Fast Semidifferential-Based Submodular Function Optimization

Total Page:16

File Type:pdf, Size:1020Kb

Fast Semidifferential-Based Submodular Function Optimization Fast Semidifferential-based Submodular Function Optimization: Extended Version Rishabh Iyer [email protected] University of Washington, Seattle, WA 98195, USA Stefanie Jegelka [email protected] University of California, Berkeley, CA 94720, USA Jeff Bilmes [email protected] University of Washington, Seattle, WA 98195, USA Abstract family of feasible solution sets. The set C could express, We present a practical and powerful new for example, that solutions must be an independent set framework for both unconstrained and con- in a matroid, a limited budget knapsack, or a cut (or strained submodular function optimization spanning tree, path, or matching) in a graph. Without based on discrete semidifferentials (sub- and making any further assumptions about f, the above super-differentials). The resulting algorithms, problems are trivially worst-case exponential time and which repeatedly compute and then efficiently moreover inapproximable. optimize submodular semigradients, offer new If we assume that f is submodular, however, then in and generalize many old methods for sub- many cases the above problems can be approximated modular optimization. Our approach, more- and in some cases solved exactly in polynomial time. A over, takes steps towards providing a unifying function f : 2V ! R is said to be submodular (Fujishige, paradigm applicable to both submodular min- 2005) if for all subsets S; T ⊆ V , it holds that f(S) + imization and maximization, problems that f(T ) ≥ f(S [ T ) + f(S \ T ). Defining f(jjS) , f(S [ historically have been treated quite distinctly. j) − f(S) as the gain of j 2 V with respect to S ⊆ V , The practicality of our algorithms is impor- then f is submodular if and only if f(jjS) ≥ f(jjT ) tant since interest in submodularity, owing to for all S ⊆ T and j2 = T . Traditionally, submodularity its natural and wide applicability, has recently has been a key structural property for problems in been in ascendance within machine learning. combinatorial optimization, and for applications in We analyze theoretical properties of our al- econometrics, circuit and game theory, and operations gorithms for minimization and maximization, research. More recently, submodularity's popularity in and show that many state-of-the-art maxi- machine learning has been on the rise. mization algorithms are special cases. Lastly, we complement our theoretical analyses with On the other hand, a potential stumbling block is supporting empirical experiments. that machine learning problems are often large (e.g., \big data") and are getting larger. For general uncon- strained submodular minimization, the computational 1. Introduction complexity often scales as a high-order polynomial. These algorithms are designed to solve the most general In this paper, we address minimization and maximiza- case and the worst-case instances are often contrived tion problems of the following form: and unrealistic. Typical-case instances are much more benign, so simpler algorithms (e.g., graph-cut) might Problem 1: min f(X); Problem 2: max f(X) X2C X2C suffice. In the constrained case, however, the problems often become NP-complete. Algorithms for submod- V where f : 2 ! R is a discrete set function on subsets ular maximization are very different in nature from V of a ground set V = f1; 2; ··· ; ng, and C ⊆ 2 is a their submodular minimization cohorts, and their com- th plexity too varies depending on the problem. In any Proceedings of the 30 International Conference on Ma- case, there is an urgent need for efficient, practical, and chine Learning, Atlanta, Georgia, USA, 2013. JMLR: W&CP volume 28. Copyright 2013 by the author(s). scalable algorithms for the aforementioned problems if Fast Semidifferential-based Submodular Function Optimization submodularity is to have a lasting impact on the field restating the problem as a submodular vertex cover, of machine learning. i.e., Problem 1 where C is the set of all vertex covers in a graph. In this paper, we address the issue of scalability and simultaneously draw connections across the apparent gap between minimization and maximization problems. Clustering: Variants of submodular minimization We demonstrate that many algorithms for submodu- have been successfully applied to clustering problems lar maximization may be viewed as special cases of a (Narasimhan et al., 2006; Nagano et al., 2010). generic minorize-maximize framework that relies on discrete semidifferentials. This framework encompasses Limited Vocabulary Speech Corpora: The prob- state-of-the-art greedy and local search techniques, and lem of finding a maximum size speech corpus with provides a rich class of very practical algorithms. In bounded vocabulary (Lin & Bilmes, 2011a) can be addition, we show that any approximate submodular posed as submodular function minimization subject maximization algorithm can be seen as an instance of to a size constraint. Alternatively, cardinality can our framework. be treated as a penalty, reducing the problem to un- constrained submodular minimization (Jegelka et al., We also present a complementary majorize-minimize 2011). framework for submodular minimization that makes two contributions. For unconstrained minimization, we obtain new nontrivial bounds on the lattice of minimiz- Size constraints: The densest k-subgraph and size- ers, thereby reducing the possible space of candidate constrained graph cut problems correspond to submod- minimizers. This method easily integrates into any ular minimization with cardinality constraints, prob- other exact minimization algorithm as a preprocessing lems that are very hard (Svitkina & Fleischer, 2008). step to reduce running time. In the constrained case, Specialized algorithms for cardinality and related con- we obtain practical algorithms with bounded approx- straints were proposed e.g. in (Svitkina & Fleischer, imation factors. We observe these algorithms to be 2008; Nagano et al., 2011). empirically competitive to more complicated ones. Minimum Power Assignment: In wireless net- As a whole, the semidifferential framework offers a new works, one seeks a connectivity structure that maintains unifying perspective and basis for treating submodu- connectivity at a minimum energy consumption. This lar minimization and maximization problems in both problem is equivalent to finding a suitable structure the constrained and unconstrained case. While it has (e.g., a spanning tree) minimizing a submodular cost long been known (Fujishige, 2005) that submodular function (Wan et al., 2002). functions have tight subdifferentials, our results rely on a recently discovered property (Iyer & Bilmes, 2012a; Jegelka & Bilmes, 2011b) showing that submodular Transportation: Costs in real-world transportation functions also have superdifferentials. Furthermore, our problems are often non-additive. For example, it may approach is entirely combinatorial, thus complementing be cheaper to take a longer route owned by one carrier (and sometimes obviating) related relaxation methods. rather than a shorter route that switches carriers. Such economies of scale, or \right of usage" properties are captured in the \Categorized Bottleneck Path Prob- 2. Motivation and Background lem" { a shortest path problem with submodular costs Submodularity's escalating popularity in machine learn- (Averbakh & Berman, 1994). Similar costs have been ing is due to its natural applicability. Indeed, instances considered for spanning tree and matching problems. of Problems 1 and 2 are seen in many forms, to wit: Summarization/Sensor placement: Submodular MAP inference/Image segmentation: Markov maximization also arises in many subset extraction Random Fields with pairwise attractive potentials are problems. Sensor placement (Krause et al., 2008), docu- important in computer vision, where MAP inference ment summarization (Lin & Bilmes, 2011b) and speech is identical to unconstrained submodular minimization data subset selection (Lin & Bilmes, 2009), for example, solved via minimum cut (Boykov & Jolly, 2001). A are instances of submodular maximization. richer higher-order model can be induced for which MAP inference corresponds to Problem 1 where V is Determinantal Point Processes: The Determi- a set of edges in a graph, and C is a set of cuts in this nantal Point Processes (DPPs) which have found nu- graph | this was shown to significantly improve many merous applications in machine learning (Kulesza & image segmentation results (Jegelka & Bilmes, 2011b). Taskar, 2012) are known to be log-submodular distri- Moreover, Delong et al.(2012) efficiently solve MAP butions. In particular, the MAP inference problem is inference in a sparse higher-order graphical model by a form of non-monotone submodular maximization. Fast Semidifferential-based Submodular Function Optimization Indeed, there is strong motivation for solving Problems 1 and 2 but, as mentioned above, these problems come not without computational difficulties. Much work has therefore been devoted to developing optimal or near optimal algorithms. Among the several algorithms (McCormick, 2005) for the unconstrained variant of Problem 1, where C = 2V , the best complexity to date is O(n5γ + n6)(Orlin, 2009)(γ is the cost of evaluating f). This has motivated studies on faster, possibly special case or approximate, methods (Stobbe Figure 1. Illustration of the chain of sets and permutation & Krause, 2010; Jegelka et al., 2011). Constrained sigma minimization problems, even for simple constraints such as a cardinality lower bound, are mostly NP-hard, and not approximable to
Recommended publications
  • Approximate Submodularity and Its Applications: Subset Selection, Sparse Approximation and Dictionary Selection∗
    Journal of Machine Learning Research 19 (2018) 1{34 Submitted 10/16; Revised 8/18; Published 8/18 Approximate Submodularity and its Applications: Subset Selection, Sparse Approximation and Dictionary Selection∗ Abhimanyu Dasy [email protected] Google David Kempez [email protected] Department of Computer Science University of Southern California Editor: Jeff Bilmes Abstract We introduce the submodularity ratio as a measure of how \close" to submodular a set function f is. We show that when f has submodularity ratio γ, the greedy algorithm for maximizing f provides a (1 − e−γ )-approximation. Furthermore, when γ is bounded away from 0, the greedy algorithm for minimum submodular cover also provides essentially an O(log n) approximation for a universe of n elements. As a main application of this framework, we study the problem of selecting a subset of k random variables from a large set, in order to obtain the best linear prediction of another variable of interest. We analyze the performance of widely used greedy heuristics; in particular, by showing that the submodularity ratio is lower-bounded by the smallest 2k- sparse eigenvalue of the covariance matrix, we obtain the strongest known approximation guarantees for the Forward Regression and Orthogonal Matching Pursuit algorithms. As a second application, we analyze greedy algorithms for the dictionary selection prob- lem, and significantly improve the previously known guarantees. Our theoretical analysis is complemented by experiments on real-world and synthetic data sets; in particular, we focus on an analysis of how tight various spectral parameters and the submodularity ratio are in terms of predicting the performance of the greedy algorithms.
    [Show full text]
  • Fast and Private Submodular and K-Submodular Functions
    Fast and Private Submodular and k-Submodular Functions Maximization with Matroid Constraints Akbar Rafiey 1 Yuichi Yoshida 2 Abstract The problem of maximizing nonnegative monotone submodular functions under a certain constraint has been in- tensively studied in the last decade, and a wide range of efficient approximation algorithms have been developed for this problem. Many machine learning problems, including data summarization and influence maximization, can be naturally modeled as the problem of maximizing monotone submodular functions. However, when such applications involve sensitive data about individuals, their privacy concerns should be addressed. In this paper, we study the problem of maximizing monotone submodular functions subject to matroid constraints in the frame- 1 work of differential privacy. We provide (1 e )-approximation algorithm which improves upon the previous results in terms of approximation guarantee.− This is done with an almost cubic number of function evaluations in our algorithm. 1 Moreover, we study k-submodularity, a natural generalization of submodularity. We give the first 2 - approximation algorithm that preserves differential privacy for maximizing monotone k-submodular functions subject to matroid constraints. The approximation ratio is asymptotically tight and is obtained with an almost linear number of function evaluations. 1. Introduction A set function F : 2E R is submodular if for any S T E and e E T it holds that F (S e ) F (S) F (T e ) F (T ).→The theory of submodular maximization⊆ ⊆ provides∈
    [Show full text]
  • Maximizing Non-Monotone Submodular Functions
    Maximizing non-monotone submodular functions Uriel Feige∗ Vahab S. Mirrokni∗ Jan Vondr´ak† April 19, 2007 Abstract Submodular maximization is a central problem in combinatorial optimization, generalizing many important problems including Max Cut in directed/undirected graphs and in hypergraphs, certain constraint satisfaction problems and maximum facility location problems. Unlike the problem of minimizing submodular functions, the problem of maximizing submodular functions is NP-hard. In this paper, we design the first constant-factor approximation algorithms for maximiz- 1 ing nonnegative submodular functions. In particular, we give a deterministic local search 3 - 2 approximation and a randomized 5 -approximation algorithm for maximizing nonnegative sub- 1 modular functions. We also show that a uniformly random set gives a 4 -approximation. For 1 symmetric submodular functions, we show that a random set gives a 2 -approximation, which can be also achieved by deterministic local search. These algorithms work in the value oracle model where the submodular function is acces- sible through a black box returning f(S) for a given set S. We show that in this model, our 1 2 -approximation for symmetric submodular functions is the best one can achieve with a subex- ponential number of queries. For the case that the submodular function is given explicitly (specifically, as a sum of poly- nomially many nonnegative submodular functions, each on a constant number of elements) we 5 prove that for any fixed > 0, it is NP-hard to achieve a ( 6 + )-approximation for sym- 3 metric nonnegative submodular functions, or a ( 4 + )-approximation for general nonnegative submodular functions. ∗Microsoft Research.
    [Show full text]
  • Submodular Function Maximization Andreas Krause (ETH Zurich) Daniel Golovin (Google)
    Submodular Function Maximization Andreas Krause (ETH Zurich) Daniel Golovin (Google) Submodularity1 is a property of set functions with deep theoretical consequences and far{ reaching applications. At first glance it appears very similar to concavity, in other ways it resembles convexity. It appears in a wide variety of applications: in Computer Science it has recently been identified and utilized in domains such as viral marketing (Kempe et al., 2003), information gathering (Krause and Guestrin, 2007), image segmentation (Boykov and Jolly, 2001; Kohli et al., 2009; Jegelka and Bilmes, 2011a), document summarization (Lin and Bilmes, 2011), and speeding up satisfiability solvers (Streeter and Golovin, 2008). In this survey we will introduce submodularity and some of its generalizations, illustrate how it arises in various applications, and discuss algorithms for optimizing submodular functions. Our emphasis here is on maximization; there are many important results and applications related to minimizing submodular functions that we do not cover2. As a concrete running example, we will consider the problem of deploying sensors in a drinking water distribution network (see Figure 1) in order to detect contamination. In this domain, we may have a model of how contaminants, accidentally or maliciously introduced into the network, spread over time. Such a model then allows to quantify the benefit f(A) of deploying sensors at a particular set A of locations (junctions or pipes in the network) in terms of the detection performance (such as average time to detection). Based on this notion of utility, we then wish to find an optimal subset A ⊆ V of locations maximizing the utility, maxA f(A), subject to some constraints (such as bounded cost).
    [Show full text]
  • Maximization of Non-Monotone Submodular Functions
    University of Pennsylvania ScholarlyCommons Technical Reports (CIS) Department of Computer & Information Science 1-24-2014 Maximization of Non-Monotone Submodular Functions Jennifer Gillenwater [email protected] Follow this and additional works at: https://repository.upenn.edu/cis_reports Part of the Computer Engineering Commons, and the Computer Sciences Commons Recommended Citation Jennifer Gillenwater, "Maximization of Non-Monotone Submodular Functions", . January 2014. MS-CIS-14-01 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/988 For more information, please contact [email protected]. Maximization of Non-Monotone Submodular Functions Abstract A litany of questions from a wide variety of scientific disciplines can be cast as non-monotone submodular maximization problems. Since this class of problems includes max-cut, it is NP-hard. Thus, general purpose algorithms for the class tend to be approximation algorithms. For unconstrained problem instances, one recent innovation in this vein includes an algorithm of Buchbinder et al. (2012) that guarantees a ½ - approximation to the maximum. Building on this, for problems subject to cardinality constraints, Buchbinderet al. (2014) o_er guarantees in the range [0:356; ½ + o(1)]. Earlier work has the best approximation factors for more complex constraints and settings. For constraints that can be characterized as a solvable polytope, Chekuri et al. (2011) provide guarantees. For the online secretary setting, Gupta et al. (2010) provide guarantees.
    [Show full text]
  • 1 Introduction to Submodular Set Functions and Polymatroids
    CS 598CSC: Combinatorial Optimization Lecture data: 4/8/2010 Instructor: Chandra Chekuri Scribe: Bolin Ding 1 Introduction to Submodular Set Functions and Polymatroids Submodularity plays an important role in combinatorial optimization. Given a ¯nite ground set S, a set function f : 2S ! R is submodular if f(A) + f(B) ¸ f(A \ B) + f(A [ B) 8A; B ⊆ S; or equivalently, f(A + e) ¡ f(A) ¸ f(B + e) ¡ f(B) 8A ⊆ B and e 2 S n B: Another equivalent de¯nition is that f(A + e1) + f(A + e2) ¸ f(A) + f(A + e1 + e2) 8A ⊆ S and distinct e1; e2 2 S n A: Exercise: Prove the equivalence of the above three de¯nitions. A set function f : 2S ! R is non-negative if f(A) ¸ 0 8A ⊆ S. f is symmetric if f(A) = f(S n A) 8A ⊆ S. f is monotone (non-decreasing) if f(A) · f(B) 8A ⊆ B. f is integer-valued if f(A) 2 Z 8A ⊆ S. 1.1 Examples of submodular functions Cut functions. Given an undirected graph G = (V; E) and a `capacity' function c : E ! R+ on V edges, the cut function f : 2 ! R+ is de¯ned as f(U) = c(±(U)), i.e., the sum of capacities of edges between U and V nU. f is submodular (also non-negative and symmetric, but not monotone). In an undirected hypergraph G = (V; E) with capacity function c : E! R+, the cut function is de¯ned as f(U) = c(±E (U)), where ±E (U) = fe 2 E j e \ U 6= ; and e \ (S n U) 6= ;g.
    [Show full text]
  • Concave Aspects of Submodular Functions
    Concave Aspects of Submodular Functions Rishabh Iyer Jeff Bilmes University of Texas at Dallas, CSE Department University of Washington, ECE Department 2601 N. Floyd Rd. MS EC31 185 E Stevens Way NE Richardson, TX 75083 Seattle, WA 98195 Email: [email protected] Email: [email protected] Abstract—Submodular Functions are a special class of set This relationship is evident by the fact that submodular functions, which generalize several information-theoretic quan- function minimization is polynomial time (akin to convex tities such as entropy and mutual information [1]. Submodular minimization). A number of recent results, however, make functions have subgradients and subdifferentials [2] and admit polynomial time algorithms for minimization, both of which are this relationship much more formal. For example, similar to fundamental characteristics of convex functions. Submodular convex functions, submodular functions have tight modular functions also show signs similar to concavity. Submodular lower bounds and admit a sub-differential characterization [2]. function maximization, though NP hard, admits constant factor Moreover, it is possible [11] to provide optimality conditions approximation guarantees and concave functions composed with for submodular minimization, in a manner analogous to modular functions are submodular. In this paper, we try to provide a more complete picture on the relationship between the Karush-Kuhn-Tucker (KKT) conditions from convex submodularity with concavity. We characterize the superdiffer- programming. In addition, submodular functions also admit entials and polyhedra associated with upper bounds and provide a natural convex extension, known as the Lov´asz extension, optimality conditions for submodular maximization using the which is easy to evaluate [12] and optimize.
    [Show full text]
  • (05) Polymatroids, Part 1
    1 An integer polymatroid P with groundset E is a bounded set of non-negative integer-valued vectors coordinatized by E such that P includes the origin; and any non-neg integer vector is a member of P if it is ≤ some member of F; and for any non-neg integer vector y, every maximal vector x in P which is ≤ y (―an F basis of y”) has the same sum |x| ≡ x(E) ≡ ∑( xj : j ϵ E), called the rank r(y) of vector y in P. Clearly, by definition, the 0–1 valued vectors in an integral polymatroid are the ―incidence vectors‖ of the independent sets J (i.e., J ∈ F) of a matroid M = (E,F). For any vectors x and y in Z+, x ∩ y denotes the maximal integer vector which is ≤ x and ≤ y; x ∪ y denotes the minimal integer vector which is ≥ x and ≥ y. Clearly 0 ≤ r(0) ≤ r(x) ≤ r(y) for x ≤ y. “non-neg & non-decreasing” + Theorem 2: For any x and y in Z , r(x ∪ y) + r(x ∩ y) ≤ r(x) + r(y). “submodular” Proof: Let v be an P-basis of x ∩ y. Extend it to P-basis w of x ∪ y. By the definition of integer polymatroid, r(x ∩ y) = |v| and r(x ∪ y) = |w|. r(x) + r(y) ≥ |w ∩ x| + |w ∩y| = |w ∩ (x ∩ y)| + | w ∩(x ∪ y)| = |v| + |w| = r(x ∪ y) + r(x ∩ y). □ + For subsets S of E define fP(S) to be r(x) where x ϵ Z is very large for coordinates in S and = 0 for coordinates not in S.
    [Show full text]
  • On Bisubmodular Maximization
    On Bisubmodular Maximization Ajit P. Singh Andrew Guillory Jeff Bilmes University of Washington, Seattle University of Washington, Seattle University of Washington, Seattle [email protected] [email protected] [email protected] Abstract polynomial-time approximation algorithms exist when the matroid constraints consist only of a cardinality con- Bisubmodularity extends the concept of sub- straint [22], or under multiple matroid constraints [6]. modularity to set functions with two argu- Our interest lies in enriching the scope of selection ments. We show how bisubmodular maxi- problems which can be efficiently solved. We discuss mization leads to richer value-of-information a richer class of properties on the objective, known as problems, using examples in sensor placement bisubmodularity [24, 1] to describe biset optimizations: and feature selection. We present the first constant-factor approximation algorithm for max f(A, B) (2) A,B V a wide class of bisubmodular maximizations. ⊆ subject to (A, B) , i 1 . r . ∈ Ii ∀ ∈ { } 1 Introduction Bisubmodular function maximization allows for richer problem structures than submodular max: i.e., simul- Central to decision making is the problem of selecting taneously selecting and partitioning elements into two informative observations, subject to constraints on the groups, where the value of adding an element to a set cost of data acquisition. For example: can depend on interactions between the two sets. Sensor Placement: One is given a set of n locations, To illustrate the potential of bisubmodular maximiza- V , and a set of k n sensors, each of which can cover tion, we consider two distinct problems: a fixed area around it.
    [Show full text]
  • Maximizing K-Submodular Functions and Beyond
    Maximizing k-Submodular Functions and Beyond∗ Justin Ward† School of Computer and Communication Sciences, EPFL, Switzerland [email protected] Stanislav Zivn´yˇ ‡ Department of Computer Science, University of Oxford, UK [email protected] Abstract We consider the maximization problem in the value oracle model of functions defined on k-tuples of sets that are submodular in every orthant and r-wise monotone, where k 2 and 1 r k. We give an analysis of a deterministic greedy algorithm that shows that any≥ such function≤ ≤ can be approximated to a factor of 1/(1 + r). For r = k, we give an analysis of a randomised greedy algorithm that shows that any such function can be approximated to a factor of 1/(1 + k/2). In the case of k = r = 2, the considered functions correspond precisely to bisubmodular p functions, in which case we obtain an approximation guarantee of 1/2. We show that, as in the case of submodular functions, this result is the best possible in both the value query model, and under the assumption that NP = RP . Extending a result of Ando6 et al., we show that for any k 3 submodularity in every orthant and pairwise monotonicity (i.e. r = 2) precisely characterize≥ k-submodular functions. Consequently, we obtain an approximation guarantee of 1/3 (and thus independent of k) for the maximization problem of k-submodular functions. 1 Introduction Given a finite nonempty set U, a set function f : 2U R defined on subsets of U is called → + submodular if for all S, T U, arXiv:1409.1399v2 [cs.DS] 23 Nov 2015 ⊆ f(S)+ f(T ) f(S T )+ f(S T ).
    [Show full text]
  • Maximizing Non-Monotone Submodular Functions∗
    Maximizing non-monotone submodular functions∗ Uriel Feige y Vahab S. Mirrokni z Dept. of Computer Science and Applied Mathematics Google Research The Weizmann Institute New York, NY Rehovot, Israel [email protected] [email protected] Jan Vondr´ak x IBM Alamaden Research Center San Jose, CA [email protected] January 29, 2011 Abstract Submodular maximization generalizes many important problems including Max Cut in directed and undirected graphs and hypergraphs, certain constraint satisfaction problems and maximum fa- cility location problems. Unlike the problem of minimizing submodular functions, the problem of maximizing submodular functions is NP-hard. In this paper, we design the first constant-factor approximation algorithms for maximizing non- negative (non-monotone) submodular functions. In particular, we give a deterministic local-search 1 2 3 -approximation and a randomized 5 -approximation algorithm for maximizing nonnegative submod- 1 ular functions. We also show that a uniformly random set gives a 4 -approximation. For symmetric 1 submodular functions, we show that a random set gives a 2 -approximation, which can be also achieved by deterministic local search. These algorithms work in the value oracle model where the submodular function is accessible 1 through a black box returning f(S) for a given set S. We show that in this model, a ( 2 + )- approximation for symmetric submodular functions would require an exponential number of queries for any fixed > 0. In the model where f is given explicitly (as a sum of nonnegative submodular 5 functions, each depending only on a constant number of elements), we prove NP-hardness of ( 6 + )- 3 approximation in the symmetric case and NP-hardness of ( 4 + )-approximation in the general case.
    [Show full text]
  • Disjoint Bases in a Polymatroid
    Disjoint Bases in a Polymatroid Gruia Calinescu˘ ∗ Chandra Chekuri† Jan Vondrak´ ‡ May 26, 2008 Abstract Let f : 2N → Z+ be a polymatroid (an integer-valued non-decreasing submodular set function with f(∅) = 0). We call S ⊆ N a base if f(S) = f(N). We consider the problem of finding a maximum number of disjoint bases; we denote by m∗ be this base packing number. A simple upper bound on m∗ ∗ P is given by k = max{k : i∈N fA(i) ≥ kfA(N), ∀A ⊆ N} where fA(S) = f(A ∪ S) − f(A). This upper bound is a natural generalization of the bound for matroids where it is known that m∗ = k∗. For polymatroids, we prove that m∗ ≥ (1 − o(1))k∗/ ln f(N) and give a randomized polynomial time algorithm to find (1 − o(1))k∗/ ln f(N) disjoint bases, assuming an oracle for f. We also derandomize the algorithm using minwise independent permutations and give a deterministic algorithm that finds (1 − )k∗/ ln f(N) disjoint bases. The bound we obtain is almost tight since it is known there are polymatroids for which m∗ ≤ (1 + o(1))k∗/ ln f(N). Moreover it is known that unless NP ⊆ DT IME(nlog log n), for any > 0, there is no polynomial time algorithm to obtain a (1 + )/ ln f(N)-approximation to m∗. Our result generalizes and unifies two results in the literature. 1 Introduction A polymatroid f : 2N → Z+ on a ground set N is a non-decreasing (monotone) integer-valued submodular function. A function f is monotone iff f(A) ≤ f(B) for all A ⊆ B.
    [Show full text]