 151, 152 324 Crioceratites 100, 104 Diploria 174, 178 crocodiles Discoaster 43 Laurasian and Gondwana assemblages 319 discoasters 43 modern 319 Discosphaera tubifer 41 North America 330 diversity pumps, Cenozoic, effect of 147 passed through the K±T boundary 325 DMS see dimethyl sulphide (DMS) Crocuta crocuta 371 dropstones 13 Crucibiscutum salebrosum 42 Drupa ricinus 151 Cryptobranchus 322 DSDP sites 612 and 94, foraminiferal test size Cupuladria canariensis, range contraction 201 decrease and a dated microtektite Cuspidaria 144 horizon 72 Cyathoseris 174, 178 Dutch elm disease 283 Cyclaster platornatus 187 Cyclaster vilanovae 187 E±O see Eocene±Oligocene Cyclicargolithus ¯oridanus 43 East Africa, correlation of lake water levels Cyclurus keheri 117 with Late Quaternary climatic Cylindralithus nudus 46 ¯uctuations 29 excursions into higher latitudes 47 echinoids at the K±T boundary 190±4 Daisy Banks Fen extended extinction 190 alder pollen 278±9, 280±1 loss of habitat? 192±4 Centaurea cyanus 286 selectivity of extinction 191±2 high frequency of cereal pollen 280±1, 284 size of extinction event 190 rise in water table 285 survivorship pattern 191±2, 193 woodland clearance 284, 286 changes in diversity 181±4, 185 Dama dama 370 British Cretaceous fauna 182, 183

© Cambridge University Press www.cambridge.org Cambridge University Press 0521663040 - Biotic Response to Global Change: The Last 145 Million Years Edited by Stephen J. Culver and Peter F. Rawson Index More information

482 INDEX

echinoids (cont.) habitat changes inferred from ecological drop in diversity at end-Cretaceous a diversity 347 complex matter 190 Hampshire Basin, Late Eocene±Early drop in species richness since the Oligocene mammals 343 Miocene 182±3 Purbeck±Wealden insects 293±4 shallow-water carbonate platforms absence of Xyelidae 293±4 182,184 Isoptera and Blattodea 293 changes in habitat occupancy 189±90 sphecids 294 recent deep-sea holasteroids 189±90 Upper Thames Basin 266±7 changes in life-history strategies 187±9 Flandrian environmental history 273±86 lecithotrophy or brooded development Late Glacial environmental history 187±9 267±73 planktotrophy 187, 189 Enneles 113 changes in taxonomic composition 185±6 environment, physiognomic adaptations to signi®cant changes 185±6 247 irregular, expansion of, Cretaceous and environmental change Eocene 186 Cenozoic, gradual and sudden 125±6 regular, apparent decline in 186 complexities of 392 sampling bias and preservation bias 181±2 and foraminiferal populations ecological crisis, low latitude faunas, Late hypothesis approach 53±4 Pliocene 91±2 narrative approach 53 ecological disruption foraminiferal response to 129±30, 129±33 North America, after the K±T event palaeocommunities 130±3 239±40 species diversity 129±30 mammalian radiation 240 Late Quaternary, biotic response to 265±87 ecological diversity 346 arctic ¯oral assemblage phases 286 ecological diversity analysis, west European birch woodland phase 286 Paleogene 347, 348 Cretaceous±Recent record 266 Ecological Evolutionary Ecological Units Flandrian environmental history 273±86 (EEUs) 168, 180 Late Glacial environmental history ecological factors, affecting ®sh evolution 120 267±73 ecological pressures, Late Pliocene ocean, Upper Thames Basin study area 266±7 magnitude of 88 organism reaction to 392 ecological trends, climate-related 346±7, 348 possible role of in bryozoan evolutionary Edentata 334 radiations 205 El Kef, Tunisia, ecosystem collapse at the environmental perturbations 122, 123, 126, K±T boundary 125 179 Elisama 293 Eocene thermal maximum Ellesmere Island, Early Eocene herpetofauna maximum poleward extent of vegetation 328 belts 234, 236±9 Elphidium excavatum 123 mangroves 236±7 Emiliana huxleyi 39, 41 polar deciduous forests 238±9 ®rst appearances of 38±9 tropical aspect forest 237±8 endemism Eocene±Oligocene boundary dinosaurs in east Asia 319 ecological parameters show strong and dispersal, archosaurs 320 ¯uctuations near 347, 348 fossil ®sh, North America±east Asia 115, major mammalian faunal turnover 342±4, 116, 117 345 Mesozoic nannoplankton 42, 44 Grande Coupure 342±3 Indian Ocean 44±50 Eocene±Oligocene event 58 England, southern Eocene±Oligocene transition, effects due to Early Cretaceous facies changes 15 cooling 240±1

© Cambridge University Press www.cambridge.org Cambridge University Press 0521663040 - Biotic Response to Global Change: The Last 145 Million Years Edited by Stephen J. Culver and Peter F. Rawson Index More information

INDEX 483

ephidroids 219 evolutionary change, investigated through pollen from 216, 219 planktonic foraminifera 81 epicontinental seas, Cretaceous 11 evolutionary dispersal/vicariance, Equisetum 268 nannoplankton 38±9 Equus ferus (wild horse) 371, 373, 375 evolutionary innovation 396 Erinaceus europaeus 370 exine, and pollen analysis 265 Ethiopia Aramis, oldest putative hominine 381 Fagus 279 Omo Kibish, early Homo sapiens 386 Farmoor Eudicots 225 park tundra ¯ora 272±3 Dilleniidae 228±9 waterlogged sediments 285 fossil record 227±9 Fasciculithus 43 Hamamelidae 227±8 faunal assemblages, British Quaternary Magnoliaceae 227 mammals 369±71 Rosidae 228±9 Anglian cold stage 369±71 Eurasia, dispersal of early humans to Devensian 370±1 383±5 temperate periods 370 Europe faunal change arrival of Homo heidelbergensis 384 based on Tertiary ecological changes 352±3 arrival of Homo sapiens 388 use of ®rst and last appearances 351 coexistence with Neanderthals 388 faunal realms, Mesozoic 99 colonization faunal turnovers 393 by Homo species 379 diachronism of dispersal 345 human, long or short chronology debate distinguishing true extinction from 384 pseudoextinction 336 human, Mid Pleistocene 385 major, Paleogene 336±46 Cretaceous aridity, evidence for 15 Eocene±Oligocene boundary 342±4 gaining from faunal turnovers 346 K±T boundary 337±9, 344±5 Grande Coupure 328, 336, 342±3 Paleocene±Eocene boundary 339±42 loss of squamates 329 Northern Hemisphere, resulting from mammalian faunas glaciation 87±92 Early Miocene 358, 360 Favia 174, 178 Mid Miocene 362±3 feedback, and Milankovitch eccentricity and Neanderthals 385±6 precession cycles 18 becoming extinct 388 fern prairies 230, 231 north-west 339 ferns 231, 240 Britain a peninsula of 368 modern families restricted in the Cenozoic depopulation and recolonization 230, 235±6 388 see also pteridophytes shallow-water anoxic facies 8 fertility ¯uctuations 43 rising Cretaceous sea levels 8 Filipendula 268 southern ®re Dmanisi, Georgia, early human at the K±T boundary 25 occupation 384 a plausible explanation for spread of Alnus Gran Dolina, Spain, hominine remains 279 384±5 ®sh evolution, impact of global change on Neanderthal sites 385 112±20 see also North America, and Europe Africa±South American rift 113±115 Europe, Africa and Asia, during the ecological factors 120 Paleogene 327 Eocene freshwater ®shes of North America eutrophy 39 and Europe 115±18 evaporites 15, 360 intracontinental tectonism 118±20

© Cambridge University Press www.cambridge.org Cambridge University Press 0521663040 - Biotic Response to Global Change: The Last 145 Million Years Edited by Stephen J. Culver and Peter F. Rawson Index More information

484 INDEX

®sh faunas species diversity related to temperature Eocene, freshwater, response to and water depth 129 environmental change 115±18, 393 variation during P±E thermal maximum modern, minor groups 107 event 69, 77 Flandrian environmental history, southern and the E±O event 58 England 273±87 ecology is proximal target of selection 73 early Flandrian 273, 275±7 heterochronic analyses 55±6 lag in vegetational responses 275 heterochronic response landscape adjustment to temperature across the K±T boundary 62±7 rise 273, 275 across the P±E boundary 67±9 vegetational development 275 Late Eocene 69, 72±3 late Flandrian 282±6 iterative evolution 53, 75±6 alluviation, possible causes of 284±5 and the K±T event 57 Bronze age, conditions during 284 morphotype analyses 55, 56 climatic deterioration 285 no consistent pattern of morphotype distribution of lime trees 284 preference 77 elm decline 282±3 and the P±E thermal maximum event 57±8 land clearance for agriculture and cereal patterns of diversi®cation and large-scale production 270±1, 280±1, 283±4 global change events 51 Little Optimum 285±6 planktonic Medieval Period pollen evidence 286 affected by palaeoceanographic changes mid Flandrian 277±9, 280±1 95 expansion of Alnus 278±9 decline in 79 human factor 279 distribution within the North Atlantic regional woodland types 279 faunal provinces 81, 82 Florisant Lake beds 309 extinctions during the Late Pliocene Florisphaera profunda 40, 41 87±92, 88 indicator of surface-water oligotrophy genus richness, Cretaceous to Recent 52 42 last occurrences 89 ¯oristic provinces 215 and the P±E thermal maximum event 58, ¯owering plants, Cenozoic 225±9 61 Chloranthaceae, Lazarus effect 227 as palaeoclimatic and and climate change 223 palaeoceanographic indicators 81 diversity 225, 226 patterns of morphotypic variations Eudicots and Monocots 225, 227±9 58±61 radiation and modernization 225, 226 proliferation during Maastrichtian signi®cance of, intrinsic factors 230±1 cooling event 57 vegetation diversity 231 species richness 59, 60 ¯owers 224 transgressive patterns of expansion 94 foraminifera population response to major benthic environmental change 76 Cenozoic shelf, eastern N America potential role of test shape vs. 126±33 developmental or life-history dwar®ng a response to environmental characters 74±5 stress 76 species longevity 76 extinction event during the LPTM 58, speci®c effects of environmental change, 340 approaches to 53±5 genus richness, Cretaceous to Recent 52 foraminiferal assemblages patterns of morphotypic variation 61, planktonic, eastern subtropical Atlantic 62 84±7 showing episodes of climatic deterioration during Late palaeoceanographical change 26±7 Pliocene 85

© Cambridge University Press www.cambridge.org Cambridge University Press 0521663040 - Biotic Response to Global Change: The Last 145 Million Years Edited by Stephen J. Culver and Peter F. Rawson Index More information

INDEX 485

ODP 659, analysis of the assemblage invasion of non-marine habitats 154±5 84±7 latitudinal control on distribution ODP 659, development of a more 157±8 extreme cold-water fauna 85, 86,87 `Tethyan fauna' 157 ODP 659, relative abundance records 85 evolutionary innovation 396 foraminiferal palaeocommunities, benthic exceptionally large forms 157 shallow water 130±3 fossil record 149 overview of Cretaceous±Recent history nature and limitation of 149±50 122±6 K±T boundary extinctions 158±60, 163 forcing mechanisms Acteonellidae 158±9 for biotic change 391 appear to be random 160 external and internal 33±4 Nerineoidea 159 tectonic, and Northern Hemisphere vetigastropods and neritopsines 159 climate 84 Volutidae 160 forests major faunal changes in the Tertiary Antarctic Peninsula, Cretaceous 13 160±2 coniferous, Neogene 241 effects of climate change and plate polar deciduous 238±9 tectonics 161±2 swamp 241 trans-Arctic interchange of marine tropical aspect 237±8 160 tropical, Eocene 355 non-marine see also woodland evolutionary radiation of 154 fossil assemblages, Quaternary Stylomatophora, a problematic group extended ranges of extant animals 371 154±5 extinct species, palaeoclimatic signi®cance predators and feeding: the Mesozoic may be misinterpreted 371±2 marine revolution 150±4 fossil record development of carnivory 152 bryozoans, disappointing 196 exploitation of sulphide-oxidizing Eudicots 227±9 bacteria 154 ®sh, nature of 107±12, 397 resistance to predation 150, 151 diversi®cation 107, 108, 109, 110 predatory gastropods, nature and limitations of rise in diversity 155, 162 149±50 shell drilling by 155±6 limitations of 396±7 shell morphology Monocots 229 little use for taxonomy 150 terrestrial vertebrates 316 for resistance to predation 150, 151 see also insect record; plant fossil record; tropical, specialized diets 154 pollen records see also neogastropods France Geisaltal (Germany), ®sh faunas 115 mid Valanginian event 104 geographical events, Early Paleogene 326±8 south-east, giraudi Zone 104 Gephyrocapsa mullerae 39 Fraxinus 278, 279 Gephyrocapsa oceanica 39 free-sporing plants see pteridophytes Gibraltar corridor 327 frogs, ranid 327 Gibraltar, Straits of 162, 329 fruits 224, 231±2 Gigantocapulus 150 provide evidence of dispersal 224 Ginkgo 213, 230 range contraction 235 -diversity, in bivalves 146 glacial cooling, extent of impact 87 gastropods 394 glacial±interglacial alternations 95, 303 carnivorous, evolution of 152, 155 effect on insect faunas 299±302, 309 Cretaceous history 154±8 Killarney Oscillation 300±1 diversity and species richness 155±7 rapid 80

© Cambridge University Press www.cambridge.org Cambridge University Press 0521663040 - Biotic Response to Global Change: The Last 145 Million Years Edited by Stephen J. Culver and Peter F. Rawson Index More information

486 INDEX

glacial±interglacial alternations (cont.) Globorotalia hirsuta, expansion of temperature variations smaller in low- biogeographical range 94±5 latitude oceans 91±2 Globorotalia in¯ata 89,94 glaciation Globorotalia limbata 88, 89 British Isles Globorotalia menardii, changes in depth Flandrian, environmental effects habitat 92 273±87 Globorotalia miocenica 86, 88, 89 Late Glacial, environmental effects extinction of 87±8 267±73 Globorotalia puncticulata 88, 89,94 Late Glacial, mammals 370 dominated cold-water assemblages 85, Northern Hemisphere 79, 120, 331 86 faunal response to onset of 84±95 extinction of 87±8, 91 faunal turnover, tempo and mode of Globorotalia truncatulinoides 89 extinctions 87±92 expansion of biogeographical range 94±5 linkage between extreme events and ®rst occurrence, species origination? 92±3 extinctions 89, 91 Globorotalia tumida, changes in depth habitat rapid expansion, high-latitude forcing 92 then identi®able 87 gnatalean±angiosperm parallel diversi®cation recolonization of the North Atlantic 92±5 220, 221±2 onset of in the North Atlantic 28 gnataleans 217, 219, 221 see also polar ice Gondwana glacio-eustasy 33±4 breakup of 6 glendonites, Cretaceous 13, 48 caused major changes 20 global change 1±2 and development of cephalopod Austral and algal symbiosis 177±8 Realm 101 biotic response to 391±8 general pattern 320 driving force behind regional distinctive amphibian fauna 317±18 environmental change 2 early separation of New Zealand 321 the norm 3 separation of Madagascar±Seychelles± global cooling 58, 297 India block 320±1 and bryozoans 202, 204 South America±Antarctica±Australia end Eocene 160 block, breakup of 322 late Cretaceous 18, 19 Goniopora 174, 178 Paleogene±Neogene, and ®sh extinctions Goniopora websteri 170, 179 120 Grande Coupure 328, 336, 342±3 and restricted insect ranges 299 possibly related to terminal Eocene global warming 3 climatic event 344 future 1±2 Green River Shales, fossil ®sh faunas 115 and limestone formation 36±7 sister-taxa, east Asia/Indonesia 115±17 Globigerina bulloides 89 greenhouse gases increase in 85 emitted during volcanic activity 23 tolerant of colder conditions 85, 86 and global warming 3 Globigerina decoraperta 86, 89 see also carbon dioxide complex distribution pattern 88 greenhouse world 1 decline of 95 Cretaceous 4, 17, 19 Globigerina ooze 79 superplume episode 7 Globigerinoides extremus 86, 89 Paleocene±Eocene 34 complex distribution pattern 88 GRIP ice core, shows abruptness of climate decline of 89, 95 change 29±30 Globigerinoides ruber 89 ground squirrels 375 in interglacial periods 95 growth rings 247 Globorotalia exilis 88, 89 indicate seasonality 238

© Cambridge University Press www.cambridge.org Cambridge University Press 0521663040 - Biotic Response to Global Change: The Last 145 Million Years Edited by Stephen J. Culver and Peter F. Rawson Index More information

INDEX 487

lack of 225, 237 survived the K±T extinctions 65 Grypus equiseti 307 Heterohelix navarroensis Guembelitria cretacea, survived the K±T progenetic nature of heterochronic signal extinctions 65 68 Gulo gulo 370 survived the K±T extinctions 65 gymnosperms 214, 229 Hiatella arctica 144 Gypsonictops 337 Hibolites 99 Himalaya±East Alpine orogen 6 habitats Himalayas mountain chain, uplift of and fragmentation of 325 Indian Monsoon 364 loss of and echinoid extinctions 192±3 Hipparion 241 open and closed, coexistence of 346 `Hipparion datum' 351 specialization of and community Hippopotamus amphibius 370 specialization 146 Hominidae, evolutionary divergence of halogens, emitted by volcanic activity 23 humans and apes 380±1 heat energy, distribution of 32 hominines Heinrich events/layers 28±9, 386 dentally highly derived 382 each event followed by global warming 29 origin of 379, 380±2 Helianthemum 269 savannah hypothesis 381 Helicolithus anceps 46 hominoids excursions into higher latitudes 49 dispersal out of Africa 356 Heptagenia fuscogrisea 298 in East African faunal assemblages 357±8 Heteroceras 100, 105 Homo found in E. England accompanied by early species dispersed from Africa 379 Aconeceras 106 origins of 382±3 heterochrony 54 Homo erectus 379, 382 heterochronic response across the K±T Indonesian/Chinese fossils, dating of 383±4 boundary 62±7 Homo ergaster 382 earlier achievement of sexual maturity Homo habilis 382 66±7 assumed evolutionary link with Homo heterochonic modes 65±6, 66 erectus challenged 383 heterochronic response across the P±E Homo habilis sensu stricto 382 boundary 67±9 Homo heidelbergensis 379, 385 coordinated response of test shape 69, Homo helmei 386 70, 71 Homo neanderthalensis 375, 388 earlier achievement of sexual maturity see also Neanderthals 67, 69 Homo rudolfensis 382 heterochronic response in the Late Eocene Homo sapiens 375 69, 72±3 dispersed from Africa 379, 393 heteroconchs 136, 137 ®rst fossil appearance 386 accounting for Mesozoic±Cenozoic success reconstructed pattern of dispersal 387 of 138±9 Hooleya 234 ligament system 138±9 hoplitids 100 aragonitic shell structure 139 hotspot chains 21 bi-polar occurrence 144 human evolution 379±90 latitudinal gradient very steep 142, 148 dispersal of early humans to Eurasia 383±5 thin shell layers not suited to polar climates evolution of the Neanderthals 385±6 144 origin and dispersal of modern humans Heterohelix globulosa 386±9 Nye Klùv populations 65 origin of hominines 380±2 progenetic nature of heterochronic signal origins of genera Homo and Paranthropus 68 382±3

© Cambridge University Press www.cambridge.org Cambridge University Press 0521663040 - Biotic Response to Global Change: The Last 145 Million Years Edited by Stephen J. Culver and Peter F. Rawson Index More information

488 INDEX

human evolution (cont.) Cretaceous, nannofossils and climate turnover pulse hypothesis 382±3 change 44±50 study of effects of climate change 389±90 endemism 44±50 human intervention 277, 279 expansion of the Austral water mass 47 disruption caused by 3, 395 nannofossil climate-change indicators 46 `moving out of trouble' almost impossible `palaeobiogeographical fronts' 44, 45 for insects now 310, 315 palaeobiogeographical zones 44, 45, 47, see also agriculture; Bronze Age 49±50 Hydnophora 174, 178 palaeotemperature changes in¯uencing Hydodamalis gigas 335±6 fossil excursions 47, 49 Indonesia Icacinaceae, range contraction 232±3 Homo erectus ice age, Cenozoic, onset of, Late Pliocene arrival of 383±4 cooling 81, 83±4 population may have persisted until ice volume modern humans arrived 387±8 buildup in Britain, isotope stage two 375 insect record glacial±interglacial ¯uctuations 95, 368 Early Cretaceous 289±94 benthic 18O data a proxy for 85 appearance of social insects 290 extent of entrainment and southward general pattern 289±93 advection 87 Purbeck±Wealden insects of southern long-term ¯uctuations at Milankovitch England 293±4 frequencies, a global climatic control Late Cretaceous 294±6 83, 394 continuing rise in extant families 294 ice-rafting 272, 382 K±T extinction, little effect on insects at Cenozoic 28, 81, 83, 85 family level 294±6, 302 iceberg path, North Atlantic sea ¯oor Quaternary 299±302 sediments 29 nature of 304±5 possible deposits, Cretaceous Indian Ocean Tertiary 296±9 47±8 few extinctions 296±7 seasonal in the Cretaceous? 12±13, 48 generic extinction end-Paleocene 297 ice-sheets insects (Hexapoda) 393 Northern Hemisphere 83, 272, 273 affected by sea-level rise, Late Cretaceous wasting of 273, 275 294 polar, Antarctica 26, 58 Chironomidae 304 Quaternary 28±30 as indicators of environmental change and Milankovitch cyclicity 28 300±2 and short-term climatic shifts 28±9 Coleoptera 295, 295 see also glaciation; polar ice effects of heavy metal and icehouse world 1, 391 organophosphate pollutants 301±2 Oligocene±Recent 34 geological longevity of some species Quaternary 20, 28 306±10 igneous activity migration a quick response to Cenozoic 23±4 environmental change 296, 305 Cretaceous 6±7 Mutual Climatic Range reconstructions ikaite, indicates cold sea ¯oor temperature 311±15 13 respond to effects of eutrophication 301 impact structures scavengers provide indication of past Cenozoic 24, 24, 25, 26, 325 climatic conditions 311 Cretaceous 7±8 diapause (hibernation) 294±5, 295±6 India, endemically modi®ed Cretaceous Diptera 295, 296, 304 Gondwanan fauna 321±2 Ephemoptera 304 Indian Ocean Hemiptera 304

© Cambridge University Press www.cambridge.org Cambridge University Press 0521663040 - Biotic Response to Global Change: The Last 145 Million Years Edited by Stephen J. Culver and Peter F. Rawson Index More information

INDEX 489

extinctions 290, 291, 294 no detectable effect on amphibian fauna highest family extinctions and origination, 325 Early Cretaceous 289±90 western North America, survivors Lepidoptera 304 rapidly speciating and diversifying continued evolution 297, 297 345 Megaloptera 304 gastropod extinctions 158±60, 163 modern, restricted distributions 299 heterochronic response across 62±7 Neuroptera, extinctions 290, 292 mammals Odonata 304 dietary and locomotor diversi®cation extinctions 290, 292 after dinosaur extinction 335 Orthoptera 304 extinction only seen in Montana 337±9, extinctions 290, 291 344 peak in Oligocene 297, 298 and plant communities 239±40 preservation in sediments and amber supposed collapse of algal symbiosis 174, 288 180 Quaternary Kamptnerius magni®cus 41, 46 evolution or extinction 309 kaolinite 15 high degree of evolutionary stability Kap Kùbenhavn assemblage 308±9 indicates importance of environmental thermally sensitive, tracked acceptable opportunity 308 climates 309, 315 makes good ecological sense 308 variety of habitats and diverse no present day geographical analogue morphologies 303±4 307±8 richness of fossil record 288 shows geological longevity of insects 306±8 Trichoptera 304 Kara impact structure, Russia 7 iridium, at the K±T boundary Karakaschiceras 104 Chicxulub impact structure 25 Kenya Gubbio 7 Allia Bay and Kanapoi, Australopithecus Iron Age 285, 287 anamensis 381 isotopic shifts Nariokotome, Homo ergaster/erectus 383, caused by deterioration of the global 385 climate 27 response to oceanic carbon crisis 27 Lagena substriata 123 lagerstaÈ tten effects 121 Juglandaceae teleosts 109 modernization and diversi®cation 227, 228, Lagomorpha 334 228 lake sediments, reveal effect of Quaternary range contraction 232, 233±4, 233 climatic and environmental change on Juniperus 269, 275 insects 302 land bridges 333 K±T boundary Afro±Arabia and south-west Asia, crucial bryozoans 202 for establishing the time of mammal abrupt increase in relative skeletal mass exchange 356 after 199 AfroArabia and south-west Asia 351 collapse of productivity at 194 in¯uencing vegetation interchange 234, 242 cooling prior to 57 Northern Hemisphere, at Paleocene± echinoid extinctions 190, 191±2 Eocene boundary 341, 345 extinction event Panama Isthmus see Panama Isthmus disappearance of non-avian dinosaurs Thule Bridge and de Geer route 115 and some avians 325 see also corridors little effect on insects at family level Land Mammal Ages (LMA) 336, 339 294±6, 302 Laramide±Sevier orogenic uplift 9

© Cambridge University Press www.cambridge.org Cambridge University Press 0521663040 - Biotic Response to Global Change: The Last 145 Million Years Edited by Stephen J. Culver and Peter F. Rawson Index More information

490 INDEX

larval development, non-feeding see Littorina littorea 160, 161 lecithotrophy or brooded Littorina obtustata 161, 161 development Littorina saxatilis 160, 161 Late Glacial Littorina squalida 160 de®nition and delimitation unclear, British LMA see Land Mammal Ages (LMA) Isles 267±8 Loch Lomond Stadial 3, 30, 272±3 Late Glacial Interstadial 268±72 biotic response 272±3 climatic amelioration 268±9 cooling triggered by in¯ux of meltwater Late Glacial period (Dimlington Stadial) 272 268 hypotheses proposed for 272 Loch Lomond Stadial 272±3 London Clay ¯oras Late Paleocene Thermal Maximum (LPTM) palms argue for frost-free climate 238 57, 58 similar to present south-east Asian ¯oras Late Pliocene 237 climatic deterioration 85 LPTM see Late Paleocene Thermal extinctions during 87±92, 88 Maximum (LPTM) Laurasia lucinoids 136, 137, 144 Cretaceous extinction of restriction to oxygen-de®cient rhynchocephalians 318 environments 139 distinctive amphibian fauna 317±18 Luristan, Iran, gastropods 158±9 rise of modern crocodile 319 Lyonsia 144 Laurentide ice-sheet, shows short-term climatic shifts 28±9 Macoma 144 Lava Camp Mine, Alaska, insect fauna 309 macroevolutionary lag 148, 396 Lazarus corals 174, 175, 177±8, 397 Madagascar±Seychelles±India block 320±1 leaf margin analysis 247 isolation of Madagascar from India 321 applied to Cretaceous leaves in North timing of break up controversial, slow and America 247, 248, 249 fast hypotheses 321±2 leaf morphology, ¯owering plants 224±5 magnetostratigraphical analysis, dating leaf physiognomy and climate change 244±64 errors 350±1 limitations of CLAMP 258±64 Mammal Neogene (MN) zones 352 plant physiognomy as a climate indicator relationship to chronometric, 246±58 chronostratigraphical and planktonic lecithotrophy or brooded development 187±9 zonation 354±5 Lemmus lemmus 370 show similarities and differences between lepidosaurians European and African faunas 362±3 choristoderes 319, 323 zonation criteria reconsidered 352 phylogenetic hypotheses plotted against mammalian faunas time 316±17, 317 African 395 rhynchocephalians 318±19 extinctions and forced evolutionary Leptoria 174, 178 changes 382±3 Lepus timidus 370 and the closure of Tethys 356±7 Levant Cretaceous, terrestrial record 333±4 early Homo sapiens 386 early Mesozoic, community structure 353 overlap between sister clades 386 Early Miocene 357±60 limestone formation, and global warming Africa 258, 357±8, 359 36±7 community structure, East Africa 358, Lipotyphla 334 358, 359 Litodactylus leucogaster 307 Europe 358, 360 Little Optimum 285±6 early Paleocene Littorina 160, 161 African, changed by dispersals 356 sister-groups 161 archaic look 355

© Cambridge University Press www.cambridge.org Cambridge University Press 0521663040 - Biotic Response to Global Change: The Last 145 Million Years Edited by Stephen J. Culver and Peter F. Rawson Index More information

INDEX 491

Eocene, dominated by small mammals 355 Early Eocene 355 Late Miocene, AfroArabia 364±5 marine productivity, drop in at K±T Mid Miocene boundary 325 Africa 361±2 marine provinces 146 community structure, East Africa 358, thermally controlled 147 359,361 marine revolution, Mesozoic 150±4 dietary guilds 362±3 marsupials 333, 334 Europe 362±3 appearance of in South America 339 Mid to Late Miocene 360±5 Lancian fauna 337 West Asia 363 spread of 334 Neogene, Arabian 364±5 mass extinctions 1, 11 Oligocene 356 at the E±O boundary, planktonic Quaternary foraminifera 59, 61 Last Cold Stage 373, 375±7 benthic fauna 123, 125 last interglacial 372±3, 374 Cenomanian±Turonian 221 response to environmental change 378 impact generated 8 mammals and the K±T boundary 25±6 climate-related ecological trends 346±7, marine, anoxic events as a cause 16±17 348 nannofossil, /Jurassic boundary Cretaceous faunas 333±4 42 differ from modern faunas 334±5 Northern Hemisphere, Late Pliocene, Eocene 334 pervasive 95 early, main radiation of 355 tempo and mode of, Northern Hemisphere major factors affecting distribution 369 glaciation 87±92 mammal faunas and Land Mammal Ages see also K±T boundary (LMA) 336 MAT see Mean Annual Temperature (MAT) Paleocene, ®rst records 334 Mawsonia 113 Paleogene 333±49 Mean Annual Range of Temperature climate-related ecological trends 346±7, (MART) 246±7 348 Mean Annual Temperature (MAT) 247, 248, major faunal turnovers 336±46 253, 255, 257, 258 return to the sea 335±6 assumptions when using leaf margin terrestrial record 333±5 analysis 248±9 physiological adaptations allowing range Cenomanian 247 extension 372 three-dimensional representation of leaf Quaternary, in Britain 369±77 size 256,259 Last Cold Stage 373, 375±7 Mediterranean basin Last Interglacial 372±3, 374 during the Oligocene, Early and Mid seasonal migrations 372 Eocene 357 Mammuthus primigenius (woolly mammoth) and the `Messinian salinity crisis' 360 370, 373 Mediterranean Sea mangroves 236±7 formation of 357 vegetation to landward of 237±8 Neogene 329 see also Nypa Meles meles 370 Manson Impact Structure 7 menardiform taxa, Late Pliocene Marginulina cf. Marginulina colligata 123 lack thick calcite crust 86, 89,92 Mari Hills, Pakistan 158 replenishment of 93 marine carbonate cycle 36, 37 Mesolithic±Neolithic transition, marked by marine carbonates and fossils, oxygen elm decline 283 isotopes 14±15 Mesopotamian±Arabian Gulf, marine marine connections see seaways sedimentation interrupted during the marine mammals 335±6, 372 Aquitanian 356

© Cambridge University Press www.cambridge.org Cambridge University Press 0521663040 - Biotic Response to Global Change: The Last 145 Million Years Edited by Stephen J. Culver and Peter F. Rawson Index More information

492 INDEX

Mesozoic marine revolution (MMR) 150±4 fossil record 229 development of gastropod carnivory 152 Poaceae 229 predation pressure and change in monocotyledons 209 gastropod shell morphology 150±1 monotremes 333, 334 Messel, ®sh faunas 115 Montana, USA Messinian Salinity Crisis 22, 351 comparison of Paleogene faunal turnovers aridity associated with 351, 360 344±5 associated with eustatic sea level changes non-marine sedimentary sequence, 21 vertebrate-bearing, spanning the K±T and continental collision 26, 162 boundary 337±9 effects on bryozoan evolution 195, 204 Montastraea 174±5, 178 mammalian dispersal and climate change Monterey Event 22,27 360 multituberculates 337, 339 restriction on Mediterranean faunal Mutual Climatic Range Method 311, 312, diversity 120 313±15 Metasequoia 230, 235, 239 Mya 144

methane (CH4), changes in the atmosphere Myriophyllum 268 during glacials 32 Mysella 144 Metoicoceras geslinianum Zone 8 mytiloids 136, 137 shows southward migration of Boreal fauna 14 Namib Desert 369 micro-diamonds 25 Nannoconus abundans 41,42 Microstaurus chiastius 46 nannoliths 35 Aptian southward excursion 47 nannoplankton indicates Berriasian±Valangian as agents of global climate change 36±8 palaeobiogeographical stability 47 calci®cation 36±8 Microtus gregalis 370, 375 primary production 36 Microtus oeconomus (northern vole) 370, 373 dimethyl sulphide and global albedo 38 Mid Pleistocene Revolution 33 environment 39±40, 43 Mid-Continental Seaway 115, 299, 320, 322, r-selected, temperature sequence 39±40 323, 324 as recorders of global climate change, migrations, not controlled solely by sea level controls on biogeography 38±42 changes 105±6 depth structure 40, 42 Milankovitch cycles/cyclicity 4, 20, 33, 83, 85, environment 39±40, 43 391 evolutionary dispersal/vicariance 38±9 change in 382 nannoplankton assemblages 43 and Quaternary climate change 33, 367, deep-photic assemblage 40, 42 368 Naticoidea 152 short term control on Cretaceous climate nautiloids 97 change 18±19 Neanderthals and the Vostok ice core 32±3 evolution of 385±6 Mingies Ditch 275 physique contrasts with Nariokotome dominant Alnus woodland 278 skeleton 385 park tundra ¯ora 272±3 Nearest Living Relative (NLR) Approach 245 waterlogged sediments 285 inappropriate for pre-Quaternay studies mitochondrial DNA (mtDNA) 389 245 MMR see Mesozoic marine revolution neogastropods (MMR) diversi®cation in 155±6, 162 MN see Mammal Neogene (MN) zones low Cretaceous diversity in the Tropics, Monocots 225 hypotheses 156±7 Alismatidae 229 Neogene Dispersal Phases, for hominoids out Commelinidae 229 of Africa 356

© Cambridge University Press www.cambridge.org Cambridge University Press 0521663040 - Biotic Response to Global Change: The Last 145 Million Years Edited by Stephen J. Culver and Peter F. Rawson Index More information

INDEX 493

Neogloboquadrina atlantica 88, 94 modern species richness lower in East extinction of 91 300 Neogloboquadrina pachyderma 89,94 salamanders dominant during glacial periods 87 diversi®cation by vicariance 324 migration route 94 effects of Oligocene cooling 329 records dominated by obliquity orbital southward retreat of primitive passerines rhythm 85, 86 331 a subpolar species, ®rst peak in 85 see also Lava Camp Mine, Alaska; Neohoploceras 104 Montana, USA Neoponides lunata, patterns of test size North America, eastern change 65 benthic foraminifera, Cenozoic 126±33 neoselachians US Middle Atlantic continental margin, age of differentiation 109±10, 111 Cenozoic shelf deposits on 126±9 Cenomanian diversi®cation of rajiforms depositional history 126±9 112 foraminiferal response to environmental fossil sharks, assignment to modern groups change 129±33 a problem 111 North America±Greenland±Europe modest diversi®cation of 107 continuity 328 Nerita 159 North America±South America Neuque n Basin, Argentina 104 Miocene faunal interchange 329 niche partitioning, low latitude oceans 92 Panamanian Isthmus, Pliocene and Great Ninella torquata 153 American Interchange 329±40 NLR see Nearest Living Relative (NLR) North Atlantic Approach change in temperature of surface water non-angiosperms, diversity and abundance circulation 315 through the Cretaceous, mid- loss of albatrosses, end Pliocene 331 palaeolatitudes 213±15 movement of oceanic polar front 268, 273 conifer diversity 213 post-glaciation recolonization by decline in cycadophytes and pteridophytes planktonic foraminifera 92±5 213 faunal diversi®cation 95±6 ephedroid pollen 216, 219 immigrant taxa from the Indo-Paci®c low within-¯ora diversity 213, 214, 215 oceans 93±4, 96 salamanders, aridity left disjunct species vegetation/mammal interchange 234±5 330 North Atlantic Deep Water (NADW) North America formation of 32 Cretaceous suppression of 29, 30, 272 Late, major transgressive±regressive North Atlantic Drift 375, 377 cycles 324 North Atlantic Igneous Province 23 marsupials dominant 334 North Atlantic Seaway, aided migration of Eocene faunal changes in the interior ammonites 101, 106 328±9 North Sea area, southern, Nypa-dominated and Europe, Eocene freshwater ®shes mangrove reconstructed 236±7 115±18 northern continents, Pliocene cooling and leaf margin analysis of Cretaceous leaves Pleistocene glaciations 331 247, 248, 249, 258, 258 Northern Hemisphere mid-continent aridity, Late Oligocene± Boreal and Tethyan realms 99 Early Miocene 330 Cenozoic plants, controls on distribution modi®cation of vegetation post K±T event and persistence 234±5 239±40 glaciation see glaciation, Northern no barriers to north±south range Hemisphere alterations 331 insect distribution response to climatic Quaternary insect assemblages 300 change 299±300

© Cambridge University Press www.cambridge.org Cambridge University Press 0521663040 - Biotic Response to Global Change: The Last 145 Million Years Edited by Stephen J. Culver and Peter F. Rawson Index More information

494 INDEX

Northern Hemisphere (cont.) oceanic crust production 5 onset of ice 83 Cretaceous transformation of high-latitude climate, and angiosperm diversi®cation 220±1

theories for 84 and decreased CO2 18 Northmoor from mid-ocean ridges 23 much non-arboreal pollen 269 see also sea ¯oor spreading peat lenses 269 oceanic hiatuses 14 Notelops 114 and deep water circulation 10 Nothofagus oceanic polar front decline in microthermal rainforests 242 early Flandrian movement 273 formerly widespread 235 Late Glacial 268 NOW database 353 oceans, calcium depletion at K±T boundary Nucella lapillus 161 25 sister species 161 ODP Site 738C core, foraminiferal test size Nucella lapillus incrassata 161 variation across the K±T boundary nutrient distribution, and nannoplankton 64,65 distribution 39, 43 Olbiogaster 290 Nuttalides truempyi 26 Olcostephanus 100, 103±4 patterns of test shape variations 70, 71 Oman, `Gosau-type' fauna, Maastrichtian 167 signi®cant drop in test size across the P±E Ontong±Java Plateau, formation of 7, 18 boundary 69, 70 ophiolites, obducted 6 Nye Klùv section, foraminiferal test size orogenies 33, 118 variation across the K±T boundary Cenozoic, and climate change 30±1 64,65 Cretaceous 5,6,19 Nypa 229 affecting the carbon cycle 17 range contraction 232, 233 and transformation of Northern Hemisphere high latitude climate 84 OAEs see oceanic anoxic events (OAEs) outgassing 4, 23 Obik Sea, drying out of 328 Ovibos moschatus 370 ocean waters, thermal expansion and 16O:18O ratio 14 contraction of 34 18O concentrations, polar ice cores 273 ocean±atmosphere interactions, Cenozoic 18O curves, Barremian±Maastrichtian 14 31±3 18O excursions, onset of Northern oceanic anoxic events (OAEs) Hemisphere ice 83 and allopatric speciation 120 oxygen minimum zone 125 Cenomanian, and benthic foraminifera 122, 124 P±E see Paleocene±Early Eocene coincide with platform drowning events Pachygyra 174 11 Pactopus 299 Cretaceous 122, 124 paedomorphosis 66, 67, 76 related to formation of Ontong±Java palaeobiogeography Plateau 7, 18 Cenozoic global plant distributions Valangian±Campanian 16±17 232±6 oceanic circulation ¯owering plants 232±5 affected by closure of major seaways 26 non-¯owering plants 235±6 Cenozoic, deep 32 Cretaceous cephalopods 99±101 Cretaceous 9±10, 17, 19 Boreal, Tethyan and Austral realms 99, deep, and oceanic hiatuses 10 100, 101, 102 general circulation modelling of 10 episodic migrations 101 global climate and ocean-current fossil ®sh circulation interactions 32 distributions have historical and Southern Ocean circum-polar gyre 26, 31 ecological explanations 113

© Cambridge University Press www.cambridge.org Cambridge University Press 0521663040 - Biotic Response to Global Change: The Last 145 Million Years Edited by Stephen J. Culver and Peter F. Rawson Index More information

INDEX 495

role of systematics in choosing between Palaeolithic tools, Late Glacial 273 historical explanations 113±20 Palaeoloxodon antiquus 370 nannofossil, Mesozoic and Cenozoic 42±3 Palaeomymar duisburgi 298 bipolar distributions 42 Palaeoplatycarya 234 differentiation during the Mesozoic 42, palaeotemperatures, Cretaceous, James Ross 43 Island 12 distribution in the Cretaceous Indian Paleocene±Early Eocene transition 57±8 Ocean 45, 46 widespread diversi®cation, terrestrial and latitudinal variations in Palaeogene marine biotas 58 Atlantic 43 Paleocene±Eocene boundary link to nutrients for Cretaceous heterochonic response across 67±9 coccoliths 43 major mammalian faunal turnover 339±42 Triassic nannofossils 42 due to climate change and low sea level nannofossil zones, Late Cretaceous 44, 45 345 planktonic foraminifera, controlled by sudden appearance of new mammal water mass patterns 91 faunas 341 Southern Ocean Cretaceous taxa, no major change detected in South distribution controlled by water American faunas 341 palaeotemperature 44 Paleocene±Eocene transition, decline in palaeoceanography diversity 242 Cenozoic 26±7 Paleoesox fritzschei 117 Cretaceous 8±11, 13 palms, in tropical aspect forest 237 control on Cephalopod distribution palygorskite 15 102±6 palynology 265 eustasy and the great transgressions 8±9 Pan-Gorilla clade 380 global persistence of chalk facies 10±11 Pan-Homo last common ancestor 381 oceanic circulation 9±10 Panama Isthmus oceanic hiatuses and deep water an effective barrier to species dispersal 94, 96 circulation 10 closure of 6, 17, 26 palaeoclimates connection made 322±3 changes in shown by changing insect emergence of 84, 162, 394 assemblages 305 and Great American Interchange 329±40 Cretaceous Indian Ocean, nannofossil a land bridge 21 climate±proxy curves 47, 48 Pangaea, effects of breakup 44 drawback to research 50 Panthera leo 371 palaeoclimatic records, Northern Parahoplites nut®eldiensis Zone 8 Hemisphere, faunal and 18O, Paranthropus 379, 382 comparison of 84±7 origins of 382±3 palaeocommunities, and environmental parasites 290 change 130±3 Paratethys 357 palaeoenvironmental history Parelops 114 Cenozoic 34 peat Cretaceous 19 peat bogs, Late Flandrian 282 palaeoenvironmental indicators, Coleoptera shows environmental change, Late Glacial as 305±6 and Flandrian 266±7 palaeogeography periglacial activity, Late Glacial 268 Cenozoic 20±1, 22 Periploma 144 Cretaceous 6 Perissodactyla 339 control on Cephalopod distribution permafrost 272 101 permafrost areas, preservation of fossil Early Cretaceous 318 assemblages 306±10 Late Cretaceous 323 phosphate-rich horizons, on platforms 11

© Cambridge University Press www.cambridge.org Cambridge University Press 0521663040 - Biotic Response to Global Change: The Last 145 Million Years Edited by Stephen J. Culver and Peter F. Rawson Index More information

496 INDEX

photosynthesis 361 vegetative biology and physiognomy, land plant 246 leaves and woods 232 phylogenies Plantago 265, 268 fossil ®sh 107, 121 plants

teleost 112 C3 and C4 photosynthetic pathways 361 Pileolus 157, 1159 free-sporing 215, 216, 216 Pinus 286 modern, distributions related to climate Pinus pollen 268 246±7 Pinus woodland 275 selection during evolution 246 placentals 333, 334 Platanus 228 spread of 334 plate tectonics plant communities, Cenozoic 236±43 Afro±Arabian plate, effects of movement C4 plants 241 of 161±2, 365 patterns of community change 239±42 Cenozoic 20±1, 22 Eocene thermal maximum 240 control on climate change 30±1 Eocene±Oligocene transition 240±1 and changing biogeographical distribution K±T transition 239±40 patterns of amphibian, reptiles and Miocene and Pliocene 241±2 birds 331±2 patterns of species diversity and ¯oral Cretaceous 6 turnover 242 control on Cephalopod distribution reconstruction of and distribution in 101 response to Eocene thermal maximum long-term control on climate change 17 236±9 and insect faunas 298±9 mangroves 236±7 producing unstable conditions 365 polar deciduous forest 238±9 see also named plates tropical aspect forest 237±8 Plateumaris nitida, geological longevity of plant dispersal 224, 232 309 plant fossil record platform drowning events 5 Cenozoic plant record 225±32 affecting echinoids 182, 192±3 plant groups 225±30 associated with extinctions 11 signi®cance of ¯owering plants: intrinsic Platycarya, range contraction 232, 233 factors 230±2 Platycarya strobilacea, single modern nature and application of 223±5 specimen 234 plant growth environment, interpreted Plerogyra 178 through woods and ¯owering plant polar ice leaves 224 Antarctic, build-up at the Terminal Eocene plant physiognomy, as a climate indicator Event 342 246±58 Cretaceous? 12±13 plants in hyperspace 249±58 ®rst major Cenozoic build-up 336 plant productivity, Cretaceous 16 Quaternary, mammalian faunal response plant record, Cenozoic 225±32 to 367±8 plant groups 225±30 pollen 224, 265 ¯owering plants 225±9 angiosperm 209, 215, 217±218 Juglandaceae, modernization and Aquilapollenites-type 219 diversi®cation 227, 228, 228 architecture of 224 non-¯owering plants 229±30 cereal-type 280±1, 284 signi®cance of ¯owering plants, intrinsic Upper Thames basin 279 factors 230±2 Classopollis 218, 219 fruits and seed 231±2 Compositoipollenites rhizophorous 233 species diversity and ¯oral biology the Cretaceous±Recent record 266 230±1, 239 Platycaryapollenites 234 vegetation diversity 231 polyplicate (ephedroid) 216, 217, 219

© Cambridge University Press www.cambridge.org Cambridge University Press 0521663040 - Biotic Response to Global Change: The Last 145 Million Years Edited by Stephen J. Culver and Peter F. Rawson Index More information

INDEX 497

increase in diversity and abundance Pterosaurs, Cretaceous diversity decline 220 319 protected by exine 265 Pulleniatina 93 Spinizonocolpites 232, 236 coiling direction patterns 94 triaperturate 209, 215 Pulleniatina primalis, a deep dweller 94 pollen analysis 265 Purbeck Limestone Group, insects of reconstruction of Quaternary 293±4 environments 393 pollen records Quercus 228, 278, 286 Abingdon 268 Quercus woodland 275 Buscot Lock 278 Cothill Fen 273, 274, 275, 278 radiations Daisy Banks Fen 278±9, 279, 280±1, bryozoan 196, 201±2, 205 286 planktonic foraminifera decline in Ulmus pollen 282 Late Cretaceous and Paleogene 58±9 rise in herbaceous pollen 284 Paleocene±Eocene, simpler morphotypic Northmoor 269 structure 59 Rissington 268, 269 see also adaptive radiation Sidlings Copse 275, 276±7, 278, 279, 285 Rangifer tarandus (reindeer) 370, 373 decline in Ulmus pollen 282 Red Sea 162 rise in herbaceous pollen 284 reef communities Spartum Fen 268, 269, 270±1, 273, 275, collapse and recovery models 164±5, 178 277, 278, 279 Cretaceous, confusion concerning 168±9, decline in Ulmus pollen 282 179 rise in herbaceous pollen 284 hiatuses 180 Vale of the White Horse 269±70 seen as recovery intervals 178 pollen and spore assemblages, pre- and Lazarus corals 178 Quaternary 266 modern, emergence of 180 pollination 230±1 period of absence 177 faithful, specialist and diverse 231 preservation in situ 168 Populus 268 problem of reef and framework de®nition Port Meadow, waterlogged sediments 285 169 Primates 339 treatment as changing sequence of single Eocene families 355 kind of community 168±9 Princeton ¯ora, British Columbia 239 Repagulum parvidentatum 42, 46 Prinsius bisulcus 43 movement into intermediate latitudes 47 Prinsius martinii 43 reptiles Probiscidea 334 non-archosaurian groups, Barremian progenesis 318±19 in angiosperms 220 in subtropical±tropical conditions 328 in foraminifera 66, 68, 69, 77±8 Reticulo fenestra 43 protobranchs 136, 137 Rhacolepis 114 in present day Arctic and Antarctic faunas rifting 118 142 Africa±South America 6 provincialism, Mesozoic nannoplankton 42 and biogeographic distribution of fossil Pteranodon 324 ®sh 113±15 pteridophytes 213, 229 Antarctica±Australia 6, 21, 22,31 relative abundances 215, 216 and development of the Indian Ocean 6 pteriomorphs 136, 137 doming prior to, Kenya 357 thin shell layers not suited to polar climates linking western Tethys with the Arctic 106 144 Red Sea and Gulf of Aden 357 Pterocaryopsis 234 South America±Antarctica 31

© Cambridge University Press www.cambridge.org Cambridge University Press 0521663040 - Biotic Response to Global Change: The Last 145 Million Years Edited by Stephen J. Culver and Peter F. Rawson Index More information

498 INDEX

Rissington range restricted through dependence on sea park tundra ¯ora 272±3 grasses 335±6 tundra vegetation pollen 268 sea ¯oor spreading 4, 19 Rithma 293 Paci®c, and mantle plume 6 Rodentia 334, 355 see also ocean crust production; plate Rumex 268 tectonics; rifting sea levels Sahara desert 369 biota coping with dramatic changes in Saiga tatarica, brief incursion in Britain 377 391±2 salamanders 324, 329, 330, 331 Cenozoic, causes and rates of change Salisbury and Albermarle embayments 33±4 (SAE), Cenozoic shelf deposits 126±9 Cretaceous 4, 44, 294, 324 assembly of new communities 131 changes in affecting cephalopod Calvert Formation 128 distribution 102±3 Cenozoic diversity trends 129±30, 129 changes in not sole control on Chowan River Formation 128±9, 130 migrations 105±6 high diversity community 133 high/very high 8±9, 17, 19 Coastal Plain units, deposition related to low 8, 9 high stands 124, 126±7, 127 not under glacioeustatic control 13 Eastover Formation 130 major falls in foraminifera indicate cool conditions and development of freshwater and land 128 snails 154±5, 162 low diversity community 129, 133 and faunal turnover at Paleocene± Nanjemoy Formation 130 Eocene boundary 342 depositional environment 127±8 Quaternary changes, important to foraminiferal occurrences 130±1, 133 terrestrial vertebrates 368 Norfolk Arch 127 rate of change in¯uence preservational Piney Point Formation 128, 130 potential 182 Pungo River Formation 130 sea surface temperatures (SST), Nordic Sea rich in phosphorite 128 273, 277 species diversity trend and increasing seabirds, Pliocene±Pleistocene distributions taxonomic diversity 134 related to changes in ocean currents stratigraphical ranges of benthic foraminifera 331 130±3 seagrass associations 200 Yorktown Formation 130 seagrass communities 139 ice-mediated transgressions 128 seals, sea lions and walruses 335 Salix 268, 269, 286 seasonality 145 Sanguisorba 269 seaways Santana Formation aiding migration 101, 106 doubts about palaeoenvironment 114 Atlantic±Mediterranean marine ®sh faunas connections 21 no special relationship with West Africa Cretaceous, severing of 19 115 major similar to those of Kem Kem Beds closure of 26 (Morocco) 113 opening of 6, 17, 19 similar to those of Tepexi, Mexico 114 open at Paleocene±Eocene boundary 342 sauropod hiatus 324 South Atlantic±Tethys 113 savanna grasslands 241 see also Bering Strait; Gibraltar, Straits of; Saynoceras 104 land bridges; Turgai Strait; other Scolytus multistriatus 283 named seaways Scolytus scolytus 283 seeds 231±2 sea cows (Sirenia) 335 provide evidence of dispersal 224

© Cambridge University Press www.cambridge.org Cambridge University Press 0521663040 - Biotic Response to Global Change: The Last 145 Million Years Edited by Stephen J. Culver and Peter F. Rawson Index More information

INDEX 499

sepiolite 15 species abundance records, environmental Seribiscutum primitivum 42, 46 change impact and glacial±interglacial movement into intermediate latitudes 47, climatic oscillation 79±80 49 species diversity/richness 347, 348 shelf deposits, Cenozoic 126±9 and abundance shelf seas, Mesozoic, spread of ammonites angiosperms, Cretaceous, mid- 101 palaeolatitudes 211±13 Siderastrea 174, 175, 178 non-angiosperms, Cretaceous, mid- Sidlings Copse 279, 285 palaeolatitudes 213±15 changes in woodland 275 angiosperms, trends in 210 expansion of pioneer arboreal vegetation Britain 275, 276±7 Last Cold Stage mammals 373, 375±7 pre-clearance climax woodland 276±7, Last Interglacial mammals 372±3, 374 278 Cenozoic, patterns of and ¯oral diversity woodland clearance 284 seem to re¯ect climate change 242 Sirenia 335±6, 355 and environmental change 129±30 Siwalik Formation and ¯oral biology 230±1 Mid Miocene faunal trends 364 gastropods 155±7 record of Asian Neogene life 357 and geography, mutual dependency 88 social wasps 290 latitudinal diversity gradient, bivalves soil carbonates, recording Late Paleocene 140±5 carbon excursion 340±1 planktonic foraminifera, declined 59 South Africa, early Homo sapiens 386 Sphagnium 268 South America 334 Sphenolithus 43 Late Eocene, probable arrival of mammals spores 265 from Africa 342 see also plants, free-sporing South America±Africa connection, stable carbon isotope technique, use of 366 Paleogene, a biogeographical necessity Stegaster, extinction of 193±4 326±7 Steller's Sea Cow 335±6 South America±Antarctica±Australia block, Stephanocoenia 174, 178 breakup of 322 Stephanorhinus hemitoechus 370 South Atlantic Ocean 6 87Sr/86Sr ratio 17, 57 South Atlantic Seaway, aided ammonite overall increase in during the Cenozoic migration 101 27 South China, intracontinental orogeny 6 Stratiotes 229 Spartum Fen 270±1 Subbotina linaperta 69, 72±3 changes in woodland 275 morphological response accompanied by dominant Alnus woodland 278, 279 habitat shift 72, 74 expansion of pioneer arboreal vegetation shape variations 72, 72, 73 275 signi®cant decrease in test size 69, 72, 72 hazel maxima 277 subduction high frequency of cereal pollen 270±1, of the East Paci®c Rise, effects of 21 284 and the rise of the Andes 6 pre-clearance climax woodland 270±1, 278 sulphate aerosols, formation of 38 response to climate amelioration 269 sulphur, emitted by volcanic activity 23 rise in water table 285 superplume, mid-Cretaceous 6, 7, 9, 17 tundra vegetation pollen 268 Supertethys hypothesis 16 woodland clearance 284, 286±7 Sus scrofa 370 spatial analysis of African Mid Miocene faunas 358, 359, Talpa europaea 370 361±2 taphonomy, imposing limitations on based on Harrison concept 353 CLAMP 259±60

© Cambridge University Press www.cambridge.org Cambridge University Press 0521663040 - Biotic Response to Global Change: The Last 145 Million Years Edited by Stephen J. Culver and Peter F. Rawson Index More information

500 INDEX

Taxodium, range contraction 235 dominant tree in base rich areas 278 tectonic forcing mechanisms, and Northern Toba, Mount, eruption of 23±4 Hemisphere climate 84 and climatic deterioration 393 tectonic stress 33 Tonna zonatum 153 tectonism, intracontinental Tranolithus orionatus 46 and fossil freshwater ®sh faunas 118±20 movement into intermediate latitudes 47 vicariance events tied to geological events transfer function concept, pollen and 118, 119, 120 foraminiferal data 245 tektites 26 transgressions teleosts 111±12 Aptian 8 diversity peaks 108, 109 basal Chalk 10 impressive diversi®cation 107 Cenomanian and Turonian 8±9 record shows different pattern 111 trophic guilds 353 temperature, and nannoplankton distribution Tropics 39, 43 large-scale refugium or an area of Terminal Eocene Event, post-dates the E±O generation 147 boundary 342 preferred site of origin for many marine termites 290 clades 147±8 indicate warm conditions 293 tundra conditions, inference of based only on Tethys palynological data unsafe 310 belemnites vanished by end-Cenomanian Turgai Strait 234, 318 100 turnover pulse hypothesis, and human closure of 20, 357 evolution 382±3 and mammalian faunas 356±7 turtles 318 exceptionally large gastropods, Late Typha 268 Cretaceous 157 Late Cretaceous water temperatures on Uaine, Lochan (Cairngorms), change in carbonate platforms 156 chironomid faunas due to cooling 301 Miocene Ulmus 265, 278, 286 closure of 351 Late Flandrian decline in 282±3, 286 effects of division of 161±2 possible causes 283 new Austral belemnite fauna, Ulmus woodland 275 Dimitobelidae 100 uplift see also Mediterranean Sea effects of 31 Textularia 123 see also Tibetan Plateau Theodoxus 159 Upper Thames Basin 266±7 thermal gradients 335 biotic response to environmental change, Thracia 144 framework for 286, 287 Thuamaturus intermedius 117 Flandrian environmental history 273±87 Thuamaturus spannuthi 117 Late Glacial environmental history 267±73 Thule Bridge 115 pollen sites 267 Thylechinus 187 upwelling and productivity events, Tibetan Plateau Cretaceous 11 and Himalayan chain, in¯uencing Late upwelling zones 331, 335 Miocene regional cimates 365 associated with deserts 369 in¯uencing Cenozoic climate change Cretaceous 43 30±1 Ursus arctos (brown bear) 371, 373 uplift during the Neogene, effects of USA, low Campanian sea levels 9 360 uplift possibly shifting the Indian Valanginites 104 Monsoon pattern 351, 364 Valdotermes brennanae 293 Tilia 278, 286 Vasum turbinellus 151

© Cambridge University Press www.cambridge.org Cambridge University Press 0521663040 - Biotic Response to Global Change: The Last 145 Million Years Edited by Stephen J. Culver and Peter F. Rawson Index More information

INDEX 501

vegetation Watznaueria barnesae 46 changes in and climate change 265 Watznaueria britannica 46 Cretaceous southward excursion 47 low-latitude 16 Wealden sequence, pollens in 219 terrestrial high-latitude 12 Wealden Supergroup, insects of 293±4 peat-forming, Miocene 241 whales (Cetacea) 335 sluggish response to Late Glacial climate polar dispersal of and diversi®cation into change 268 modern types 335 vertebrates, terrestrial seasonal migrations 372 fossil record 316 White Horse, Vale of, shows extensive Old World, response of biotas to Neogene physical weathering 269, 272 climate change 350±66 Wigwamma arctica, wide biogeographical continental biozonations 352 range 38 interpreting faunal change 352±3 Windermere Interstadial 268±72 Mesozoic and Paleogene background within-¯ora abundances, free-sporing plants 353±6 (mainly pteridophytes) 215, 216 the Neogene 356±65 within-¯ora diversity quality of data, dating and faunas 350±2 angiosperms 211, 212, 214 vetigastropods 159 geographical patterns 216, 217 development of defensive mechanisms decline of free-sporing plants 216 150±1 non-angiosperms 213, 214, 215 vicariance biogeography 118 wood 232 Vinctifer 114 fossil, indicates plant need for structural Virgulina gunteri curtata 123 support 225 volcanic eruptions lack of growth rings 225, 237 and climatic deterioration 393 Rissington 273 short-term effects on climate and biota woodland 23±4 Sidlings Copse 275, 276±7, 278, 284 volcanism 57 Spartum Fen 270±1, 275, 278, 279, 284, Paci®c sea ¯oor 7 286±7

increased rate of CO2 release 17 thermophilous, Upper Thames Basin Volutoderma 160 278 Volutomorpha 160 woodland clearances, Upper Thames region

Vostok ice core, CH4 record periodicity 284, 286±7 consistent with Milankovitch cyclicity 32±3 Younger Dryas 3, 30, 272±3, 386 Vulpes lagopus 370 Younger Dryas±Holocene transition, speed Vulpes vulpes 370 of 273, 275

warm deep saline water (WSBW) 4, 9±10, 19 Zeugrhabdotus erectus 43

© Cambridge University Press www.cambridge.org