Isothermal Transformations in Eutectoid Zirconium-Niobium Alloys

Total Page:16

File Type:pdf, Size:1020Kb

Isothermal Transformations in Eutectoid Zirconium-Niobium Alloys ISOTHERMAL TRANSFORMATIONS IN EUTECTOID ZIRCONIUM-NIOBIUM ALLOYS by MALCOLM JOHN FINLAYSON A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in th© Department of MINING AND METALLURGY We accept this thesis as conforming to the standard required from candidates for the degree of MASTER OF APPLIED SCIENCE. Members of the Department of Mining and Metallurgy THE UNIVERSITY OF BRITISH COLUMBIA November, 1957- ABSTRACT Isothermal transformations in eutectoid zirconium-niobium alloys have been studied by resistometric techniques at high temperature, and by room-temperature hardness measurements, metallography, and X-ray methods, Room-temperature measurements were performed on specimens which had been heat-treated in evacuated vycor capsules. The resistometric method gave data which were not in agreement with data obtained by room-temperature measurements. A T-T-T curve established by room-temperature hardness and metallography was found to be similar to one obtained by a previous investi• gator. The lack of agreement between measurements made at high temperature and those made at room temperature suggests that a structural change is occurring in these alloys during the quench from the transformation tempera• ture. For this reason, room temperature metallography is unsatisfactory for following transformations in these alloys. The analysis of micro-structure is complicated by the presence of a needle-like •phase' which was not identifiable by the X-ray techniques employed. It is shown that the resistometric technique is a sensitive method for observing transformations in zirconium-niobium alloys. In presenting this thesis In partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representative. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of ML^^.^ <^~<J tod/,^j^ The University of British Columbia, Vancouver 5\ Canada. Date 7 M 7 ACKNOWLEDGEMENT The" author is grateful for financial aid in the form of a research assistantship provided by the Defence Research Board of Canada. Funds for the present work were nrovided by the Defence Research Board of Canada under Research Grant DRB 7510-18. The author gratefully acknowledges the assistance of Dr. V. Griffiths, under whose direction this investigation was performed, and the technical advice and assistance given by Mr. R, Butters and Mr. R. Richter. TABLE OF CONTENTS Page I. INTRODUCTION ...... o..oo.o«oo. 9. O0.o««*o I A. Object of the Investigation . 1 B. The Zirconium-Niobium Alloy System 3 II. PROCEDURE AND RESULTS . 14 A * AllOy Melt 6 1*3.3.1 S o«o90«4>ftoooooo«««e » © # 1A- ,'B.. Preliminary Work 16 C. Isothermal. Transformation Study ............. 23 1. AllOyS ..o.eao.o....... ...... 23 2. Transformations in Vycor Capsules . 25 3. Resistance Measurements ... 30 III. DISCUSSION OF RESULTS AND CONCLUSIONS 49 IV. APPENDICES 1. Resistance Data «.«... ...... ........ 53 2. Related Phase Diagrams .o...o..........oo 55 3. ASTM d-Spacings for Related Zirconium Compounds ..... 59 V. REFERENCES »»••»«»»•••••»•*•»••••••••••• 60 LIST OF ILLUSTRATIONS Figure Page 1. A comparison of the neutron cross section of zirconium with that . „ „ of other elements ..... ..... 2 2. The zirconium-niobium phase diagram (after Rogers and Atkins) .... 7 3. Room temperature resistivities of zirconium-niobium alloys in two conditions ..oo.. ..»...•. .o ... o.o.oo 7 4. Change in resistance of a 17.5/5 Nb alloy on slow heating ...... 8 5. Variation in lattice parameter with composition for alloys quenched from 1100°C ' 8 6. Microstructure of a zirconium - 15% Nb alloy quenched from 800°C. 10 7. Microstructure of a zirconium - 12% Nb alloy quenched from 1250°C . 10 8. The zirconium-niobium alloy system (after Bychkov et al). 12 9. Hardness vs composition of zirconium-niobium alloys for different thermal treatments 12 10. T-T-T curve for a zirconium - 14.6% Nb alloy (after Domagala). .... 13 11. Diagram of the levitation melting apparatus of Polonis et al .... 17 12. Vickers hardness vs weight percent Nb for as-cast Zr-Nb alloys ... 19 13. Pure zirconium, as-cast 20 14. Zirconium - 4.16% niobium, as-cast 20 15. Zirconium - 4.62% niobium, as-cast 20 16. Zirconium - 14.2% niobium, as-cast 20 17. Zirconium - 13% niobium, as-cast ,.. • ......... 21 18. Zirconium - 19.6% niobium, as-cast ................. 21 19. Zirconium - 4.6% niobium - heat treated . 21 20. Zirconium - 19.6% niobium - heat treated 21 21. Typical ingot produced by the levitation method. .......... 24 ILLUSTRATIONS (continued) Page 22. Microstructures of a Zr - 17.4% Nb alloy isothermally transformed at 630°C 26 23. Microstructures of a Zr - 17.455 Nb alloy isothermally transformed at 354°C 27 24. Microstructures of a Zr - 17.4% Nb alloy isothermally transformed at 630°C 28 25. Change in Vickers hardness for the 17.4% Nb alloy isothermally transformed at the temperatures shown • 29 26. T-T-T curve for a zirconium - 17.4% niobium alloy based on hardness changes ........ *..».•••.•*•. 32 27. Diagram of furnace and vacuum chamber assembly ........... 33 28. General view of apparatus 34 29. View of main vacuum furnace elements . 34 30. Diagram of resistance measuring circuit ....... 35 31. Vacuum furnace assembly showing position of furnace and connections. 36 32. Close-up of lid showing the method of attaching the specimen .... 38 33. The change of the ratio of resistance to initial resistance .... 39 34. Change of resistance on heating the near-equilibrium structure of a Zr - 16.4% Nb alloy 40 35. Some typical resistance - time curves obtained on a Zr - 16.4% alloy 42 36. Tentative T-T-T curve for a Zr - 16.4% Nb alloy, based on resistance data .....*•••• 43 37. Hardness change in a Zr - 16.4% Nb alloy, isothermally transformed at 515°C 43 38. Microstructures of the 16,4% Nb alloy isothermally transformed at 515°C 45 39. Needles in a Zr - 16.4% Nb alloy water quenched after 48 hrs.at 800°C 46 40. Back reflection Laue pictures of the Zr - 16.4% Nb alloy 47 LIST OF TABLES Page 1. Some Physical and Mechanical Properties of Zirconium and Niobium. 3 2. The Mechanical Properties of Zirconium-Niobium Alloys at Room- Temperature 4 3. Yield Strengths of Zirconium-Niobium Alloys at 649°C ......... 5 4. Analysis of the Alloy Materials of Domagala et al 14 5. Analysis of Foote Crystal Bar Zirconium 15 6. Spectrographic Analysis of Niobium 15 7. Decrease in Gas Content of Niobium on Vacuum Sintering 15 8. Data Pertinent to the Coil Design 17 9. Composition and As-cast Vickers Hardness of Zr-Nb Alloys Prepared by Levitation Melting r 18 10. D-spacings (Angstroms) from X-ray Measurements for Alloys Made with Sponge Zr . 11. Dimensions of Coil Used to Prepare Alloys of Crystal Bar Zirconium 12. Weight Data for Alloys of Crystal Bar Zirconium Base 23 17„ D-spacings (Angstroms) for the 17.4% Niobium Alloy Isothermally Transformed at 514°C 31 14. D-spacings (Angstroms) for a 16.4% Niobium alloy Isothermally Transformed at 515°C 44 ISOTHERMAL TRANSFORMATIONS IN EUTECTOLD .ZIRCONIUM-NIOBIUM ALLOYS INTRODUCTION A. Object of the Investigation For use within the fission zone of nuclear reactors which have to work at high temperatures-, the usual engineering materials are unsuitable, either because they absorb too many neutrons or react with the fuel. Thus attention has been directed to metals formerly regarded as rare, and great advances have been made in the development of such materials for engineering use. Of the metals with relatively high melting points, zirconium has the lowest absorption cross-section for thermal neutrons (see Fig. l). It was therefore considered to be a potentially important structural or canning material for reactors operating at medium and high temperatures. However, since the creep strength of zirconium at elevated temperatures was found to be poor, extensive studies of the alloying behaviour of zirconium have been undertaken. These studies, which are described in a recent volume,^ constituted a search for alloys having high-temperature strength coupled with the retention of the attractive nuclear and chemical pronerties of pure zirconium. It was therefore the object of the present work to add to the data on zirconium alloys by studying isothermal transformations in zirconium-niobium alloys of eutectoid composition and thereby determining the related Time- Temperature-Transformation (T-T-T) diagram. - 2 - Table I Thermal-Neutron Cross Section (Barns) of Commonly Available Elements With Melting Points of Metallic Elements In Low and Intermediate Cross Section Group* Low Cross Section Intermediate Cross Section High Cross Section ( <I.O Barn) • . (1.0 to 10.0 Barn?)-- . (>I0 Barns)- Melting Melting Element cr. Point (CC) Element am Point (CC) Element <r« Oxygen 0.0002 Zinc I.I 419 Manganese 13 Carbon 0.0045 Columbium I.I 2415 Tungsten 19 Beryllium 0.009 1280 Barium 1.2 704 Tantalum 21 Fluorine 0.01 Strontium 1.2 770 Chlorine 32 Bismuth 0.032 Nitrogen 1.8 Cobalt 35 Magnesium 0.05'» 6SiiiI Potassium 2.0 ' 64 Silver 60 Silicon 0.13 Germanium 2.3 Lithium 07 Phosphorus 0.19 Iron 2.4 1539 Gold 94 Zirconium 0.18 1845 Molybdenum 2.4 262S Hafnium 115 Lead 0.17 327 Gallium 2.7 30 Mercury 380 Aluminum 0.22 660 Chromium 2.9 1890 Iridium 440 Hydrogen 0.33 Thallium 3.3 300 Boron 750 Calcium 0.43 '850 Copper 3.6 10S3 Cadmium 2,400 Sodium 0.49 98 Nickel 4.5 14S5 Samarium 6,500 Sulphur 0.49 Tellurium 4.5 Gadolinium 44.0011 Tin 0.6S Z32 Vanadium 4.7 1710 Antimony 6.4 630 Titanium 5.6 1725 Table II Thermal-Neutron Cross Sections and Melting Points of Metallic Elements With .Melting Points Above S0O°C Lou I .
Recommended publications
  • Radiochemistry of Zirconium and Niobium
    .... I 5+1 ,.. S8J9P cd ,.. R.ADIOCHEFUX3TRYOF Z=COM,~ AND HIOBIUM BY Ei,liFJ:P. Steinberg RADIOCHEHISTRYOF ZIRCONIUMAND NIOBI~ Table of Contents ——— .. ,. ., Page Zirconium. ..g . ...* .,* 1 .,* 5 Solvent ExtraotlonPrmedure for Zr . ● *. 9 Zirconium Procedure . ● . ● .12 ~~ NloblumProaedure. preparationof’Carrier-FreeZr Traoer . , 24 preparationof Carrier-~ee zr-~ ~aw= . ● ● . ● . - . 26 Improved Preparationof Camier-Free Mb Traaer with ● m9 30 mlo2 RWUWHEMISTRY OF Z~CWUUM MB HIOBIUVl by Ellis P. Stetnberg (Based largely on an wqmbltshed review by D. M. Hume) Zmm!?rfm Macro Chemistry The only importantoxldatio~number Is +4. The normal state in aqueous sel.uttonts the ztreomyl ion (ZrC$~);the tetrapositlvaion Is net capable of existenceIn dilute acid solutions. Alkall hydroxides and ~nia precipitatezlrconyl salts as ZrO(OH)2, insolubleIn excess base but soluble In mineral aeide. The precipitationis hi~dered by mu@h ammonium \ fluoride...On~eat@g or drying, the hydroxide is converted to the muoh more oxide is soluble only In hy@w3$lu6@e acid. I@lrogen sulfide has no effeot on ,sQlutlonsof’zirconiumsalts. Alkali sulfides ,~eoipitatebhe kq~xide. zireQnyl ni~rate, chloride,and sulf’ateare sol,uble,ln aoid solution. Zircwayl fluoride is Znsolublek@ readily dis.eolvesin k@rdlu@rie add. Reduetlom ,, ,, to the metal”is very dif’flcult.Uommeroialzirconiumecmtains an appreciableamun’k of’-iwz,impurity. Among the..mere Wportant insoluble oompmnds is the very -18 tBtic@blephosphate,Zm(H@04) ~, Kap = 2●28 x 10 which 2 precipitateseven 20$ sulfurioaoid. It has properties from .. similar to those of cerlc phosphatebut is dissolvedby hydro- fluoric acid. The iodate preolpttatesfrom 8 g HN03 and the aryl-substitutedarsenatesand oupferrtdeprecipitatefrom acid solutions;none are appreciablysoluble in excess reagent.
    [Show full text]
  • Surface Chemistry of Zirconium
    Progress in Surface Science 78 (2005) 101–184 www.elsevier.com/locate/progsurf Review Surface chemistry of zirconium N. Stojilovic, E.T. Bender, R.D. Ramsier * Departments of Physics and Chemistry, The University of Akron, 250 Buchtel Commons, Ayer Hall 111, Akron, OH 44325-4001, USA Abstract This article presents an overview of the surface chemistry of zirconium, focusingon the relationship of what is known from model studies and how this connects to current and future applications of Zr-based materials. The discussion includes the synergistic nature of adsorbate interactions in this system, the role of impurities and alloyingelements, and temperature- dependent surface–subsurface transport. Finally, some potential uses of zirconium and its alloys for biomedical and nanolithographic applications are presented. Ó 2005 Elsevier Ltd. All rights reserved. Keywords: Zirconium; Oxidation; Surface chemistry; Subsurface species; Diffusion; Water; Oxygen; Hydrogen; Nuclear materials; Alloys; Zircaloy Contents 1. Contextual overview........................................ 102 2. Systems of interest ......................................... 104 2.1. Water ............................................. 104 2.2. Oxygen ............................................ 122 2.3. Hydrogen .......................................... 132 2.4. Sulfur ............................................. 143 2.5. Carbon ............................................ 147 * Correspondingauthor. Tel.: +1 330 9724936; fax: +1 330 9726918. E-mail address: [email protected] (R.D.
    [Show full text]
  • John's Corner
    www.natureswayresources.com JOHN’S CORNER: MINERALS - The Elements and What They Do (Part 29) by John Ferguson 39) Yttrium (Y) - One writer describes Yttrium as a "hippy" element. Yttrium is a silvery metal of group 3 of the periodic table and behaves chemically similarly to the lanthanide group. It is often classified as a rare earth element (even though it is twice as abundant as lead). Yttrium is found in igneous rocks at 33 ppm, shale at 18 ppm, sandstone at 9 ppm, and limestone at 4.3 ppm. Very little is found in seawater (0.0003 ppm) however in soils it is found at an average of 50 ppm with a range of 2-100 ppm. In marine mammals, it occurs at 0.1-0.2 ppm and land animals at 0.04 ppm. Yttrium is found in mammalian bone, teeth, and liver. Yttrium has an electrical or oxidation state +3 and never occurs alone in nature. However, it is often found in association with many minerals like oxides, carbonates, silicates, and phosphates. When yttrium is combined with barium and copper into an oxide (YBa2Cu3O7), it becomes a superconductor of electricity when cooled to very cold temperatures. When yttrium is combined with aluminum and silicates we get garnet crystals which is used to produce powerful lasers and it can also make very hard diamond-like gemstones. It is used in color television and computer monitors, luminescence and semi-conductor devices. It is used in ceramics and glass manufacturing and is used as a catalyst in the production of some plastics.
    [Show full text]
  • Tensile Properties of Yttrium-Titanium and Yttrium-Zirconium Alloys" (1960)
    Ames Laboratory Technical Reports Ames Laboratory 12-1960 Tensile properties of yttrium-titanium and yttrium- zirconium alloys D. W. Bare Iowa State University E. D. Gibson Iowa State University O. N. Carlson Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/ameslab_isreports Part of the Materials Chemistry Commons Recommended Citation Bare, D. W.; Gibson, E. D.; and Carlson, O. N., "Tensile properties of yttrium-titanium and yttrium-zirconium alloys" (1960). Ames Laboratory Technical Reports. 35. http://lib.dr.iastate.edu/ameslab_isreports/35 This Report is brought to you for free and open access by the Ames Laboratory at Iowa State University Digital Repository. It has been accepted for inclusion in Ames Laboratory Technical Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Tensile properties of yttrium-titanium and yttrium-zirconium alloys Abstract Complete series of yttrium-titanium and yttrium-zirconium alloys were tested in tension at room temperature, and ultimate tensile strength, yield strength and reduction in area data are reported for these alloys. Yield point phenomena were encountered in both of these alloy systems. Disciplines Chemistry | Materials Chemistry This report is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/ameslab_isreports/35 TENSILE PROPERTIES OF YTTRIUM-TITANIUM AND YTTRIUM- ZIRCONIUM ALLOYS by D. W. Bare, E. D. Gibson, andO. N. Carlson UNCL ASSIFIED / IS-240 Metallurgy and Ceramics (UC-25) TID 4500, August 1, 1959 . UNITED STATES ATOMIC ENERGY COMMISSION Research and Development Report TENSILE PROPER TIES OF YTTRIUM-TITANIUM AND YTTRIUM- ZIRCONIUM ALLOYS by D.
    [Show full text]
  • Periodic Table 1 Periodic Table
    Periodic table 1 Periodic table This article is about the table used in chemistry. For other uses, see Periodic table (disambiguation). The periodic table is a tabular arrangement of the chemical elements, organized on the basis of their atomic numbers (numbers of protons in the nucleus), electron configurations , and recurring chemical properties. Elements are presented in order of increasing atomic number, which is typically listed with the chemical symbol in each box. The standard form of the table consists of a grid of elements laid out in 18 columns and 7 Standard 18-column form of the periodic table. For the color legend, see section Layout, rows, with a double row of elements under the larger table. below that. The table can also be deconstructed into four rectangular blocks: the s-block to the left, the p-block to the right, the d-block in the middle, and the f-block below that. The rows of the table are called periods; the columns are called groups, with some of these having names such as halogens or noble gases. Since, by definition, a periodic table incorporates recurring trends, any such table can be used to derive relationships between the properties of the elements and predict the properties of new, yet to be discovered or synthesized, elements. As a result, a periodic table—whether in the standard form or some other variant—provides a useful framework for analyzing chemical behavior, and such tables are widely used in chemistry and other sciences. Although precursors exist, Dmitri Mendeleev is generally credited with the publication, in 1869, of the first widely recognized periodic table.
    [Show full text]
  • Carbides and Nitrides of Zirconium and Hafnium
    materials Review Carbides and Nitrides of Zirconium and Hafnium Sergey V. Ushakov 1,* , Alexandra Navrotsky 1,* , Qi-Jun Hong 2,* and Axel van de Walle 2,* 1 Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California at Davis, Davis, CA 95616, USA 2 School of Engineering, Brown University, Providence, RI 02912, USA * Correspondence: [email protected] (S.V.U.); [email protected] (A.N.); [email protected] (Q.-J.H.); [email protected] (A.v.d.W.) Received: 6 August 2019; Accepted: 22 August 2019; Published: 26 August 2019 Abstract: Among transition metal carbides and nitrides, zirconium, and hafnium compounds are the most stable and have the highest melting temperatures. Here we review published data on phases and phase equilibria in Hf-Zr-C-N-O system, from experiment and ab initio computations with focus on rocksalt Zr and Hf carbides and nitrides, their solid solutions and oxygen solubility limits. The systematic experimental studies on phase equilibria and thermodynamics were performed mainly 40–60 years ago, mostly for binary systems of Zr and Hf with C and N. Since then, synthesis of several oxynitrides was reported in the fluorite-derivative type of structures, of orthorhombic and cubic higher nitrides Zr3N4 and Hf3N4. An ever-increasing stream of data is provided by ab initio computations, and one of the testable predictions is that the rocksalt HfC0.75N0.22 phase would have the highest known melting temperature. Experimental data on melting temperatures of hafnium carbonitrides are absent, but minimum in heat capacity and maximum in hardness were reported for Hf(C,N) solid solutions.
    [Show full text]
  • The Radiochemistry of Zirconium and Hafnium
    ‘~,11 —National T Academy v of I Sciences National Research Council B NUCLEAR SCIENCE SERIES The Radiochemistry of Zirconium and lHafnium :$-:9: CNcmLHRARY c,)) COMMITTEE ON NUCLEAR SCIENCE. :’- ‘... :. L. F.CUR=, Chuitvnan ROBLE,Y D. EVAN& ViceC~rman NationalBureauofSt.adards MassachusettsInstituteofTedmology ,,., J.A. bJUREN, Secretury WestlnghoueeElectricCorporation H. J.CURTIS G. G.MANOV BrookhavenNat.lonalLaboratory Tmmerlab,Inc. SAMUEL EPSTEIN W<.WAYNE bfIiIkE “““ CaliforniaIuetituteofTechnol~ UniversityofMichigan HERBERT GOLDSTEIN A. H. SNELL NuclearDevelopmentCorpfitionof ‘“ oak Ridge,NationalL@ho~torY knerlca E. A. UEHLING ‘H.J.GOMBERG UnlversltyofWashbgton UnlversltyofMichigan D. M. VAN PATTER E.D. KLEMA BartolResearchFoundation NorthwesternUniversity ROBERT L. PLATZMAN ArgonneNationalLaboratory LIAISON ,MEMBERS PAUL C.AEBERSOLD W. D. URRY AtomioEneqy Comdsston U. S.Air Foroe J.HOW~”?dd#fLLEN WIIiW”E: WFUGHT NationalScienceFoundation OfficeofNavalReeearoh SUBCOMMITTEE ON RADIOCHEMISTRY W. WAYNE MEINKEC Ckirnwn EARL HYDE UnlversiWof Mkhigan Unlversl&ofCdlforda (Berkeley) NATHAN BALLOU HAROLDKIRBY NavyRadologlcalDsfenaeLshoratory Moud Lahmatory GREGORY R. CHOPPIN GEORGE LEDDICOI”TE Florida-bs Universally Oak RidgeNationd Lahomtory GEORGE A. COWAN ELLIS P.STEINBERG Loe AlamosSclentlflcLaboratory ArgonneNationalLaboratory ARTHUR W. FAIRHALL PETER C. ~EVENEON UnlvereltyofWaehlngton UnlversltyofCalifornia(Livermore) HARMoN FINSTON LEO YAFFE BrookhavenNationalL@oratory McGU1 University The Radiochemistry of Zircomium and Hlafnium By
    [Show full text]
  • Material Safety Data Sheet Yttria-Stabilized Zirconia (YSZ) ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 1
    LTS Research Laboratories, Inc. Material Safety Data Sheet Yttria-Stabilized Zirconia (YSZ) ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 1. Product and Company Identification ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Trade Name: Yttria-stabilized zirconia (YSZ) Chemical Formula: ZrO2-Y2O3 Recommended Use: Scientific research and development Manufacturer/Supplier: LTS Research Laboratories, Inc. Street: 37 Ramland Road City: Orangeburg State: New York Zip Code: 10962 Country: USA Tel #: 845-587-2436 / 845-lts-chem 24-Hour Emergency Contact: 800-424-9300 (US & Canada) +1-703-527-3887 (International) ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 2. Hazards Identification ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Signal Word: None Hazard Statements: None Precautionary Statements: None HMIS Health Ratings (0-4): Health: 1 Flammability: 0 Physical: 0 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 3. Composition ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Chemical Family: Ceramic Additional Names: Zirconium yttrium oxide, YSZ Zirconium oxide-yttria stabilized Percentage: 0-100 wt. % CAS #: 64417-98-7 EC #: 215-227-2 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 4. First Aid Procedures –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
    [Show full text]
  • BNL-79513-2007-CP Standard Atomic Weights Tables 2007 Abridged To
    BNL-79513-2007-CP Standard Atomic Weights Tables 2007 Abridged to Four and Five Significant Figures Norman E. Holden Energy Sciences & Technology Department National Nuclear Data Center Brookhaven National Laboratory P.O. Box 5000 Upton, NY 11973-5000 www.bnl.gov Prepared for the 44th IUPAC General Assembly, in Torino, Italy August 2007 Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. This preprint is intended for publication in a journal or proceedings. Since changes may be made before publication, it may not be cited or reproduced without the author’s permission. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.
    [Show full text]
  • The Elements.Pdf
    A Periodic Table of the Elements at Los Alamos National Laboratory Los Alamos National Laboratory's Chemistry Division Presents Periodic Table of the Elements A Resource for Elementary, Middle School, and High School Students Click an element for more information: Group** Period 1 18 IA VIIIA 1A 8A 1 2 13 14 15 16 17 2 1 H IIA IIIA IVA VA VIAVIIA He 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 2 Li Be B C N O F Ne 6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 Na Mg IIIB IVB VB VIB VIIB ------- VIII IB IIB Al Si P S Cl Ar 22.99 24.31 3B 4B 5B 6B 7B ------- 1B 2B 26.98 28.09 30.97 32.07 35.45 39.95 ------- 8 ------- 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.47 58.69 63.55 65.39 69.72 72.59 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rb Sr Y Zr NbMo Tc Ru Rh PdAgCd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 6 Cs Ba La* Hf Ta W Re Os Ir Pt AuHg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 190.2 195.1 197.0 200.5 204.4 207.2 209.0 (210) (210) (222) 87 88 89 104 105 106 107 108 109 110 111 112 114 116 118 7 Fr Ra Ac~RfDb Sg Bh Hs Mt --- --- --- --- --- --- (223) (226) (227) (257) (260) (263) (262) (265) (266) () () () () () () http://pearl1.lanl.gov/periodic/ (1 of 3) [5/17/2001 4:06:20 PM] A Periodic Table of the Elements at Los Alamos National Laboratory 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Lanthanide Series* Ce Pr NdPmSm Eu Gd TbDyHo Er TmYbLu 140.1 140.9 144.2 (147) 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Actinide Series~ Th Pa U Np Pu AmCmBk Cf Es FmMdNo Lr 232.0 (231) (238) (237) (242) (243) (247) (247) (249) (254) (253) (256) (254) (257) ** Groups are noted by 3 notation conventions.
    [Show full text]
  • Titrimetric Determination of Zirconium M
    Ames Laboratory ISC Technical Reports Ames Laboratory 3-1955 Titrimetric determination of zirconium M. O. Fulda Iowa State College J. S. Fritz Iowa State College Follow this and additional works at: http://lib.dr.iastate.edu/ameslab_iscreports Part of the Chemistry Commons Recommended Citation Fulda, M. O. and Fritz, J. S., "Titrimetric determination of zirconium" (1955). Ames Laboratory ISC Technical Reports. 95. http://lib.dr.iastate.edu/ameslab_iscreports/95 This Report is brought to you for free and open access by the Ames Laboratory at Iowa State University Digital Repository. It has been accepted for inclusion in Ames Laboratory ISC Technical Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Titrimetric determination of zirconium Abstract A brief literature survey on the present gravimetric, colorimetric, spectrographic, and volumetric methods for the determination of zirconium has been presented. Keywords Ames Laboratory Disciplines Chemistry This report is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/ameslab_iscreports/95 IoW()...u••n• ·ASS IFlED sc. AL ISC- S91P UNITED STATES ATOMIC ENERGY COMMISSION TITRIMETRIC DETERMINATION OF ZIRCONIUM By M. 0. Fulda J. S. Fritz March 1955 Ames Laboratory Iowa State College Ames, Iowa T e c h n i c a I I n form at i o n S e r v i c e, 0 a k R i d g e, T e nne 55 e e UNCLASSIFIED Work perf'onned under Contract No. W-7405-Eng-82. F. H. Spedding, Director, Ames Laboratory The Atomic Energy Commission makes no representation or warranty as to the accuracy or usefulness of the Information or statements contained In this report, or that the use of any lnfonnatlon, apparatus, method or process disclosed In this report may not Infringe prlvately~wned rights.
    [Show full text]
  • Separation of Hafnium from Zirconium Using Tributyl Phosphate R
    Ames Laboratory ISC Technical Reports Ames Laboratory 12-23-1955 Separation of hafnium from zirconium using tributyl phosphate R. P. Cox Iowa State College G. H. Beyer Iowa State College Follow this and additional works at: http://lib.dr.iastate.edu/ameslab_iscreports Part of the Chemistry Commons, and the Metallurgy Commons Recommended Citation Cox, R. P. and Beyer, G. H., "Separation of hafnium from zirconium using tributyl phosphate" (1955). Ames Laboratory ISC Technical Reports. 109. http://lib.dr.iastate.edu/ameslab_iscreports/109 This Report is brought to you for free and open access by the Ames Laboratory at Iowa State University Digital Repository. It has been accepted for inclusion in Ames Laboratory ISC Technical Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Separation of hafnium from zirconium using tributyl phosphate Abstract The es paration of hafnium from zirconium using tributyl phosphate offers interesting alternatives to present methods for making reactor-grade zirconium. Feed solution for the extraction step can be prepared from the reaction product of caustic and zircon sand. The purified zirconium can be converted into a variety of compounds, depending on the process chosen for reduction to the metal. It may be that future developments will show tributyl phosphate extraction to have advantages in new plants for the production of low-hafnium zirconium metal. Keywords Ames Laboratory Disciplines Chemistry | Engineering | Materials Science and Engineering | Metallurgy This report is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/ameslab_iscreports/109 ISC-682 . UNCLASSIFIED I() WfJ., A.E.C.
    [Show full text]