Chemical Characterization of Pharmaceutical Samples by Confocal Raman Microscopy and Correlative Techniques

Total Page:16

File Type:pdf, Size:1020Kb

Chemical Characterization of Pharmaceutical Samples by Confocal Raman Microscopy and Correlative Techniques APPLICATION NOTE Chemical Characterization of Pharmaceutical Samples by Confocal Raman Microscopy and Correlative Techniques WITec GmbH, Lise-Meitner-Str. 6, 89081 Ulm, Germany 89081 Ulm, 6, Lise-Meitner-Str. GmbH, WITec +49 (0) 731 140 70 200 fax +49 (0) 731 140 700, fon www.WITec.de [email protected], Chemical Characterization of Pharmaceutical Samples by Confocal Raman Microscopy and Correlative Techniques Introduction topographic 3D Raman images, depth-pro- These multi-spectrum files are then analy- files and correlative Raman-AFM images zed to display and image the distribution Development, production and quality the analyzing capabilities of CRM and of chemical sample properties. control in the pharmaceutical industry its correlative techniques will be shown. requires efficient and reliable control Furthermore an example of a statistical Atomic Force Microscopy mechanisms to ensure the safety and the- quantitative evaluation of a spectral Ra- Atomic Force Microscopy (AFM) provides rapeutic effect of the final products. These man dataset will be given. topographic high-resolution information products can vary widely in composition by recording the interaction forces bet- and application. Several of their properties Materials & Methods ween the surface and a sharp tip mounted can be difficult to study with conventi- on a cantilever. In addition, local material onal techniques due to the inability of Confocal Optical Microscopy properties such as adhesion or stiffness these methods to chemically differentiate The primary benefit of confocal microsco- can be investigated. materials with sufficient spatial resolution py is the suppression of light from outside Combining CRM with AFM the high spatial and without damage or staining. There- the focal plane. This is realized firstly by a and topographical resolution obtained fore analyzing methods that provide both point illumination in the focal plane and with an AFM can be directly linked to the comprehensive chemical characterization secondly by a pinhole in the conjugate molecular information provided by con- and the flexibility to adjust the method to plane of the detection beam path. focal Raman spectroscopy. the investigated specimen are preferred in Due to the point illumination and detecti- pharmaceutical research. on, only information from a single point is Topographic Confocal Raman Imaging Confocal Raman Microscopy (CRM) is a determined at a time. In order to generate Although confocal Raman imaging is con- well-established and widely-used spec- an image the sample is scanned point-by- sidered to be a non-destructive method troscopic method for the investigation of point and line-by-line. it is common to create a smooth and the chemical composition of a sample. In The advantages of confocal microscopy even sample surface in order to keep the pharmaceutical research, CRM can be used over conventional wide-field microscopy surface in the focal plane while measu- to probe the distribution of components are an improved resolution in the lateral ring in confocal Raman imaging mode. within formulations, to characterize the plane, a high axial discriminatory power, a However, this intervention can lead to the homogeneity of pharmaceutical samples, reduced background signal and the ability misinterpretation of the analytical results. to determine the state of drug substan- to collect optical sections in series from To avoid any sample preparation topogra- ces and excipients and to characterize different focal planes to generate depth phic confocal Raman imaging (TrueSurface contaminants and foreign particulates [1]. profiles or 3D images. Microscopy, WITec GmbH, Germany) can be The information obtained by CRM is also applied. It is especially useful for samples useful for drug substance design, for the Confocal Raman Microscopy with rough or inclined surfaces. The highly development of solid and liquid formula- By combining a research-grade confocal precise sensor scans the topography of the tions, as a tool for process analytics and optical microscope with a high-sensitivity sample. The topographic coordinates are for patent infringement and counterfeit Raman spectrometer, the resolution of the used to trace the sample‘s surface in con- analysis [2, 3, 4]. Being a non-destructive optical microscope can complement the focal Raman imaging mode to ensure that method it is possible to combine CRM with analytical power of Raman spectroscopy. the Raman laser is always kept in focus. other imaging techniques such as Atomic Thus it is not only possible to obtain Ra- The result is a confocal Raman image that Force Microscopy (AFM), Scanning Electron man spectra from extremely small sample can be overlaid on the topographic image Microscopy (SEM) or fluorescence analysis. volumes, but also to collect high-resolution and visualized three dimensionally. Raman images that show the distribution The Aim of the Study of chemical species and crystallographic Experimental Setup properties with sub-µm resolution. The A confocal Raman microscope (alpha300 Based on various samples the article will sample is scanned point-by-point and line- R, WITec GmbH) was used to study the demonstrate how CRM can be beneficially by-line, and at every image pixel a com- chemical composition of various pharma- applied in the pharmaceutical field. With plete Raman spectrum is acquired. This ceutical samples. The laser light is guided high-resolution, large-area Raman images, process is called hyperspectral imaging. to the microscope through an optical fiber. It can be focused to a diffraction-li- ve, back-illuminated CCD camera. was acquired, therefore the large image mited spot and therefore acts as a point is the result of an evaluation of 4,194,304 light source. This light is focused onto the Results & Discussion Raman spectra. The integration time per sample using a dichroic beam splitter that spectrum was 2 ms and the raw data file reflects the exciting laser beam, but is High-Resolution, Large-Area Confocal size is 12.5 GB. The consecutive zoom-in fully transparent for the frequency-shifted Raman Imaging, Volume Scans and 3D images (figure 1b and 1c) of the same data- Raman light. The sample is scanned with a Visualizations set illustrate the extremely high-resolution piezo-electric scanning table with capaciti- In the first example a pharmaceutical of the large-area scan shown in figure 1a. ve feedback correction for high resolution. emulsion was investigated. The active The Raman data were acquired, evalua- The Raman scattered light is collected pharmaceutical ingredient (API) was ted and processed with the Project FOUR with the same objective and is focused dissolved in water. In figure 1a a large-area, Software (WITec GmbH, Germany). In the into the core of another optical fiber that high-resolution Raman image of the emul- resulting color-coded images the water is connected to a spectrometer. The light is sion is shown. The image scan range is 180 and API-containing phase is presented in dispersed inside the spectrometer and the x 180 µm2 with 2048 x 2048 pixels. At each blue, whereas with green the oil-matrix is spectra are acquired with an ultra-sensiti- image pixel a complete Raman spectrum displayed. In addition to the distribution of a) b) c) Figure 1: a) Large-area, high-resolution confocal Raman image of a pharmaceutical emulsion. Scan range: 180 µm x 180 µm; 2048 x 2048 pixels = 4,194,304 Raman spectra; raw data file size: 12.5 GB. Blue: active pharmaceutical ingredient; green: oil; red: silicon impurities. b) and c) consecutive zoom-in images of the same dataset. the known materials, silicon-based impuri- Figure 2: Confocal 3D Raman ties could be visualized (red in the images). volume image. The green oil is Volume scans are a valuable tool for pro- partially removed in the image viding information about the dimensions to facilitate a better identifica- tion of the red impurities. Scan of objects or the distribution of a certain range: 25 x 25 x 20 µm3, 200 x compound throughout the sample. The 200 x 50 pixels = 2,000,000 generation of volume scans and 3D images Raman spectra, integration always requires large data sizes. In order time per spectrum: 10 ms, data to generate 3D images, confocal 2D Raman file size: 6 GB. images of parallel focal planes are acqui- red by scanning throughout the sample in the z-direction. The 2D images are then combined into a 3D image stack. To investigate the volume of the impurities of the emulsion from figure 1a in more detail, a 3D scan was performed. For that a volume of 25 x 25 x 20 µm3 was analyzed a) with 200 x 200 x 50 pixels. At each image pixel a complete Raman spectra with 10 ms integration time per spectrum was acquired. The image stack contains the information of a total of 2 million Raman spectra and is based on a raw data file size of 6 GB (figure 2). In the following an example emulsion was studied. Therefore carbon tetrachloride (CCl4) was mixed with an alkane, water and oil. A high-resolution 3D Raman image of the emulsion was acquired (figure 3). It shows the three-dimensional distribu- tion of the components and reveals CCl4 dissolved in the oil phase. b) Figure 3: Confocal, high-resolution Raman microscopy of an emulsion of CCl4, alkane, water and oil. a) Three-dimensional confocal color-coded Raman image of the emulsion; alkane: green, water: blue, CCl4 + oil: yellow. Image parameters: 200 x 200 x 20 pixels; scan area: 100 x 100 x 10 µm3; in- tegration time per spectrum: 0.06 s; excitation laser wavelength: 532 nm. b) corresponding Raman spectra. Topographic Raman Imaging the sample’s surface in focus over the green. In this way the generated 3D Raman A pharmaceutical tablet with height entire scanned area without any Raman image provides the full information about variations of 300 µm on the surface signal decrease.
Recommended publications
  • Food and Pharma Basics Basics Basics Food & Pharma Food & Pharma
    WISSEN - KNOWLEDGE Food and Pharma Basics BASICS BASICS Food & Pharma Food & Pharma Food and Pharma Hygienic Design Cleanability © RECHNER Germany 04/2020 EN - Printed in EU, all rights reserved. 2 RECHNER Industrie-Elektronik GmbH • Gaußstraße 6-10 • D-68623 Lampertheim • Tel. +49 6206 5007-0 • Fax +49 6206 5007-36 • e-mail: [email protected] • www.rechner-sensors.com All specifications are subject to change without notice. (04/2020) BASICS BASICS Food & Pharma Food & Pharma TABLE OF CONTEND Table of Contend Page Motivation 4 - 5 Sources of Information 6 European Standards and Directives 7 - 8 Declaration of Conformity Norms and DirectivesNorms Basics and Examples 9 - 14 Tri-Clamp / Tri-Clover 15 - 22 Tri-Clamp Food Contact Materials Basics and Directives 23 - 25 Materials Plastics 26 Metalls 27 RECHNER Industrie-Elektronik GmbH • Gaußstraße 6-10 • D-68623 Lampertheim • Tel. +49 6206 5007-0 • Fax +49 6206 5007-36 • e-mail: [email protected] • www.rechner-sensors.com 3 All specifications are subject to change without notice.(04/2020) BASICS BASICS Food & Pharma Food & Pharma MOTIVATION SAFE PRODUCts In process technology and plant engineering, the definition of „hygienic design“ refers to the design of machines and plants with consideration of the cleanability of the system. CONSUMER PROTECTION This is always relevant where products are manufactured that can be dangerous for the consumer due to germs or contamination and also where the product can turn out to be unusable, which represents a loss for the manufacturer. OPTIMIZatiON OF THE CLEANING PROCESSES Hygienic design is for example relevant in the following business areas: • Food industry (humans and animals) REDUCTION OF THE • Beverage industry CLEANING AND • Pharmaceutical industry • chemical industry MAINENANCE TIMES • cosmetic industry • Biotechnology Hygienic design must be considered at all parts of the plant that come into direct contact with the product to be produced.
    [Show full text]
  • Industry Pharmacy Practice Certificate Course
    Industry Pharmacy Practice Certificate Course Commercialization of Pharmaceuticals: Form A to Z and the Growing Role for Industry Pharmacists Online Course; 8 modules Target Audience: This certificate course is designed to meet the growing demand in preparing student pharmacists, recent graduates, or younger professionals interested in a career in Industry. Course Description While the number of traditional pharmacy practice positions has been stagnant in recent years, the number of pharmacy schools across the U.S. continues to grow. In 2016 alone, it is expected that between 14,000-15,000 additional PharmDs will enter the workforce, which represents more than double the number of graduates produced in 2001.1 This has led some to predict a looming employment crisis for the pharmacy profession.1,2 Meanwhile, the interest in pursuing a non-traditional professional path has expanded, particularly as such opportunities have increased beyond the realm of community and hospital pharmacies.3 One such avenue for a pharmacist is a career in the pharmaceutical industry, where knowledge and awareness is increasing for new pharmacy graduates and established pharmacists. This career route allows pharmacists to utilize their clinical knowledge to impact patient health on a broader scale.3 The pharmaceutical industry including all of the organizations that support it offers exciting and professional challenges and opportunities for pharmacist graduates. Consistent with the changing roles of pharmacists in traditional healthcare practice settings, industry has also undergone significant changes resulting in a growing diversity of positions that are being filled by pharmacists throughout the commercialization process of pharmaceutical products. This course explores various aspects of pharmaceutical commercialization from drug development and regulatory approval to marketing and sales strategies through life-cycle management.
    [Show full text]
  • Research and Development in the Pharmaceutical Industry
    Research and Development in the Pharmaceutical Industry APRIL | 2021 At a Glance This report examines research and development (R&D) by the pharmaceutical industry. Spending on R&D and Its Results. Spending on R&D and the introduction of new drugs have both increased in the past two decades. • In 2019, the pharmaceutical industry spent $83 billion dollars on R&D. Adjusted for inflation, that amount is about 10 times what the industry spent per year in the 1980s. • Between 2010 and 2019, the number of new drugs approved for sale increased by 60 percent compared with the previous decade, with a peak of 59 new drugs approved in 2018. Factors Influencing R&D Spending. The amount of money that drug companies devote to R&D is determined by the amount of revenue they expect to earn from a new drug, the expected cost of developing that drug, and policies that influence the supply of and demand for drugs. • The expected lifetime global revenues of a new drug depends on the prices that companies expect to charge for the drug in different markets around the world, the volume of sales they anticipate at those prices, and the likelihood the drug-development effort will succeed. • The expected cost to develop a new drug—including capital costs and expenditures on drugs that fail to reach the market—has been estimated to range from less than $1 billion to more than $2 billion. • The federal government influences the amount of private spending on R&D through programs (such as Medicare) that increase the demand for prescription drugs, through policies (such as spending for basic research and regulations on what must be demonstrated in clinical trials) that affect the supply of new drugs, and through policies (such as recommendations for vaccines) that affect both supply and demand.
    [Show full text]
  • Process & Plant Engineering for the Pharmaceutical
    PROCESS & PLANT ENGINEERING FOR THE PHARMACEUTICAL INDUSTRY Glatt. Integrated Process Solutions. 2 UNIQUE TECHNOLOGY COMPETENCE The production of pharmaceutical solids would be un- Functional. imaginable if it weren‘t for the pioneering achievements of We do not draw up architecture models. We design a factory, Glatt in the area of fluidized bed technology. But Glatt has starting from the requirements of the production process, much more to offer. In addition to the continuous perfecting from the inside to the outside. of our equipment, we are developing new dosage forms, operating a subcontracting business with all the required High-quality. approvals and cultivating close international contacts in the Our project solutions fulfill the same high requirements pharmaceutical research industry and with scientific insti- that we also apply to the development and manufacturing tutes. At the same time, we have many years of experience in of pharmaceutical dosage forms and of our technological the planning, design and construction of industrial facilities. equipment. And not just in the field of solid materials. Independent. We bundle our expertise together in our unique, integrat- As a neutral planner in the compilation of the process design ed service concept: sustainable process and plant engi- and the selection of equipment, we are under no obligation neering, adapted to your specific technological require- to any individual manufacturer. ments. We support you from the initial idea to turn-key production with our comprehensive advice and reliable Reliable. project management. Our sureties for a verifiable project success include ad- Worldwide! herence to scheduling and budgets, efficient project management and planning tools that transcend the limits of individual building trades.
    [Show full text]
  • How the American Pharmaceutical Industry Transformed Itself During the 1940S
    Making the Market: How the American pharmaceutical industry transformed itself during the 1940s. Abstract: Between 1940 and 1950 the American pharmaceutical industry transformed itself from a collection of several hundred, small, barely profitable firms to a small group of large, highly profitable firms. The object of this paper is to use this case to understand how an industry evolves and, more specifically, to determine how a single industry comes to be dominated by a few large firms. This is in the tradition of recent studies that have examined the role of political, organizational, and social variables in the evolution of American industry(Dobbin 1994; Fligstein 2001; Perrow 2002). The intent here is to analyze different predictors of success following a population-level change, in a new case, one where firm success was previously considered the product of economic efficiency (Temin 1979; Temin 1980). To answer my specific question I employ a random-effect regression analysis on longitudinal data collected on the population of public firms between 1935-1955. I find that while the previous economic explanations may explain subsequent successes, they do not explain the initial change in the industry. Instead, the transformation of the industry into an oligopoly was largely the unintentional result of direct intervention by the US government. Introduction In 1940 the American pharmaceutical industry was composed of several hundred small companies, each limited to a particular geographic region and, the largest of which accounted for less than 3% of the total market. Few of these companies were profitable, fewer offered products of genuine therapeutic value and even fewer would still be in business in twenty years.
    [Show full text]
  • Can We Keep Meatpacking Companies Accountable for Hiring Undocumented Immigrants?
    Emory Corporate Governance and Accountability Review Volume 3 Issue 3 2016 Can We Keep Meatpacking Companies Accountable for Hiring Undocumented Immigrants? Sapna Jain Follow this and additional works at: https://scholarlycommons.law.emory.edu/ecgar Recommended Citation Sapna Jain, Can We Keep Meatpacking Companies Accountable for Hiring Undocumented Immigrants?, 3 Emory Corp. Governance & Accountability Rev. 157 (2016). Available at: https://scholarlycommons.law.emory.edu/ecgar/vol3/iss3/4 This Essay is brought to you for free and open access by the Journals at Emory Law Scholarly Commons. It has been accepted for inclusion in Emory Corporate Governance and Accountability Review by an authorized editor of Emory Law Scholarly Commons. For more information, please contact [email protected]. JAIN ESSAY GALLEYSFINAL 4/20/2016 10:58 AM CAN WE KEEP MEATPACKING COMPANIES ACCOUNTABLE FOR HIRING UNDOCUMENTED IMMIGRANTS? OVERVIEW Upton Sinclair’s The Jungle and its exposé of the meatpacking industry was, for many Americans, the first encounter with the unsanitary and unhealthy conditions of the meatpacking industry.1 Sinclair’s book led to the implementation of food quality standards, an increase in monitoring of food production, and the strengthening of workers’ unions which resulted in better working conditions for meatpacking industry workers.2 Over time, as government subsidies of farms, slaughterhouses, and the meat-producing industry became increasingly common, the demographics of the workers also changed.3 In the early twentieth
    [Show full text]
  • BIG DATA in Pharmaceutical Industry
    W H I T E P A P E R BIG DATA in Pharmaceutical Industry www.DDiSmart.com WHITE BIG DATA in Pharmaceutical Industry PAPER The BIG DATA revolution Over past few years there has been a buzz around the word called “BIG DATA”. We will see this term being used were ever companies are finding huge amount of data coming from various data sources. The revolution in social media in past decade has added more interest to this term. With new and varied sources of data available, companies are looking to integrate all sources into a big pool of data. But such datasets are also difficult to manage and are complex in nature. As such over the past few years many data management tools have emerged to handle these kinds of data and traditional approach like RDBMS no longer holds good in these changing environment. Analyzing real world data could become a cornerstone of value­based pricing The V’s in Big Data: methods According to Gartner, "Big data is high volume, high velocity, and/or high variety information”. If these data is handled properly with greater processing techniques, it has the potential to create value for an Organization. Velocity The forms of data which are constantly coming to the system and is in most of the cases real time are grouped under this name. This data serves the purpose of knowing what is happing now in the real world and can help in making effective decision. Take for example medical Devices and sensors are generating data constantly and in real time, which if not tracked on time may become useless.
    [Show full text]
  • The Pharmaceutical Industry and Global Health: Facts and Figures
    THE PHARMACEUTICAL INDUSTRY AND GLOBAL HEALTH: FACTS AND FIGURES Issue 2011 Foreword 3 Dear Reader, This compendium of facts and figures relating to the pharmaceutical industry and global health aims to provide a snapshot of the work this vibrant industry undertakes today. This publication examines some of the most recent data on pharmaceutical innovation and global health, access to medicines and healthcare systems, as well as the economic footprint of the pharmaceutical industry. The information presented here confirms the ranking of the re- search-based pharmaceutical industry as one of the most innovative sectors in the world, which over the past century has played a unique role in develop- ing new and improved medicines and vaccines to prevent and treat diseases and conditions. This is a unique industry. IFPMA members employ millions of people who are proud to participate in this crucial endeavor. They save millions of lives and help those suffering from disease to recover and lead more productive ones. IFPMA brings this publication to underline the ongoing commitment of the research-based pharmaceutical industry to improving the quality of life for all of the world’s people, not only through healthcare but also through economic progress. We hope that sharing some of the most recent and relevant facts and figures relating to our work can add value for evidence-based policymaking in the global health arena. Eduardo Pisani Director General International Federation of Pharmaceutical Manufacturers and Associations (IFPMA) TABLE OF CONTENTS KEY FACTS 6 1. PHARMACEUTICAL INNOVATION AND PUBLIC HEALTH 11 A look into the pharmaceutical industry R&D pipeline 12 Pharmaceutical industry R&D investments 15 Pharmaceutical R&D and its impact on global health 16 R&D for diseases that disproportionately affect the developing world 19 2.
    [Show full text]
  • Applications of Data Mining in Health and Pharmaceutical Industry Sandhya Joshi, Hanumanthachar Joshi
    International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 915 ISSN 2229-5518 Applications of data mining in health and pharmaceutical industry Sandhya Joshi, Hanumanthachar Joshi Abstract— The Data mining is gradually becoming an integral and essential part of health and pharmaceutical industry. Data mining techniques are being regularly used to assess efficacy of treatment, management of ailments, and also in various stages of drug discovery and process re- search. Off late, data mining has become a boon in health insurance sector to minimize frauds and abuse. A good number of health care compa- nies, medical hospitals and pharmaceutical manufacturing units are employing the data mining tools due their excellent efficiency. The identifica- tion and quantification of pharmaceutical information can be extremely useful for patients, physicians, pharmacists, health organizations, insur- ance companies, regulatory agencies, investors, lawyers, pharmaceutical manufacturers, drug testing companies. This review deals with the ma- jor applications of data mining techniques in health care and pharmaceutical industries with relevant examples. Index Terms—. Data mining, health care, pharmaceutical industry, classification, insurance, drug, Alzheimer’s —————————— —————————— 1 INTRODUCTION ata mining is a fast evolving technology, is being adopt- Recently, there have been reports of successful data mining Ded in biomedical sciences and research. Modern medicine applications in healthcare fraud and abuse detection. Another generates a great deal of information stored in the medical factor is that the huge amounts of data generated by database. For example, medical data may contain MRIs, sig- healthcare transactions are too complex and voluminous to be nals like ECG, clinical information like blood sugar, blood processed and analyzed by traditional methods.
    [Show full text]
  • Data Mining in the Pharmaceutical Industry
    Data Mining in the Pharmaceutical Industry By Jerry Swartz Introduction • Since I am a remote student, if there are questions, feel free to e-mail [email protected] Pharmaceutical Development • Four Stages of Drug Development – Research finds new drugs – Development tests and predicts drug behavior – Clinical trials test the drug in humans – Commercialization takes drug and sells it to likely consumers (doctors and patients) • I’ll show an example for the Research, Development, and Clinical Trials stages Research Stage • Huge user of data mining tools and techniques • Scientists run experiments to determine activity of potential drugs • Uses high speed screening to test tens, hundreds, or thousands of drugs very quickly – this generates microarray data Research Stage • “Bioinformatics” is a general term for the information processing activities on data generated in Research Stage, especially microarray data • General goal is to find activity on relevant genes or to find drug compounds that have desirable characteristics (whatever those may be) Research Stage • Data mining techniques used – Clustering – Classification – Neural networks Research Stage Example 1 • Goal: Determine compounds with similar activity • Why: Compounds with similar activity may behave similarly • When: – Have known compound and are looking for something better – Don’t have known compound but have desired activity and want to find compound that exhibits this activity Research Stage Example 1 • Sample data Structure\Activity Alpha Beta Delta Gamma CO2 0.07 0.88 0.62
    [Show full text]
  • Animal Drug Development and Consumer Protection: an Historical Review
    Animal Drug Development and Consumer Protection: An Historical Review Samuel F. Scheidy, V.M.D. Bryn Mawr, PA Editor's Note: This paper was presented as the keynote address during the FDA/AHI Diamond Jubilee Celebration June 15, 1981, Arlington, Virginia. 1 am flattered to be invited to participate in this, the procedures provide foodstuffs, especially those of animal jubilee celebration of the federal agency that is concerned origin (i.e., fresh frozen and processed meat; milk, cheese chiefly with the safety of food and drugs so essential for and other dairy products; poultry meat and human life. However, I have a dilemma. It reminds me of eggs: manufactured foods that include the above) to the the story told of the late Supreme Court Justice, Oliver consumer in excellent condition and in shorter periods of Wendell Holmes, who once found himself on a train, but time from production to market than in most countries. could not locate his ticket. While the conductor watched, This has not always been the case. As an example, in 1900 smiling, the 88-year-old justice searched through all his one farmer produced enough food for 7 people, in 1950 for pockets without finding the ticket. The conductor, of 16 people and in 1980 for 60 people. course, recognized the distinguished passenger. So he A recent report from the National Academy of said: Mr. Holmes, don't worry. You don't need your ticket Agriculture indicates that 25% of our work force generates at this time. You will undoubtedly find it when you get off some 20% of the U.S.
    [Show full text]
  • Nfg Sponsorship of Events FINAL 20180611
    IFPMA Note for Guidance on Sponsorship of Events and Meetings Preamble The purpose of this document is to provide additional interpretation and further guidance towards the relevant provisions of the Code of Practice. This Note for Guidance is not binding by itself. It must be read with the spirit of the Code in mind and always in accordance with applicable laws and regulations and other applicable industry codes. IFPMA member companies and member associations are encouraged to take into account the considerations given in this Note for Guidance when implementing the IFPMA Code of Practice in their daily practice. The overall intention of this Note for Guidance is that the cooperation between companies, HCPs and other stakeholders is always based on high ethical standards and clearly aims to benefit patients. Introduction Advancing medical knowledge and improving global public health remains a priority for the International Federation of Pharmaceutical Manufacturers and Associations (IFPMA) representing the research-based pharmaceutical industry. Collaborations between healthcare professionals and the pharmaceutical industry are essential and ensure that patients have access to the medicines they need and that healthcare professionals have up-to-date comprehensive information about the diseases they treat and the medicines they prescribe. IFPMA members remain committed to activities that provide scientific and educational content to healthcare professionals and advance their medical knowledge and expertise. These activities may take place through various means and media. The IFPMA Code of Practice sets global standards for industry business practices and includes guiding principles of ethical conduct and promotion as well as requirements for the promotion of medicines to health professionals and interactions with healthcare professionals and other stakeholders.
    [Show full text]