An Evolutionarily Conserved Autoinhibitory Molecular Switch in ELMO Proteins Regulates Rac Signaling

Total Page:16

File Type:pdf, Size:1020Kb

An Evolutionarily Conserved Autoinhibitory Molecular Switch in ELMO Proteins Regulates Rac Signaling CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Current Biology 20, 2021–2027, November 23, 2010 ª2010 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2010.10.028 Report An Evolutionarily Conserved Autoinhibitory Molecular Switch in ELMO Proteins Regulates Rac Signaling Manishha Patel,1,2,6 Yoran Margaron,1,6 Nadine Fradet,1 by which ELMO orchestrates Rac signaling in concert with Qi Yang,1,3 Brian Wilkes,1 Michel Bouvier,2,4 Kay Hofmann,5 DOCK180 remain to be established. We used bioinformatics and Jean-Franc¸ois Coˆ te´ 1,2,3,* to search for novel structural elements in ELMO that could 1Institut de Recherches Cliniques de Montre´ al, regulate Rac signaling. Threading analysis performed with 110 Avenue des Pins Ouest, Montre´ al, PQ H2W 1R7, Canada the Phyre algorithm identified Armadillo repeats (ARR) in 2Faculte´ de Me´ decine, Universite´ de Montre´ al, Montre´ al, ELMO1–3 and Drosophila ELMO bearing structural homology PQ H3C 3J7, Canada to ARR found in the formin Dia1 [19] (see Figure S1A available 3Division of Experimental Medicine, McGill University, online). Structural homology between ELMO1 and the formins Montre´ al, PQ H3A 1A3, Canada Dia1 [20, 21] and FHOD1 [22] was also detected with the 3D- 4Institut de Recherches en Immunologie et en Cance´ rologie, Jury structure prediction algorithm (Figure S1B). Finally, 2950 Chemin Polytechnique, Montre´ al, PQ H3T 1J4, Canada BLAST searches uncovered primary amino acid sequence 5Miltenyi Biotec GmbH, D-51428 Bergisch Gladbach, Germany similarity between ELMO1 and FHOD1 (Figure S1C). The region in Dia1 and FHOD1 sharing homology to ELMO is the diaphanous inhibitory domain (DID) and is characterized to Summary engage in intramolecular interactions with a diaphanous autoregulatory domain (DAD) to maintain these proteins in a Dedicator of cytokinesis (DOCK) proteins are guanine nucle- repressed state [23]. A hallmark of this regulatory switch is otide exchange factors (GEFs) controlling the activity of the presence of a GTPase-binding site N-terminal to the DID. Rac1/Cdc42 during migration, phagocytosis, and myoblast Mechanistically, engagement of GTPases to autoinhibited fusion [1–4]. Engulfment and cell motility (ELMO) proteins formins disrupts the inhibitory DID-DAD interactions, thereby bind a subset of DOCK members and are emerging as critical exposing their actin polymerization activity [20, 22]. Because regulators of Rac signaling [5–10]. Although formation of the region in ELMO preceding the ARR interacts with RhoG a DOCK180/ELMO complex is not essential for Rac1 activa- [8], this led us to hypothesize that the N terminus of ELMO tion, ELMO mutants deficient in binding to DOCK180 are may constitute part of a similar autoinhibitory module. unable to promote cytoskeleton remodeling [11]. How We therefore termed the ARR in ELMO as the ELMO inhibitory ELMO regulates signaling through DOCK GEFs is poorly domain (EID) (Figure 1A). Based on sequence alignment with understood. Here, we identify an autoinhibitory switch in FHOD1, the EID is defined by one HEAT domain followed ELMO presenting homology to a regulatory unit described by four ARR (Figure 1B). Searching for the equivalent of the for Dia formins. One part of the switch, composed of formins’ DAD in ELMO is not straightforward because this a Ras-binding domain (RBD) and Armadillo repeats, is functional region is not a domain but rather a short amphi- positioned N-terminally while the other is housed in the pathic helix. We nevertheless identified a C-terminal region C terminus. We demonstrate interaction between these frag- in ELMO that resembles the formins’ DAD [19, 24], and we ments, suggesting autoinhibition of ELMO. Using a biolumi- named it the ELMO autoregulatory domain (EAD) (Figures 1A nescence resonance energy transfer biosensor, we estab- and 1C). lish that ELMO undergoes conformational changes upon If the EID and EAD of ELMO behave like the analogous disruption of autoinhibition. We found that engagement of domains in formins, they should interact directly. We tested ELMO to RhoG, or with DOCK180, promotes the relief of whether ELMO11–315 can interact with ELMO1315–727 and found autoinhibition in ELMO. Functionally, we found that ELMO that these two ELMO1 fragments specifically coprecipitated mutants with impaired autoregulatory activity promote with DOCK180 (Figure 1D). The critical residues of Dia1 and cell elongation. These results demonstrate an unsuspected FHOD1 DIDs involved in binding the DAD, alanine 256 and level of regulation for Rac1 signaling via autoinhibition of valine 228, respectively, are located in a hydrophobic region ELMO. of the last helix of the third ARR [19, 22]. Structure-based align- ment of the ELMO EID with the DIDs of Dia1 and FHOD1 sug- Results and Discussion gested L202, I204, and L205 as candidate residues potentially important for the function of the ELMO EID. By analyzing the The guanine nucleotide exchange factor (GEF) activity of dedi- Phyre -generated 3D model of the ELMO1 EID and comparing cator of cytokinesis (DOCK) proteins is mediated by the DOCK it to the structures of Dia1 and FHOD1, we found I204 to be homology region 2, a module exclusive to this family of GEFs surface exposed and thus likely to contribute to EAD binding [5, 12–14]. The identification of upstream regulators of the (Figure S1D). We found that two mutants in this hydrophobic DOCK180-Rac pathway revealed a role for this GEF in devel- patch, ELMO11–315(I204D) and ELMO11–315(L202E/I204D/L205E), lost opmental and pathological processes [2, 15–18]. Previous the ability to interact with ELMO1315–727 in both coimmunopre- studies demonstrated a total requirement for engulfment and cipitation and yeast two-hybrid assays (Figures 1D and 1E). cell motility (ELMO) proteins in biological processes controlled Mutation of another nearby residue in the ELMO1 EID, by DOCK180 [1, 11]. Nevertheless, the molecular mechanisms Y216F, did not affect the EID/EAD interaction (Figures 1D and 1E). Next, we investigated which residues in the EAD are critical in EID binding. To provide evidence that the EAD is *Correspondence: [email protected] included in the predicted a helix located between amino 6These authors contributed equally to this work acids 681 and 701 of ELMO1 (Figure 1C), we used the yeast Current Biology Vol 20 No 22 2022 A C Intramolecular inhibitory interaction hELMO1 689 LLSMEIKLRLLDLENIQ hELMO2 682 LLSMEMKLRLLDLENIQ Dia Family RBD DID DD CC FH1 FH2 DAD (EAD) ELMO hELMO3 731 LLTMETKLRLLELENVP Family dELMO 687 LLSMEIKLRLLDTEGVD ELMO Family RBD EID ELM aPH EAD PxxP Ced-12 694 MLKMELRVRLLNVK.LT (DAD) FHOD1 1050 HASMKSLLTSRPEDTTH Dia Dia1 1196 TGVMDSLLEALQSGAAF Bai1 DOCKs ERMs Family Daam1 1030 SGEFDDLVSALRSGEVF RhoG B Helix-1 Helix-2 Helix-3 HEAT-1 80 ...............SPAQNAQQLHERIQSS................SMDAKLEALKDLASLSRD...... ARR-2 114 VTFAQEFINLD........GISLLTQMVESGTE..RYQKLQKIMKPCFGDMLSFTLTAFVELM........ ARR-3 167 ...DHGIVSWD......TFSVAFIKKIASF..............VNKSAIDISILQRSLAILESMVLNSHD ARR-4 214 ..LYQKVAQEIT........IGQLIPHLQGS................DQEIQTYTIAVINALFLKAPD... ARR-5 255 ERRQEMANILAQK....QLRSIILTHVIRAQ..............RAINNEMAHQLYVLQVLTFNLLE... D +DOCK180 +DOCK180 E 1-315 315-727 LexA B42 -Leu (ELMO1 ) (ELMO1 ) +Leu 315-727 WT WT 315-727 + ELMO1 315-727 I204D WT 315-727 (R697A/L698A/L699A) 315-727 315-727 315-727 315-727 L202E/I204D/L205E WT + ELMO1 + ELMO1 ELMO1 ELMO1 ELMO1 ELMO1 WT M692A/E693A + + + + + ELMO1 Y216F WT 1-315 1-315 1-315 (I204D) 1-315 (L202E/I204D/L205E) 1-315 1-315 1-315 1-315 (Y216F) IP: anti-FLAG or H-70 WT R697A/L698A/L699A kDa ELMO1 ELMO1 ELMO1 ELMO1 ELMO1 ELMO1 ELMO1 ELMO1 (DOCK180) 37 Blot: anti-Myc (ELMO11-315) F 50 315-727 HC Blot: anti-Myc (ELMO1 ) 1-315 LexA B42 -Leu (ELMO1 ) (ELMO1) +Leu Blot: anti-DOCK180 (H-70) 150 WT 532-727 37 TCL 10% input 1-315 Blot: anti-Myc (ELMO1 ) WT 532-707 50 Blot: anti-Myc (ELMO1315-727) WT 532-675 150 Blot: anti-DOCK180 (H-70) Figure 1. Intramolecular Interactions in ELMO1 through Novel Domains (A) Schematic representation of the structural homology between ELMO and Dia-family formins. (B) The ELMO1 EID domain is composed of HEAT and Armadillo repeats (ARR). Predicted a helices are shown in gray, hydrophobic residues of the ARR consensus sequence in yellow, and polar residues in blue and red. I204 in ARR-3 (green) is a conserved residue of ELMO proteins. (C) Sequence alignment of the autoregulatory domains of ELMO (EAD) and Dia-related formins (DAD). Red arrows indicate highly conserved residues form- ing the core motif. (D and E) Mutation of critical EID or EAD residues disrupts EID/EAD interaction in coimmunoprecipitation (D) and the yeast two-hybrid system (E). (D) Lysates of HEK293T cells transfected with the indicated plasmids were subjected to immunoprecipitation with an anti-FLAG (lanes 1–4) or anti-DOCK180 H-70 (lanes 5–8) antibody. Immunoblots were analyzed with anti-Myc (ELMO1) and anti-DOCK180 (H-70) antibodies. ‘‘HC’’ indicates IgG heavy chain. (E) Yeasts cotransformed with LexA fusion construct of ELMO11–315 and B42 fusion constructs of ELMO1315–727 were grown on nonselective and selective (2Leu) media for a nutrient-selective growth assay. (F) Mapping of critical EAD region boundaries. Yeasts cotransformed with the indicated plasmids were assayed as in (E). See also Figure S1. two-hybrid system. We found that nested C-terminal trunca- DID [19, 24](Figure 1C). Therefore, the equivalent methionine tions (ELMO1532–727 and ELMO1532–707) maintained interaction 692 and the highly conserved glutamate 693 of ELMO1 were with ELMO11–315, whereas further deletion of the region con- both mutated to alanine. We found that ELMO11–315 was inca- taining the predicted EAD (ELMO1532–675) diminished the bind- pable of binding ELMO1315–727(M692A/E693A) in a yeast two- ing (Figure 1F). In both FHOD1 and Dia1, the conserved methi- hybrid interaction assay, yet this mutant retained the ability onine of the DAD is responsible for extensive contacts with the to bind DOCK180 (Figure 1E; Figure S1E).
Recommended publications
  • Dock3 Protects Myelin in the Cuprizone Model for Demyelination
    Citation: Cell Death and Disease (2014) 5, e1395; doi:10.1038/cddis.2014.357 OPEN & 2014 Macmillan Publishers Limited All rights reserved 2041-4889/14 www.nature.com/cddis Dock3 protects myelin in the cuprizone model for demyelination K Namekata1, A Kimura1, C Harada1, H Yoshida2, Y Matsumoto1 and T Harada*,1,2 Dedicator of cytokinesis 3 (Dock3) belongs to an atypical family of the guanine nucleotide exchange factors. It is predominantly expressed in the neural tissues and causes cellular morphological changes by activating the small GTPase Rac1. We previously reported that Dock3 overexpression protects retinal ganglion cells from excitotoxic cell death. Oligodendrocytes are the myelinating cells of axons in the central nervous system and these cells are damaged in demyelinating disorders including multiple sclerosis (MS) and optic neuritis. In this study, we examined if Dock3 is expressed in oligodendrocytes and if increasing Dock3 signals can suppress demyelination in a cuprizone-induced demyelination model, an animal model of MS. We demonstrate that Dock3 is expressed in oligodendrocytes and Dock3 overexpression protects myelin in the corpus callosum following cuprizone treatment. Furthermore, we show that cuprizone demyelinates optic nerves and the extent of demyelination is ameliorated in mice overexpressing Dock3. Cuprizone treatment impairs visual function, which was demonstrated by multifocal electroretinograms, an established non-invasive method, and Dock3 overexpression prevented this effect. In mice overexpressing Dock3, Erk activation is increased, suggesting this may at least partly explain the observed protective effects. Our findings suggest that Dock3 may be a therapeutic target for demyelinating disorders including optic neuritis. Cell Death and Disease (2014) 5, e1395; doi:10.1038/cddis.2014.357; published online 28 August 2014 Dedicator of cytokinesis 3 (Dock3), an atypical member of the will restore the visual function.
    [Show full text]
  • Structure of the Dock2âˆ'elmo1 Complex Provides Insights Into
    ARTICLE https://doi.org/10.1038/s41467-020-17271-9 OPEN Structure of the DOCK2−ELMO1 complex provides insights into regulation of the auto-inhibited state Leifu Chang1,7, Jing Yang1, Chang Hwa Jo 2, Andreas Boland 1,8, Ziguo Zhang 1, Stephen H. McLaughlin 1, Afnan Abu-Thuraia 3, Ryan C. Killoran2, Matthew J. Smith 2,4,9, Jean-Francois Côté 3,5,6,9 & ✉ David Barford 1 DOCK (dedicator of cytokinesis) proteins are multidomain guanine nucleotide exchange 1234567890():,; factors (GEFs) for RHO GTPases that regulate intracellular actin dynamics. DOCK proteins share catalytic (DOCKDHR2) and membrane-associated (DOCKDHR1) domains. The structurally-related DOCK1 and DOCK2 GEFs are specific for RAC, and require ELMO (engulfment and cell motility) proteins for function. The N-terminal RAS-binding domain (RBD) of ELMO (ELMORBD) interacts with RHOG to modulate DOCK1/2 activity. Here, we determine the cryo-EM structures of DOCK2−ELMO1 alone, and as a ternary complex with RAC1, together with the crystal structure of a RHOG−ELMO2RBD complex. The binary DOCK2−ELMO1 complex adopts a closed, auto-inhibited conformation. Relief of auto- inhibition to an active, open state, due to a conformational change of the ELMO1 subunit, exposes binding sites for RAC1 on DOCK2DHR2, and RHOG and BAI GPCRs on ELMO1. Our structure explains how up-stream effectors, including DOCK2 and ELMO1 phosphorylation, destabilise the auto-inhibited state to promote an active GEF. 1 MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK. 2 Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3T 1J4, Canada. 3 Montreal Institute of Clinical Research (IRCM), Montréal, QC H2W 1R7, Canada.
    [Show full text]
  • A Rac/Cdc42 Exchange Factor Complex Promotes Formation of Lateral filopodia and Blood Vessel Lumen Morphogenesis
    ARTICLE Received 1 Oct 2014 | Accepted 26 Apr 2015 | Published 1 Jul 2015 DOI: 10.1038/ncomms8286 OPEN A Rac/Cdc42 exchange factor complex promotes formation of lateral filopodia and blood vessel lumen morphogenesis Sabu Abraham1,w,*, Margherita Scarcia2,w,*, Richard D. Bagshaw3,w,*, Kathryn McMahon2,w, Gary Grant2, Tracey Harvey2,w, Maggie Yeo1, Filomena O.G. Esteves2, Helene H. Thygesen2,w, Pamela F. Jones4, Valerie Speirs2, Andrew M. Hanby2, Peter J. Selby2, Mihaela Lorger2, T. Neil Dear4,w, Tony Pawson3,z, Christopher J. Marshall1 & Georgia Mavria2 During angiogenesis, Rho-GTPases influence endothelial cell migration and cell–cell adhesion; however it is not known whether they control formation of vessel lumens, which are essential for blood flow. Here, using an organotypic system that recapitulates distinct stages of VEGF-dependent angiogenesis, we show that lumen formation requires early cytoskeletal remodelling and lateral cell–cell contacts, mediated through the RAC1 guanine nucleotide exchange factor (GEF) DOCK4 (dedicator of cytokinesis 4). DOCK4 signalling is necessary for lateral filopodial protrusions and tubule remodelling prior to lumen formation, whereas proximal, tip filopodia persist in the absence of DOCK4. VEGF-dependent Rac activation via DOCK4 is necessary for CDC42 activation to signal filopodia formation and depends on the activation of RHOG through the RHOG GEF, SGEF. VEGF promotes interaction of DOCK4 with the CDC42 GEF DOCK9. These studies identify a novel Rho-family GTPase activation cascade for the formation of endothelial cell filopodial protrusions necessary for tubule remodelling, thereby influencing subsequent stages of lumen morphogenesis. 1 Institute of Cancer Research, Division of Cancer Biology, 237 Fulham Road, London SW3 6JB, UK.
    [Show full text]
  • Tyr724 Phosphorylation of ELMO1 by Src Is Involved in Cell Spreading and Migration Via Rac1 Activation
    Title Tyr724 phosphorylation of ELMO1 by Src is involved in cell spreading and migration via Rac1 activation Makino, Yoshinori; Tsuda, Masumi; Ohba, Yusuke; Nishihara, Hiroshi; Sawa, Hirofumi; Nagashima, Kazuo; Tanaka, Author(s) Shinya Cell communication and signaling, 13, 35 Citation https://doi.org/10.1186/s12964-015-0113-y Issue Date 2015-07-26 Doc URL http://hdl.handle.net/2115/59828 Rights(URL) http://creativecommons.org/licenses/by/4.0 Type article File Information s12964-015-0113-y.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Makino et al. Cell Communication and Signaling (2015) 13:35 DOI 10.1186/s12964-015-0113-y RESEARCH ARTICLE Open Access Tyr724 phosphorylation of ELMO1 by Src is involved in cell spreading and migration via Rac1 activation Yoshinori Makino1,2, Masumi Tsuda1, Yusuke Ohba3, Hiroshi Nishihara4, Hirofumi Sawa1,5, Kazuo Nagashima1,6 and Shinya Tanaka1,4* Abstract Background: The complex of Dock180/ELMO1 that functions as a bipartite guanine nucleotide exchange factor for Rac is essential for diverse physiological and pathological processes of cells such as cell migration, phagocytosis, and invasion of cancer cells. Among the Src-family tyrosine kinases (SFKs), it has been reported that Hck directly phosphorylates ELMO1, regulating phagocytosis by promoting activation of Rac1; however, the involvement of other SFKs in ELMO1 phosphorylation has remained unknown. Here, we identified novel tyrosine (Y) residues of ELMO1 phosphorylated by SFKs, and examined the effects on Rac1 activity, cell adhesion, spreading, and cell motility on extracellular matrix (ECM). Results: In this study, we unveiled that Src and Fyn can induce tyrosine phosphorylation of ELMO1 in in vivo and in vitro phosphorylation assays.
    [Show full text]
  • A Rhog-Mediated Signaling Pathway That Modulates Invadopodia Dynamics in Breast Cancer Cells Silvia M
    © 2017. Published by The Company of Biologists Ltd | Journal of Cell Science (2017) 130, 1064-1077 doi:10.1242/jcs.195552 RESEARCH ARTICLE A RhoG-mediated signaling pathway that modulates invadopodia dynamics in breast cancer cells Silvia M. Goicoechea, Ashtyn Zinn, Sahezeel S. Awadia, Kyle Snyder and Rafael Garcia-Mata* ABSTRACT micropinocytosis, bacterial uptake, phagocytosis and leukocyte One of the hallmarks of cancer is the ability of tumor cells to invade trans-endothelial migration (deBakker et al., 2004; Ellerbroek et al., surrounding tissues and metastasize. During metastasis, cancer cells 2004; Jackson et al., 2015; Katoh et al., 2006, 2000; van Buul et al., degrade the extracellular matrix, which acts as a physical barrier, by 2007). Recent studies have revealed that RhoG plays a role in tumor developing specialized actin-rich membrane protrusion structures cell invasion and may contribute to the formation of invadopodia called invadopodia. The formation of invadopodia is regulated by Rho (Hiramoto-Yamaki et al., 2010; Kwiatkowska et al., 2012). GTPases, a family of proteins that regulates the actin cytoskeleton. Invadopodia are actin-rich adhesive structures that form in the Here, we describe a novel role for RhoG in the regulation of ventral surface of cancer cells and allow them to degrade the invadopodia disassembly in human breast cancer cells. Our results extracellular matrix (ECM) (Gimona et al., 2008). Formation of show that RhoG and Rac1 have independent and opposite roles invadopodia involves a series of steps that include the disassembly in the regulation of invadopodia dynamics. We also show that SGEF of focal adhesions and stress fibers, and the relocalization of several (also known as ARHGEF26) is the exchange factor responsible of their components into the newly formed invadopodia (Hoshino for the activation of RhoG during invadopodia disassembly.
    [Show full text]
  • Structural Basis for Mutual Relief of the Rac Guanine Nucleotide Exchange Factor DOCK2 and Its Partner ELMO1 from Their Autoinhibited Forms
    Structural basis for mutual relief of the Rac guanine nucleotide exchange factor DOCK2 and its partner ELMO1 from their autoinhibited forms Kyoko Hanawa-Suetsugua, Mutsuko Kukimoto-Niinoa,b, Chiemi Mishima-Tsumagaria, Ryogo Akasakaa, Noboru Ohsawaa, Shun-ichi Sekinea,c, Takuhiro Itoa,c, Naoya Tochioa, Seizo Koshibaa, Takanori Kigawaa,d, Takaho Teradaa,b, Mikako Shirouzua, Akihiko Nishikimib,e,f, Takehito Urunoe, Tomoya Katakaig, Tatsuo Kinashig, Daisuke Kohdah, Yoshinori Fukuib,e,f,1, and Shigeyuki Yokoyamaa,b,c,1 aRIKEN Systems and Structural Biology Center, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan; bJapan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo 102-0075, Japan; cDepartment of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan; dTokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8502, Japan; eDivision of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; fResearch Center for Advanced Immunology, Kyushu University, Fukuoka 812-8582, Japan; gDepartment of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka 570-8506, Japan; and hDivision of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan Edited by John Kuriyan, University of California, Berkeley, CA, and approved December 31, 2011 (received for review September 6, 2011) DOCK2, a hematopoietic cell-specific, atypical guanine nucleotide for the Rho-family GTPases. There are 11 mammalian members exchange factor, controls lymphocyte migration through ras-related (DOCK180, DOCK2-11) of the CDM family. The CDM proteins C3 botulinum toxin substrate (Rac) activation.
    [Show full text]
  • Identification of Two Signaling Submodules Within the Crkii/ELMO
    Cell Death and Differentiation (2007) 14, 963–972 & 2007 Nature Publishing Group All rights reserved 1350-9047/07 $30.00 www.nature.com/cdd Identification of two signaling submodules within the CrkII/ELMO/Dock180 pathway regulating engulfment of apoptotic cells A-C Tosello-Trampont1,4, JM Kinchen1,2,4, E Brugnera1,3, LB Haney1, MO Hengartner2 and KS Ravichandran*,1 Removal of apoptotic cells is a dynamic process coordinated by ligands on apoptotic cells, and receptors and other signaling proteins on the phagocyte. One of the fundamental challenges is to understand how different phagocyte proteins form specific and functional complexes to orchestrate the recognition/removal of apoptotic cells. One evolutionarily conserved pathway involves the proteins cell death abnormal (CED)-2/chicken tumor virus no. 10 (CT10) regulator of kinase (Crk)II, CED-5/180 kDa protein downstream of chicken tumor virus no. 10 (Crk) (Dock180), CED-12/engulfment and migration (ELMO) and MIG-2/RhoG, leading to activation of the small GTPase CED-10/Rac and cytoskeletal remodeling to promote corpse uptake. Although the role of ELMO : Dock180 in regulating Rac activation has been well defined, the function of CED-2/CrkII in this complex is less well understood. Here, using functional studies in cell lines, we observe that a direct interaction between CrkII and Dock180 is not required for efficient removal of apoptotic cells. Similarly, mutants of CED-5 lacking the CED-2 interaction motifs could rescue engulfment and migration defects in CED-5 deficient worms. Mutants of CrkII and Dock180 that could not biochemically interact could colocalize in membrane ruffles.
    [Show full text]
  • Gene Polymorphism in Development of Diabetic Kidney Disease Thoria A
    Omar et al. Egyptian Journal of Medical Human Genetics (2021) 22:49 Egyptian Journal of Medical https://doi.org/10.1186/s43042-021-00167-8 Human Genetics RESEARCH Open Access Role of engulfment and cell motility 1 (ELMO1) gene polymorphism in development of diabetic kidney disease Thoria A. Omar1*, Shimaa K. Zewain2, Mohamed M. Ghonaim3, Khadija A. Refaat1 and Dalia H. Abou-Elela1 Abstract Background: Diabetic kidney disease (DKD) is a progressive kidney disease that affects diabetic patients irrespective of glycemic state or hypertension. Therefore, early detection of DKD is of critical importance. Many genome-wide association studies have identified the engulfment and cell motility 1 (ELMO1) gene as a genetic marker linked to DKD. This study aimed to investigate the association between ELMO1 rs741301 gene polymorphism and the development of DKD among Egyptian patients with type 2 diabetes mellitus (T2DM). Allele and genotype frequencies were investigated in 304 subjects by real-time PCR allelic discrimination assay: 100 DKD patients, 102 diabetic patients without DKD, and 102 healthy controls. Results: GG genotype of ELMO1 (rs741301) SNP and its allele frequencies were significantly high in all diabetic patients. GG genotype had an odds ratio (OR) of 6.095 and 95% confidence interval (CI) of 2.456–15.125, p < 0.001, while the frequent allele G had an OR of 2.366 and 95% CI of 1.450–3.859, p = 0.001. No significant difference was observed between T2DM without DKD and DKD. Conclusion: Our results could not establish an association between the ELMO1 rs741301 variant and the progression of DKD.
    [Show full text]
  • ELMO1 Signaling Is a Promoter of Osteoclast Function and Bone Loss ✉ Sanja Arandjelovic 1 , Justin S
    ARTICLE https://doi.org/10.1038/s41467-021-25239-6 OPEN ELMO1 signaling is a promoter of osteoclast function and bone loss ✉ Sanja Arandjelovic 1 , Justin S. A. Perry 1, Ming Zhou 2, Adam Ceroi3, Igor Smirnov4, Scott F. Walk1, Laura S. Shankman1, Isabelle Cambré3, Suna Onengut-Gumuscu 5, Dirk Elewaut 3, Thomas P. Conrads 2 & ✉ Kodi S. Ravichandran 1,3 Osteoporosis affects millions worldwide and is often caused by osteoclast induced bone loss. 1234567890():,; Here, we identify the cytoplasmic protein ELMO1 as an important ‘signaling node’ in osteoclasts. We note that ELMO1 SNPs associate with bone abnormalities in humans, and that ELMO1 deletion in mice reduces bone loss in four in vivo models: osteoprotegerin deficiency, ovariectomy, and two types of inflammatory arthritis. Our transcriptomic analyses coupled with CRISPR/Cas9 genetic deletion identify Elmo1 associated regulators of osteoclast function, including cathepsin G and myeloperoxidase. Further, we define the ‘ELMO1 inter- actome’ in osteoclasts via proteomics and reveal proteins required for bone degradation. ELMO1 also contributes to osteoclast sealing zone on bone-like surfaces and distribution of osteoclast-specific proteases. Finally, a 3D structure-based ELMO1 inhibitory peptide reduces bone resorption in wild type osteoclasts. Collectively, we identify ELMO1 as a signaling hub that regulates osteoclast function and bone loss, with relevance to osteoporosis and arthritis. 1 Center for Cell Clearance, Department of Microbiology, Immunology, and Cancer Biology and Carter Immunology Center, University of Virginia, Charlottesville, VA, USA. 2 Inova Schar Cancer Institute, Inova Center for Personalized Health, Fairfax, VA, USA. 3 Inflammation Research Centre, VIB, and the Department of Biomedical Molecular Biology, Ghent Univeristy, Ghent, Belgium.
    [Show full text]
  • POGLUT1, the Putative Effector Gene Driven by Rs2293370 in Primary
    www.nature.com/scientificreports OPEN POGLUT1, the putative efector gene driven by rs2293370 in primary biliary cholangitis susceptibility Received: 6 June 2018 Accepted: 13 November 2018 locus chromosome 3q13.33 Published: xx xx xxxx Yuki Hitomi 1, Kazuko Ueno2,3, Yosuke Kawai1, Nao Nishida4, Kaname Kojima2,3, Minae Kawashima5, Yoshihiro Aiba6, Hitomi Nakamura6, Hiroshi Kouno7, Hirotaka Kouno7, Hajime Ohta7, Kazuhiro Sugi7, Toshiki Nikami7, Tsutomu Yamashita7, Shinji Katsushima 7, Toshiki Komeda7, Keisuke Ario7, Atsushi Naganuma7, Masaaki Shimada7, Noboru Hirashima7, Kaname Yoshizawa7, Fujio Makita7, Kiyoshi Furuta7, Masahiro Kikuchi7, Noriaki Naeshiro7, Hironao Takahashi7, Yutaka Mano7, Haruhiro Yamashita7, Kouki Matsushita7, Seiji Tsunematsu7, Iwao Yabuuchi7, Hideo Nishimura7, Yusuke Shimada7, Kazuhiko Yamauchi7, Tatsuji Komatsu7, Rie Sugimoto7, Hironori Sakai7, Eiji Mita7, Masaharu Koda7, Yoko Nakamura7, Hiroshi Kamitsukasa7, Takeaki Sato7, Makoto Nakamuta7, Naohiko Masaki 7, Hajime Takikawa8, Atsushi Tanaka 8, Hiromasa Ohira9, Mikio Zeniya10, Masanori Abe11, Shuichi Kaneko12, Masao Honda12, Kuniaki Arai12, Teruko Arinaga-Hino13, Etsuko Hashimoto14, Makiko Taniai14, Takeji Umemura 15, Satoru Joshita 15, Kazuhiko Nakao16, Tatsuki Ichikawa16, Hidetaka Shibata16, Akinobu Takaki17, Satoshi Yamagiwa18, Masataka Seike19, Shotaro Sakisaka20, Yasuaki Takeyama 20, Masaru Harada21, Michio Senju21, Osamu Yokosuka22, Tatsuo Kanda 22, Yoshiyuki Ueno 23, Hirotoshi Ebinuma24, Takashi Himoto25, Kazumoto Murata4, Shinji Shimoda26, Shinya Nagaoka6, Seigo Abiru6, Atsumasa Komori6,27, Kiyoshi Migita6,27, Masahiro Ito6,27, Hiroshi Yatsuhashi6,27, Yoshihiko Maehara28, Shinji Uemoto29, Norihiro Kokudo30, Masao Nagasaki2,3,31, Katsushi Tokunaga1 & Minoru Nakamura6,7,27,32 Primary biliary cholangitis (PBC) is a chronic and cholestatic autoimmune liver disease caused by the destruction of intrahepatic small bile ducts. Our previous genome-wide association study (GWAS) identifed six susceptibility loci for PBC.
    [Show full text]
  • Systematic Elucidation of Neuron-Astrocyte Interaction in Models of Amyotrophic Lateral Sclerosis Using Multi-Modal Integrated Bioinformatics Workflow
    ARTICLE https://doi.org/10.1038/s41467-020-19177-y OPEN Systematic elucidation of neuron-astrocyte interaction in models of amyotrophic lateral sclerosis using multi-modal integrated bioinformatics workflow Vartika Mishra et al.# 1234567890():,; Cell-to-cell communications are critical determinants of pathophysiological phenotypes, but methodologies for their systematic elucidation are lacking. Herein, we propose an approach for the Systematic Elucidation and Assessment of Regulatory Cell-to-cell Interaction Net- works (SEARCHIN) to identify ligand-mediated interactions between distinct cellular com- partments. To test this approach, we selected a model of amyotrophic lateral sclerosis (ALS), in which astrocytes expressing mutant superoxide dismutase-1 (mutSOD1) kill wild-type motor neurons (MNs) by an unknown mechanism. Our integrative analysis that combines proteomics and regulatory network analysis infers the interaction between astrocyte-released amyloid precursor protein (APP) and death receptor-6 (DR6) on MNs as the top predicted ligand-receptor pair. The inferred deleterious role of APP and DR6 is confirmed in vitro in models of ALS. Moreover, the DR6 knockdown in MNs of transgenic mutSOD1 mice attenuates the ALS-like phenotype. Our results support the usefulness of integrative, systems biology approach to gain insights into complex neurobiological disease processes as in ALS and posit that the proposed methodology is not restricted to this biological context and could be used in a variety of other non-cell-autonomous communication
    [Show full text]
  • A Steric-Inhibition Model for Regulation of Nucleotide Exchange Via the Dock180 Family of Gefs
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Current Biology, Vol. 15, 371–377, February 22, 2005, ©2005 Elsevier Ltd All rights reserved. DOI 10.1016/j.cub.2005.01.050 A Steric-Inhibition Model for Regulation of Nucleotide Exchange via the Dock180 Family of GEFs Mingjian Lu,1 Jason M. Kinchen,3 Kent L. Rossman,4 and cell migration [1, 11]. These include both the cata- Cynthia Grimsley,1,2 Matthew Hall,5 John Sondek,4 lytic Docker domain that is located within the C-terminal Michael O. Hengartner,3 Vijay Yajnik,5 half of Dock180 and mediates nucleotide exchange on and Kodi S. Ravichandran1,* Rac and an approximately 350 amino acid N-terminal 1Beirne Carter Center for Immunology Research region that contains an SH3 domain. To better define Department of Microbiology and the molecular features of this N-terminal region of 2 Department of Pharmacology Dock180, we generated various Dock180 mutants (Fig- University of Virginia ure S1 in the Supplemental Data available with this arti- Charlottesville, Virginia 22908 cle online). Biochemical characterization of these mu- 3 Institute of Molecular Biology tants revealed two ELMO-interacting sites within this University of Zurich region. One interaction is mediated by the binding of 8057 Zurich, Switzerland the Dock180 SH3 domain to the PxxP motif of ELMO 4 Department of Pharmacology (Figure 1A). In addition, a second region adjacent to the University of North Carolina SH3 domain also binds ELMO and was disrupted by a Chapel Hill, North Carolina 27599 G171E mutation in Dock180 (Figure 1B; see below for 5 Gastrointestinal Unit description of G171E).
    [Show full text]