Effects of Macromolecular Crowding on Protein Folding - In-Vitro Equilibrium and Kinetic Studies on Selected Model Systems

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Macromolecular Crowding on Protein Folding - In-Vitro Equilibrium and Kinetic Studies on Selected Model Systems Effects of Macromolecular Crowding on Protein Folding - in-vitro equilibrium and kinetic studies on selected model systems Alexander Christiansen Kemiska Institutionen Umeå 2013-11-20 Responsible publisher under swedish law: the Dean of the Faculty of Science and Technology This work is protected by the Swedish Copyright Legislation (Act 1960:729) ISBN: 978-91-7459-764-6 Elektronisk version tillgänglig på http://umu.diva-portal.org/ Tryck/Printed by: Service Center KBC Umeå Sweden 2013 众鸟高飞去 孤云独去闲 相看两不厌 只有敬停山 —李白 The birds have vanished down the sky. Now the last cloud drains away. We sit together, the mountain and I, Until only the mountain remains. -Li Bai (Translated by Xiaowei Song) Table of Contents ABSTRACT ............................................................................................. III LIST OF ABBREVIATIONS ...................................................................... VIII ENKEL SAMMANFATTNING PÅ SVENSKA ................................................ VI LIST OF PUBLICATIONS ........................................................................ VIII 1. INTRODUCTION .................................................................................. 2 1.1 PROTEIN FOLDING ................................................................................. 3 1.2 MACROMOLECULAR CROWDING ............................................................... 6 1.2.1 CELL AND CELLULAR ORGANIZATION ............................................................. 6 1.2.2 THEORETICAL MODELS OF EXCLUDED VOLUME EFFECTS ON PROTEINS ................ 8 1.2.3 EXPERIMENTAL STUDIES OF MACROMOLECULAR CROWDING EFFECTS .............. 11 1.2.4 COMPUTER SIMULATIONS OF CROWDING EFFECTS ........................................ 15 1.3 AIM OF THE PROJECT ....................................................................... 17 2. MATERIALS AND METHODS ............................................................... 18 2.1 PROTEIN EQUILIBRIUM STABILITY ............................................................. 18 2.2 PROTEIN FOLDING KINETICS .................................................................... 20 2.2.1 NON-LINEARITIES AND ADDITIONAL PHASES .................................................. 22 2.3 COMPARING KINETIC AND EQUILIBRIUM MEASUREMENTS ............................. 22 2.3.1 PHI-VALUE ANALYSIS ................................................................................. 23 2.3 SPECTROSCOPY .................................................................................... 24 2.3.1 CD SPECTROSCOPY ................................................................................... 24 2.3.2 FLUORESCENCE SPECTROSCOPY .................................................................. 25 2.4 CROWDER PREPARATION ....................................................................... 25 2.5 DIFFERENTIAL SCANNING CALORIMETRY (DSC) ............................................ 25 2.6 MODEL PROTEINS ................................................................................ 26 2.6.1 APOAZURIN ............................................................................................. 27 2.6.2 CYTOCHROME C ....................................................................................... 27 2.6.3 APOFLAVODOXIN ..................................................................................... 28 2.7 THEORETICAL MODELS OF EXCLUDED VOLUME EFFECTS ON PROTEIN STABILITY ... 29 i 3. RESULTS ............................................................................................ 33 3.1 EFFECT OF CROWDING ON EQUILIBRIUM .................................................... 33 3.1.1 CYTOCHROME C ....................................................................................... 34 3.1.2 APOAZURIN ............................................................................................. 38 3.1.3 SUMMARY OF THE EQUILIBRIUM DATA ........................................................ 43 3.2 EFFECTS OF CROWDING ON FOLDING KINETICS ............................................ 44 3.2.1 APOAZURIN FOLDING KINETICS ................................................................... 44 3.2.2 APOFLAVODOXIN FOLDING KINETICS ........................................................... 45 3.2.3 FAST FOLDING KINETICS OF CYTOCHROME C ................................................. 48 3.2.4 EFFECT OF VISCOSITY ON FOLDING KINETICS .................................................. 49 3.2.5 SUMMARY OF THE EFFECTS OF CROWDING ON FOLDING KINETICS .................... 50 4. DISCUSSION....................................................................................... 52 4.1 ATTRACTIVE INTERACTIONS? ................................................................... 55 4.2 CROWDING EFFECTS ON KINETICS ............................................................ 58 4.3 IN-VITRO VS IN-VIVO CONDITIONS ............................................................ 59 5. CONCLUSION AND SUMMARY ............................................................ 62 6. OUTLOOK .......................................................................................... 63 ACKNOWLEDGEMENTS .......................................................................... 65 REFERENCES .......................................................................................... 67 ii Abstract Protein folding is the process whereby an extended and unstructured polypeptide is converted into a compact folded structure that typically con- stitutes its functional form. The process has been characterized extensively in-vitro in dilute buffer solutions over the last few decades. However, in- vivo, it occurs inside living cells whose cytoplasm is filled with a plethora of different macromolecules that together occupy up to 40% of its total volume. This large number of macromolecules restricts the space available to each individual molecule, which has been termed macromolecular crowding. Macromolecular crowding generates excluded volume effects and also in- creases the importance of non-specific interactions between molecules. It should favor reactions that reduce the total volume occupied by all molecules within the cytoplasm, such as folding reactions. Theoretical models have predicted that the stability of proteins’ folded states should be increased by macromolecular crowding due to unfavorable effects on the extended un- folded state. To understand protein folding and function in living systems, we need to have a defined quantitative link between in-vitro dilute condi- tions (under which most biophysical experiments are conducted) and in-vivo crowded conditions. It is therefore important to determine how macromo- lecular crowding modifies the biophysical properties of proteins. The work underlying this thesis focused on how macromolecular crowd- ing tunes proteins’ equilibrium stability and kinetic folding processes. To mimic the crowded cellular environment, synthetic sugar-based polymers (dextrans of different sizes and Ficoll 70) were used as crowding agents (crowders) in controlled in-vitro experiments. In contrast to previous studies which often have focused on one protein and one crowder at a time, the goal here was to perform systematic analyses of the relationships between the size, shape and concentration of the crowders and the equilibrium and kinet- ic properties of structurally-different proteins. Three model proteins (cyto- chrome c, apoazurin and apoflavodoxin) were investigated under crowding by Ficoll 70 and dextrans of various sizes, using a range of spectroscopic techniques such as far-UV circular dichroism and intrinsic tryptophan fluo- rescence. Thermodynamic models were used to explain the experimental results. It was discovered that the equilibrium stability of all three proteins in- creased in the presence of crowding agents in a crowder concentration- dependent manner. The stabilization effect was around 2-3 kJ/mol and was greater for the various Dextrans than for Ficoll 70 at the same mass concen- iii tration but independent of dextran size (for dextrans ranging from 20 to 70 kDa). A theoretical crowding model was used to investigate the origins of this stabilization. In this model, Dextran and Ficoll were modeled as elongated rods and the protein was represented as a sphere, with the folded sphere representation being smaller than the unfolded sphere representation. Nota- bly, this model was able to reproduce the observed stability changes while only accounting for steric interactions. This correlation showed that when using sugar-based crowding agents, excluded volume effects can be studied in isolation with no contributions from nonspecific interactions. Time-resolved experiments using apoazurin and apoflavodoxin revealed an increase in the folding rate constants while the unfolding rates were un- changed by the presence of crowding agents. For apoflavodoxin and cyto- chrome c, the presence of crowding agents also altered the folding pathway such that it became more homogeneous (cytochrome c) and gave less mis- folding (apoflavodoxin). These results showed that macromolecular crowd- ing restricts the conformational space of the unfolded polypeptide chain, making its conformations more compact. This in turn eliminates access to certain folding/misfolding pathways. The results of the kinetic and equilibrium measurements on three model proteins, together with available data from the literature, demonstrate that macromolecular crowding effects due to volume exclusion are on the order of a few kJ/mol. Considering the numerous
Recommended publications
  • Unpacking the Origins of In-Cell Crowding Kim A
    COMMENTARY COMMENTARY Unpacking the origins of in-cell crowding Kim A. Sharpa,1 The living cell, the fundamental unit of biological meaning that a large excluded volume is a property of organization, was discovered in its apparent simplicity all macromolecules. An extensive review covers much by van Leeuwenhoek in the 17th century. Scientists of the subsequent literature (5). Of course, solutes can since then have continued to unpack nested levels cause nonideal behavior through a second mecha- of amazingly complex cellular structure and organiza- nism, strong intermolecular interactions such as elec- tion, right down to the atomic level. However, one of trostatic and hydrophobic effects. Although crowding the cell’s simplest properties is not yet understood, is now often used as a synonym for any effects of con- perhaps even misunderstood. The interior of the cell centrated solutes, for the purpose of this commentary I contains a high concentration of dissolved solutes, prin- will take crowding to refer to the excluded volume cipally ions, metabolites, proteins, and RNA. In a word, effects, as originally defined (3, 4), because disentan- it is crowded in there. Estimates range from 30% to 40% gling size effects and interaction effects is precisely by volume occupied by protein and RNA solutes, where the advances of Smith et al. (2) lie. I also discuss depending on the cell type and compartment (1). Bio- effects on equilibria only. Given our recently revised chemists and biophysicists have long been concerned understanding of equilibrium effects, it seems prema- that these high concentrations impart significantly non- ture to discuss the more complex effects of crowding ideal solution behavior.
    [Show full text]
  • Using Small Globular Proteins to Study Folding Stability and Aggregation
    Using Small Globular Proteins to Study Folding Stability and Aggregation Virginia Castillo Cano September 2012 Universitat Autònoma de Barcelona Departament de Bioquímica i Biologia Molecular Institut de Biotecnologia i de Biomedicina Using Small Globular Proteins to Study Folding Stability and Aggregation Doctoral thesis presented by Virginia Castillo Cano for the degree of PhD in Biochemistry, Molecular Biology and Biomedicine from the University Autonomous of Barcelona. Thesis performed in the Department of Biochemistry and Molecular Biology, and Institute of Biotechnology and Biomedicine, supervised by Dr. Salvador Ventura Zamora. Virginia Castillo Cano Salvador Ventura aZamor Cerdanyola del Vallès, September 2012 SUMMARY SUMMARY The purpose of the thesis entitled “Using small globular proteins to study folding stability and aggregation” is to contribute to understand how globular proteins fold into their native, functional structures or, alternatively, misfold and aggregate into toxic assemblies. Protein misfolding diseases include an important number of human disorders such as Parkinson’s and Alzheimer’s disease, which are related to conformational changes from soluble non‐toxic to aggregated toxic species. Moreover, the over‐expression of recombinant proteins usually leads to the accumulation of protein aggregates, being a major bottleneck in several biotechnological processes. Hence, the development of strategies to diminish or avoid these taberran reactions has become an important issue in both biomedical and biotechnological industries. In the present thesis we have used a battery of biophysical and computational techniques to analyze the folding, conformational stability and aggregation propensity of several globular proteins. The combination of experimental (in vivo and in vitro) and bioinformatic approaches has provided insights into the intrinsic and structural properties, including the presence of disulfide bonds and the quaternary structure, that modulate these processes under physiological conditions.
    [Show full text]
  • How Can Biochemical Reactions Within Cells Differ from Those in Test Tubes?
    ß 2015. Published by The Company of Biologists Ltd | Journal of Cell Science (2015) 000, 000–000 doi:10.1242/jcs.170183 CORRECTION How can biochemical reactions within cells differ from those in test tubes? Allen P. Minton There was an error published in J. Cell Sci. 119, 2863-2869. There is a typographical error in equation (2). The right-hand side of this equation should read ‘DFI,AB 2 (DFI,A+D FI,B)’. JCS and the author apologise for any confusion that this error might have caused. 1 Journal of Cell Science JCS170183.3d 22/2/15 09:24:29 The Charlesworth Group, Wakefield +44(0)1924 369598 - Rev 9.0.225/W (Oct 13 2006) Commentary 2863 How can biochemical reactions within cells differ from those in test tubes? Allen P. Minton Section on Physical Biochemistry, Laboratory of Biochemical Pharmacology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA e-mail: [email protected] Accepted 23 May 2006 Journal of Cell Science 119, 2863-2869 Published by The Company of Biologists 2006 doi:10.1242/jcs.03063 Summary Nonspecific interactions between individual macro- interactions tend to enhance the rate and extent of molecules and their immediate surroundings (‘background macromolecular associations in solution, whereas interactions’) within a medium as heterogeneous and predominately attractive background interactions tend to highly volume occupied as the interior of a living cell can enhance the tendency of macromolecules to associate on greatly influence the equilibria and rates of reactions in adsorbing surfaces.
    [Show full text]
  • Effects of Macromolecular Crowding on Gene Expression Studied In
    Effects of macromolecular crowding on gene expression studied in protocell models The work described in this thesis was supported by a European Research Council (ERC), Advanced Grant (246812 Intercom) and a VICI grant from the Netherlands Organisation for Scientific Research (NWO) ISBN: 978-94-6295-151-8 Cover design: Denis Arslanov and Ekaterina Sokolova Printed & Lay Out by: Proefschriftmaken.nl || Uitgeverij BOXPress Published by: Uitgeverij BOXPress, ’s-Hertogenbosch Effects of macromolecular crowding on gene expression studied in protocell models Proefschrift ter verkrijging van de graad van doctor aan de Radboud Universiteit Nijmegen op gezag van de rector magnificus prof. dr. Th.L.M. Engelen, volgens besluit van het college van decanen in het openbaar te verdedigen op dinsdag 12 mei 2015 om 14.30 uur precies door Ekaterina Alexandrovna Sokolova geboren op 30 augustus 1987 te Angren (Uzbekistan) Promotor: Prof. dr. W. T. S. Huck Manuscriptcommissie: Prof. dr. ir. J. C. M. van Hest (voorzitter) Prof. dr. H. N. W. Lekkerkerker (Universiteit Utrecht) Dr. V. Noireaux (University of Minnesota, VS) Effects of macromolecular crowding on gene expression studied in protocell models Doctoral Thesis to obtain the degree of doctor from Radboud University Nijmegen on the authority of the Rector Magnificus prof. dr. Th.L.M. Engelen, according to the decision of the Council of Deans to be defended in public on Tuesday, May 12, 2015 at 14.30 hours by Ekaterina Alexandrovna Sokolova Born on August 30, 1987 in Angren (Uzbekistan) Supervisor: Prof. dr. W. T. S. Huck Doctoral Thesis Committee: Prof. dr. ir. J. C. M. van Hest (chairman) Prof.
    [Show full text]
  • Topology Is the Principal Determinant in the Folding of a Complex All-Alpha Greek Key Death Domain from Human FADD
    doi:10.1016/j.jmb.2009.04.004 J. Mol. Biol. (2009) 389, 425–437 Available online at www.sciencedirect.com Topology is the Principal Determinant in the Folding of a Complex All-alpha Greek Key Death Domain from Human FADD Annette Steward, Gary S. McDowell and Jane Clarke⁎ University of Cambridge In order to elucidate the relative importance of secondary structure and Department of Chemistry, MRC topology in determining folding mechanism, we have carried out a phi- Centre for Protein Engineering, value analysis of the death domain (DD) from human FADD. FADD DD is a Lensfield Road, Cambridge, CB2 100 amino acid domain consisting of six anti-parallel alpha helices arranged 1EW, UK in a Greek key structure. We asked how does the folding of this domain compare with that of (a) other all-alpha-helical proteins and (b) other Greek Received 11 February 2009; key proteins? Is the folding pathway determined mainly by secondary received in revised form structure or is topology the principal determinant? Our Φ-value analysis 26 March 2009; reveals a striking resemblance to the all-beta Greek key immunoglobulin- accepted 1 April 2009 like domains. Both fold via diffuse transition states and, importantly, long- Available online range interactions between the four central elements of secondary structure 9 April 2009 are established in the transition state. The elements of secondary structure that are less tightly associated with the central core are less well packed in both cases. Topology appears to be the dominant factor in determining the pathway of folding in all Greek key domains.
    [Show full text]
  • SAP Domain Phi-Value Analysis
    Protein folding of the SAP domain, a naturally occurring two-helix bundle Charlotte A Dodson 1,2 & Eyal Arbely 1,3 1MRC Centre for Protein Engineering, Hills Road, Cambridge CB2 0QH, UK 2Current address: Molecular Medicine, National Heart and Lung Institute, Imperial College London, SAF Building, London SW7 2AZ, UK 3Current address: Department of Chemistry and National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel Corresponding author: Charlotte A Dodson, Molecular Medicine, National Heart & Lung Institute, Imperial College London, SAF Building, London SW7 2AZ, UK; e-mail: [email protected]; tel: +44 20 7594 3053. The SAP domain from the Saccharomyces cerevisiae Tho1 protein is comprised of just two helices and a hydrophobic core and is one of the smallest proteins whose folding has been characterised. Φ-value analysis revealed that Tho1 SAP folds through a transition state where helix 1 is the most extensively formed element of secondary structure and flickering native-like core contacts from Leu35 are also present. The contacts that contribute most to native state stability of Tho1 SAP are not formed in the transition state. Keywords: SAP domain, protein folding, Φ-value, transition state analysis, Tho1 1 Highlights • Tho1 SAP domain is one of the smallest model protein folding domains • SAP domain folds through a diffuse transition state in which helix 1 is most formed • Native state stability is dominated by contacts formed after the transition state 2 Introduction The principles which govern the folding and unfolding of proteins have fascinated the scientific community for decades [1].
    [Show full text]
  • The Effect of Additional Disulfide Bonds on the Stability and Folding of Ribonuclease a Pascal Pecher, Ulrich Arnold
    The effect of additional disulfide bonds on the stability and folding of ribonuclease A Pascal Pecher, Ulrich Arnold To cite this version: Pascal Pecher, Ulrich Arnold. The effect of additional disulfide bonds on the stability and folding of ribonuclease A. Biophysical Chemistry, Elsevier, 2009, 141 (1), pp.21. 10.1016/j.bpc.2008.12.005. hal-00531136 HAL Id: hal-00531136 https://hal.archives-ouvertes.fr/hal-00531136 Submitted on 2 Nov 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ÔØ ÅÒÙ×Ö ÔØ The effect of additional disulfide bonds on the stability and folding of ribonuclease A Pascal Pecher, Ulrich Arnold PII: S0301-4622(08)00273-1 DOI: doi: 10.1016/j.bpc.2008.12.005 Reference: BIOCHE 5203 To appear in: Biophysical Chemistry Received date: 29 September 2008 Revised date: 11 December 2008 Accepted date: 13 December 2008 Please cite this article as: Pascal Pecher, Ulrich Arnold, The effect of additional disulfide bonds on the stability and folding of ribonuclease A, Biophysical Chemistry (2009), doi: 10.1016/j.bpc.2008.12.005 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • Different Members of a Simple Three-Helix Bundle Protein Family Have Very Different Folding Rate Constants and Fold by Different Mechanisms
    doi:10.1016/j.jmb.2009.05.010 J. Mol. Biol. (2009) 390, 1074–1085 Available online at www.sciencedirect.com Different Members of a Simple Three-Helix Bundle Protein Family Have Very Different Folding Rate Constants and Fold by Different Mechanisms Beth G. Wensley, Martina Gärtner, Wan Xian Choo, Sarah Batey and Jane Clarke⁎ Department of Chemistry, MRC The 15th, 16th, and 17th repeats of chicken brain α-spectrin (R15, R16, and Centre for Protein Engineering, R17, respectively) are very similar in terms of structure and stability. University of Cambridge, However, R15 folds and unfolds 3 orders of magnitude faster than R16 and Lensfield Road, Cambridge CB2 R17. This is unexpected. The rate-limiting transition state for R15 folding is 1EW, UK investigated using protein engineering methods (Φ-value analysis) and compared with previously completed analyses of R16 and R17. Character- Received 10 February 2009; isation of many mutants suggests that all three proteins have similar received in revised form complexity in the folding landscape. The early rate-limiting transition states 5 May 2009; of the three domains are similar in terms of overall structure, but there are accepted 8 May 2009 significant differences in the patterns of Φ-values. R15 apparently folds via a Available online nucleation–condensation mechanism, which involves concomitant folding 13 May 2009 and packing of the A- and C-helices, establishing the correct topology. R16 and R17 fold via a more framework-like mechanism, which may impede the search to find the correct packing of the helices, providing a possible explanation for the fast folding of R15.
    [Show full text]
  • Folding Versus Aggregation: Polypeptide Conformations on Competing Pathways
    Available online at www.sciencedirect.com ABB Archives of Biochemistry and Biophysics 469 (2008) 100–117 www.elsevier.com/locate/yabbi Review Folding versus aggregation: Polypeptide conformations on competing pathways Thomas R. Jahn, Sheena E. Radford * Astbury Centre for Structural and Molecular Biology, Institute of Molecular and Cellular Biology, University of Leeds, Mount Preston Street, Leeds LS2 9JT, UK Received 3 April 2007, and in revised form 16 May 2007 Available online 8 June 2007 Abstract Protein aggregation has now become recognised as an important and generic aspect of protein energy landscapes. Since the discovery that numerous human diseases are caused by protein aggregation, the biophysical characterisation of misfolded states and their aggre- gation mechanisms has received increased attention. Utilising experimental techniques and computational approaches established for the analysis of protein folding reactions has ensured rapid advances in the study of pathways leading to amyloid fibrils and amyloid-related aggregates. Here we describe recent experimental and theoretical advances in the elucidation of the conformational properties of dynamic, heterogeneous and/or insoluble protein ensembles populated on complex, multidimensional protein energy landscapes. We dis- cuss current understanding of aggregation mechanisms in this context and describe how the synergy between biochemical, biophysical and cell-biological experiments are beginning to provide detailed insights into the partitioning of non-native species between
    [Show full text]
  • Macromolecular Crowding and Protein Chemistry: Views from Inside and Outside Cells
    Macromolecular Crowding and Protein Chemistry: Views from Inside and Outside Cells Yaqiang Wang A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry Chapel Hill 2012 Approved by: Nancy Allbritton, Ph.D. Christopher Fecko, Ph.D. Gary Pielak, Ph.D. Linda Spremulli, Ph.D. Nancy Thompson, Ph.D. © 2012 Yaqiang Wang ALL RIGHTS RESERVED ii Abstract YAQIANG WANG: Macromolecular Crowding and Protein Chemistry: Views from Inside and Outside Cells (Under the direction of Professor Gary J. Pielak, Ph.D.) The cytoplasm is crowded, and the concentration of macromolecules can reach ~ 300 g/L, an environment vastly different from the dilute, idealized conditions usually used in biophysical studies. Macromolecular crowding arise from two phenomena, excluded volume and nonspecific chemical interactions, until recently, only excluded volume effect has been considered. Theory predicts that this macromolecular crowding can have large effects. Most proteins, however, are studied outside cells in dilute solution with macromolecule concentrations of 10 g/L or less. In-cell NMR provides a means to assess protein biophysics at atomic resolution in living cells, but it remains in its infancy, and several potential challenges need to be addressed. One challenge is the inability to observe 15N-1H NMR spectra from many small globular proteins. 19F NMR was used to expand the application of in-cell NMR. This work suggests that high viscosity and weak interactions in the cytoplasm can make routine 15N enrichment a poor choice for in-cell NMR studies of globular proteins in Escherichia coli.
    [Show full text]
  • Identification and Characterization of Protein Folding Intermediates Stefano Gianni, Ylva Ivarsson, Per Jemth, Maurizio Brunori, Carlo Travaglini-Allocatelli
    Identification and characterization of protein folding intermediates Stefano Gianni, Ylva Ivarsson, Per Jemth, Maurizio Brunori, Carlo Travaglini-Allocatelli To cite this version: Stefano Gianni, Ylva Ivarsson, Per Jemth, Maurizio Brunori, Carlo Travaglini-Allocatelli. Identifica- tion and characterization of protein folding intermediates. Biophysical Chemistry, Elsevier, 2007, 128 (2-3), pp.105. 10.1016/j.bpc.2007.04.008. hal-00501662 HAL Id: hal-00501662 https://hal.archives-ouvertes.fr/hal-00501662 Submitted on 12 Jul 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ÔØ ÅÒÙ×Ö ÔØ Identification and characterization of protein folding intermediates Stefano Gianni, Ylva Ivarsson, Per Jemth, Maurizio Brunori, Carlo Travaglini- Allocatelli PII: S0301-4622(07)00087-7 DOI: doi: 10.1016/j.bpc.2007.04.008 Reference: BIOCHE 4952 To appear in: Biophysical Chemistry Received date: 29 March 2007 Revised date: 16 April 2007 Accepted date: 16 April 2007 Please cite this article as: Stefano Gianni, Ylva Ivarsson, Per Jemth, Maurizio Brunori, Carlo Travaglini-Allocatelli, Identification and characterization of protein folding inter- mediates, Biophysical Chemistry (2007), doi: 10.1016/j.bpc.2007.04.008 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • Investigating Molecular Crowding During Cell Division in Budding Yeast with FRET
    Investigating molecular crowding during cell division in budding yeast with FRET Sarah Lecinski1,a, Jack W Shepherd1,a,b, Lewis Framec, Imogen Haytonb, Chris MacDonaldb, Mark C Leakea,b* 1These authors contributed equally a Department of Physics, University of York, York, YO10 5DD b Department of Biology, University of York, York, YO10 5DD c School of Natural Sciences, University of York, York, YO10 5DD * To whom correspondence should be addressed. Email [email protected] Abstract Cell division, aging, and stress recovery triggers spatial reorganization of cellular components in the cytoplasm, including membrane bound organelles, with molecular changes in their compositions and structures. However, it is not clear how these events are coordinated and how they integrate with regulation of molecular crowding. We use the budding yeast Saccharomyces cerevisiae as a model system to study these questions using recent progress in optical fluorescence microscopy and crowding sensing probe technology. We used a Förster Resonance Energy Transfer (FRET) based sensor, illuminated by confocal microscopy for high throughput analyses and Slimfield microscopy for single-molecule resolution, to quantify molecular crowding. We determine crowding in response to cellular growth of both mother and daughter cells, in addition to osmotic stress, and reveal hot spots of crowding across the bud neck in the burgeoning daughter cell. This crowding might be rationalized by the packing of inherited material, like the vacuole, from mother cells. We discuss recent advances in understanding the role of crowding in cellular regulation and key current challenges and conclude by presenting our recent advances in optimizing FRET-based measurements of crowding whilst simultaneously imaging a third color, which can be used as a marker that labels organelle membranes.
    [Show full text]