Home Search Collections Journals About Contact us My IOPscience Defining and identifying cograph communities in complex networks This content has been downloaded from IOPscience. Please scroll down to see the full text. 2015 New J. Phys. 17 013044 (http://iopscience.iop.org/1367-2630/17/1/013044) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 136.186.1.81 This content was downloaded on 18/05/2015 at 13:56 Please note that terms and conditions apply. New J. Phys. 17 (2015) 013044 doi:10.1088/1367-2630/17/1/013044 PAPER Defining and identifying cograph communities in complex networks OPEN ACCESS Songwei Jia1, Lin Gao1, Yong Gao2, James Nastos2, Yijie Wang3, Xindong Zhang1 and Haiyang Wang1 RECEIVED 1 School of Computer Science and Technology, Xidian University, Xi’an 710071, People’s Republic of China 14 July 2014 2 Department of Computer Science, University of British Columbia Okanagan, Kelowna, British Columbia, V1V 1V7 Canada ACCEPTED FOR PUBLICATION 3 Department of Electrical & Computer Engineering, Texas A&M University, College Station, TX 77843, USA 11 December 2014 PUBLISHED E-mail:
[email protected] 20 January 2015 Keywords: complex networks, community dection, centrality Content from this work may be used under the terms of the Creative Abstract Commons Attribution 3.0 licence. Community or module detection is a fundamental problem in complex networks. Most of the tradi- Any further distribution of tional algorithms available focus only on vertices in a subgraph that are densely connected among this work must maintain attribution to the author themselves while being loosely connected to the vertices outside the subgraph, ignoring the topologi- (s) and the title of the cal structure of the community.