Review and Analysis of Search, Extraction, Evacuation, and Medical Field Treatment Robots

Total Page:16

File Type:pdf, Size:1020Kb

Review and Analysis of Search, Extraction, Evacuation, and Medical Field Treatment Robots Journal of Intelligent & Robotic Systems (2019) 96:401–418 https://doi.org/10.1007/s10846-019-00991-6 Review and Analysis of Search, Extraction, Evacuation, and Medical Field Treatment Robots Adam Williams1 · Bijo Sebastian1 · Pinhas Ben-Tzvi1 Received: 20 October 2017 / Accepted: 27 January 2019 / Published online: 1 February 2019 © Springer Nature B.V. 2019 Abstract One of the most impactful and exciting applications of robotic technology, especially autonomous and semi-autonomous systems, is in the field of search and rescue. Robots present an opportunity to go where rescuers cannot, keep responders out of danger, work indefatigably, and augment the capabilities of the humans who put their lives at risk while helping others. This paper examines the use of robotic systems in human rescue applications, with an emphasis on performing search, extraction, evacuation, and medical field treatment procedures. The work begins with a review of the various robotic systems designed to perform one or more of the above operations. The relative merits of each system are discussed along with their shortcomings. The paper also addresses the use of robotic competitions as a means of benchmarking field robotic systems. Based on the review of state of the art systems, a novel concept (Semi- Autonomous Victim Extraction Robot) designed to address the shortcomings of existing systems is described in the conclusion, along with detailed discussion on how it improves upon state of the art systems. The future research thrusts to be explored before realizing a fully integrated robotic rescue system are also detailed. Keywords Search and rescue robots · Casualty extraction · Human-robot interaction · Autonomous systems 1 Introduction potentially survivable wounds in the U.S. military, timely evacuation and transportation must be emphasized when Many fatalities in the aftermath of disasters and combat improving medical care [8]. This emphasis led to the U.S. are due to treatable traumatic injuries that can be avoided Army Medical Research and Material Command reopening by timely medical treatment [1, 2]. This notion of time- investigation in this field [9]. While rapid medical assistance sensitive treatment is represented by “The Golden Hour dominates the focus in the reduction of traumatic field of Trauma” [3–6], the theory that if medical assistance is injuries, the risks associated with first responders involved provided within a short time following traumatic injuries, in victim handling procedures must not be ignored [10]. the survival rate of the injured person rises appreciably. In disaster or combat scenarios, deployment of a medic While the debate on the exact definition and duration of or other rescue personnel into a dangerous area risks the this critical period is unresolved in the medical literature, lives of both the rescuer and the injured. Furthermore, a mandate from the Secretary of Defense in 2009 to during terror attacks or military operations there may prioritize transporting military causalities in an hour or be “leave behind” explosives or enemy troops targeting less resulted in a significant decline in mortality due first responders [11]. Moreover, manmade catastrophic to traumatic injuries, especially those requiring blood events often occur in remote locations, making it difficult transfusions [7]. As hemorrhage due to major trauma has to send qualified personnel. In the above cases, robots been found to be the cause of death in up to 80% of can make significant contributions to saving the lives of both the injured personnel and responders. A lack of a comprehensive review for robotic systems to perform or aid Pinhas Ben-Tzvi in victim extraction and evacuation was the impetus behind [email protected] this work. Even though a majority of the systems reviewed were developed for military applications the inferences 1 Robotics and Mechatronics Lab, Mechanical Engineering drawn from the review are applicable to civilian casualty Department, Virginia Tech, Blacksburg, VA 24061, USA handling from manmade and natural disasters. 402 of theDespite art systems the general as “search categorization and rescue”, ofexisting not all of state them are equipped to conduct human rescue operations independently. For better analysis of the robotics used in this area, these systems can be organized by where they fit into the medical response process: search, extraction, evacuation, and treatment [ robotic systems attempt to find and report the location of any injured personnel. Search robotics is a mature field, and robots have been actively incorporated into search procedures in numerous disasters as far back as the September 11 attacks in 2001 [ extraction phase, in which a robot physically maneuvers or carries the injured person out of the disaster zone. These ‘rescue’ robots are by necessity larger and at times, more complex, than their search-focused brethren. Compared to search, this is a less mature field. Systems such as 12 the Battlefield Extraction-Assist Robot (BEAR) and the ]. In the search stage, Robotic Extraction Vehicle (REX) are indicative of these types of robots [ evacuation of the patient to a medical assistance location. fromFollowing a dangerous the area, safe there extraction must be of safe an and injured efficient person The robots that are designed to perform this task include the Life Support for Trauma and Transport (LSTAT), a stretcher with a full set of sensory equipment and a robotic 14 13 snake-like manipulator [ , ]. Next is the 15 Vehicle (REV), a mobile patient transport robot [ ]. a better-equipped medical station, robotic surgical systems facilitate the treatment of the wounded person by allowingJ Intell Robot Syst (2019) 96:401–418 2000 a remotely located surgeon to perform advanced surgical procedures on the wounded person robotic surgical systems such as the da Vinci [ Zeus [ large for field operation. Based on the review of16 state of the art robotic18 search, extraction, evacuation, and medical], and the Robotic Evacuation treatment robots, a] future were designedresearch direction for this wouldpurpose, be they the are too Search A Timeline of Search, Extraction, Evacuation,development and of a unified system that can perform as much Foster-Miller Solem of the rescue procedures as possible. Inkutun VGTV-Extreme iRobot PackBot tems designedThis paper to will play review a rolethe in one existing or more ground of the robotic afore- sys- Inkutun Micro-Tracks mentioned stages, and will investigate the future of field Extraction Inkutun Micro-VGTV rescue robotics. Historically, a large amount of attention 2001 2004 has been devoted to the robotic systems that belong to the in situ 15 Treatment Robots ]. At Soryu III . While early Evacuation 17 ]andthe Remotec Andros 2006 iRobot Valkyrie LSTAT 2004 Fig. 1 Treatment Modular Rescue 2001 2005 Robot Timeline of implementation of robots reviewed Quince REX 2011 2012 2008 2010 NIFTi UGV DaVinci BEAR 2003 REV 2008 RAVEN 2006 cRONA Lockheed SMSS 2014 SRI M7 2011 2008 Trauma Pod 2009 Robotiq Titan HDT Protector 2016 J Intell Robot Syst (2019) 96:401–418 403 search class. This work aims to highlight previously under- Robot-human teams were deployed to probe the rubble of reported systems designed for the extraction and evacuation the World Trade Center following the attacks on September of injured personnel, culminating in the presentation of a 11th in 2001, UAVs were used to assist in the search for novel solution for such scenarios. A timeline of the imple- those trapped by the flooding resulting from Hurricane mentation and/or testing of these robots as described in the Katrina in 2005, and an AUV surveyed the damage to the literature are shown in Fig. 1. The systems are reviewed Rollover Pass Bridge caused by Hurricane Ike in 2008. in the following section in chronological order as given While in Japan, mobile robots such as Quince were utilized by Fig. 1. Section 2 of this paper contains a review of to measure the radiation in the aftermath of the Fukushima the search robots, Section 3 explores extraction systems, nuclear disaster in 2011 [20–23]. Robots have the ability Section 4 describes evacuation platforms, Section 5 exam- to play an integral part in surveying affected regions and ines surgical robotic systems, and Section 6 details the need locating people in distress during the aftermath of disasters for robotic competitions to evaluate existing state of the art or combat. Search robots are generally designed to act as system. Section 7 of the paper provides a conceptual design mobile sensory platforms that perform small crucial tasks for Semi-Autonomous Victim Extraction Robot (SAVER) which enable the use of sophisticated detection equipment that can satisfy the requirements for a combined search, in spaces that may be unsafe or unreachable for humans extraction and evacuation platform with possible treatment [24]. Furthermore, with proper design, robots can run capabilities. Section 8 concludes the paper with directions continuously, with just a momentary stop for refueling, for future research in robotic casualty handling. facilitating nonstop search efforts and allowing human team members to divide shifts more effectively. This would mitigate the risks of sleep deprivation related errors in the 2 Search Robots operation of complex technology, a major issue in search and rescue efforts [25]. In this section, we provide a brief Spurred by the close succession of the catastrophic review of some of the most notable, existing search robots to 1995 Oklahoma
Recommended publications
  • 1 Design of a Low-Cost, Highly Mobile Urban Search and Rescue Robot
    Design of a Low-Cost, Highly Mobile Urban Search and Rescue Robot Bradley E. Bishop * Frederick L. Crabbe Bryan M. Hudock United States Naval Academy 105 Maryland Ave (Stop 14a) Annapolis, MD 21402 [email protected] Keywords: Rescue Robotics, Mobile Robotics, Locomotion, Physical Simulation, Genetic Algorithms Abstract— In this paper, we discuss the design of a novel robotic platform for Urban Search and Rescue (USAR). The system developed possesses unique mobility capabilities based on a new adjustable compliance mechanism and overall locomotive morphology. The main facets of this work involve the morphological concepts, initial design and construction of a prototype vehicle, and a physical simulation to be used for developing controllers for semi-autonomous (supervisory) operation. I. INTRODUCTION Recovering survivors from a collapsed building has proven to be one of the more daunting challenges that face rescue workers in today’s world. Survivors trapped in a rubble pile generally have 48 hours before they will succumb to dehydration and the elements [1]. Unfortunately, the environment of urban search and rescue (USAR) does not lend itself to speedy reconnaissance or retrieval. The terrain is extremely unstable and the spaces for exploration are often irregular in nature and very confined. Though these challenges often make human rescue efforts deep within the rubble pile prohibitive, a robot designed for urban search and rescue would be very well suited to the problem. Robots have already proven their worth in urban search and rescue, most notably in the aftermath of the September 11 th , 2001 disaster. The combined efforts of Professor Robin Murphy, 1 a computer scientist at the University of South Florida, and Lt.
    [Show full text]
  • Multipurpose Tactical Robot
    Engineering International, Volume 2, No 1 (2014) Asian Business Consortium | EI Page 20 Engineering International, Volume 2, No 1 (2014) Multipurpose Tactical Robot Md. Taher-Uz-Zaman1, Md. Sazzad Ahmed2, Shabbir Hossain3, Shakhawat Hossain4, & G. R. Ahmed Jamal5 1,2,3,4Department of Electrical & Electronic Engineering, University of Asia Pacific, Bangladesh 5Assistant Professor, Dept. of Electrical & Electronic Engineering, University of Asia Pacific, Bangladesh ABSTRACT This paper presents a general framework for planning a multipurpose robot which can be used in multiple fields (both civil and military). The framework shows the assembly of multiple sensors, mechanical arm, live video streaming and high range remote control and so on in a single robot. The planning problem is one of five fundamental challenges to the development of a real robotic system able to serve both purposes related to military and civil like live surveillance(both auto and manual), rescuing under natural disaster aftermath, firefighting, object picking, hazard like ignition, volatile gas detection, exploring underground mine or even terrestrial exploration. Each of the four other areas – hardware design, programming, controlling and artificial intelligence are also discussed. Key words: Robotics, Artificial intelligence, Arduino, Survelience, Mechanical arm, Multi sensoring INTRODUCTION There are so many robots developed based on line follower, obstacle avoider, robotic arm, wireless controlled robot and so on. Most of them are built on the basis of a specific single function. For example a mechanical arm only can pick an object inside its reach. But what will happen if the object is out of its reach? Besides implementing a simple AI (e.g. line following, obstacle or edge detection) is more or less easy but that does not serve any human need.
    [Show full text]
  • Post-Graduation Report Class of 2018
    Post-Graduation Report Class of 2018 wpi.edu/+cdc Executive Summary Post-Graduation Report for the Class of 2018 The Career Development Center (CDC) is pleased to present the WPI Post-Graduation Report for the Class of 2018 including all degree levels, following standards set by the National Association of Colleges and Employers (NACE). For details on data collection and reporting, see the Methodology section of this report. Highlights for the class of 2018 include the following: Knowledge Rate For bachelor’s degree graduates the knowledge rate was 92%, much higher than the typical national average of 65% (NACE First Destination Report 2017). The knowledge rate is the proportion of graduates for whom career data was collected from all sources (i.e. self-report, phone campaign, faculty and staff, social media). Success Rate The success rate for bachelor’s degree graduates inched up to 93.0% (94.6% for graduates of all degree levels -- bachelor’s, master’s, PhD -- combined). The success rate is the proportion of graduates who are employed, in graduate school, active duty military or volunteer service for whom data was collected excluding those “not seeking”. Average Starting Salary The average starting salary for bachelor’s degree graduates rose more than $2,000 from the previous year to $69,219, typically only about one-third of employed graduates report salary information, these data are confidential and used only in aggregate to produce this report. Employer Engagement Over 450 different companies recruited on-campus (career fairs, information sessions, on-campus interviews, networking events, and career expos) last year and thousands more virtually.
    [Show full text]
  • A Rough Terrain Negotiable Teleoperated Mobile Rescue Robot with Passive Control Mechanism
    3-Survivor: A Rough Terrain Negotiable Teleoperated Mobile Rescue Robot with Passive Control Mechanism Rafia Alif Bindu1,2, Asif Ahmed Neloy1,2, Sazid Alam1,2, Shahnewaz Siddique1 Abstract— This paper presents the design and integration of hazardous areas, the robot must have high mobility ability to 3-Survivor: a rough terrain negotiable teleoperated mobile move in rough terrain, clearing the path and also transmitting rescue and service robot. 3-Survivor is an improved version of live video of the affected area. Generally, three types of robot two previously studied surveillance robots named Sigma-3 and locomotion are found. The first is the walking robot [9], Alpha-N. In 3-Survivor, a modified double-tracked with second, the wheel-based robot [10] and the third is a track- caterpillar mechanism is incorporated in the body design. A based robot [6]. The wheel-based robot is not efficient for passive adjustment established in the body balance enables the moving in the rough terrain [11]. The walking robot can move front and rear body to operate in excellent synchronization. Instead of using an actuator, a reconfigurable dynamic method but it’s very slow and difficult to control [9]. In that sense, is constructed with a 6 DOF arm. This dynamic method is the double-track mechanism provides good mobility under configured with the planer, spatial mechanism, rotation matrix, rough terrain conditions with the added benefit of low power motion control of rotation using inverse kinematics and consumption. Considering all these conditions, the track- controlling power consumption of the manipulator using based robot is more efficient in rough terrain as well as in a angular momentum.
    [Show full text]
  • Testimony of Tim Cortes, Chief Technology Officer on Behalf of Plug Power Inc
    Testimony of Tim Cortes, Chief Technology Officer on behalf of Plug Power Inc. before the U.S. House Appropriations Subcommittee of Energy and Water Development March 17, 2021 Good afternoon. Thank you to Chairwoman Kaptur, Ranking Member Simpson, and the entire Subcommittee for inviting me to testify before you today regarding Domestic Manufacturing for a Clean ​ Energy Future and ongoing work within the U.S. Department of Energy’s (DOE) Hydrogen and Fuel Cell ​ Technologies Office (HFTO). I would like to begin by thanking the members of this committee for the ​ ​ opportunity to testify today and to discuss the exciting economic and environmental advantages that will benefit the United States as it employs hydrogen, thus decarbonizing its economy in the coming years. The federal government has a critical role to play in this process. Our team looks forward to working with you as you explore ways to accelerate deployment of clean hydrogen and fuel cell technologies across a wide spectrum of industries and economic sectors. Background and Introduction My name is Tim Cortes. Since 2015, I have been with Plug Power, Inc, and am currently the Chief Technology Officer. In my position, I am responsible for the company’s long-term technology strategy ​ and vision. When I joined the team, I was tasked with building a world class hydrogen business. Today, I ​ am proud to say that we have developed an excellent management team focused on the installation, engineering and service of Plug Power’s hydrogen fueling systems. As I will discuss later, we have grown significantly since our inception, expanding our vision to include our manufacturing capabilities.
    [Show full text]
  • Enhancing Geometric Maps Through Environmental Interactions
    Enhancing geometric maps through environmental interactions SERGIO S. CACCAMO Doctoral Thesis Stockholm, Sweden 2018 Robotics, Perception and Learning School of Electrical Engineering and Computer Science TRITA-EECS-AVL-2018:26 KTH Royal Institute of Technology ISBN 978-91-7729-720-8 SE-100 44 Stockholm, Sweden Copyright © 2018 by Sergio S. Caccamo except where otherwise stated. Tryck: Universitetsservice US-AB 2018 iii Abstract The deployment of rescue robots in real operations is becoming increasingly com- mon thanks to recent advances in AI technologies and high performance hardware. Rescue robots can now operate for extended period of time, cover wider areas and process larger amounts of sensory information making them considerably more useful during real life threatening situations, including both natural or man-made disasters. In this thesis we present results of our research which focuses on investigating ways of enhancing visual perception for Unmanned Ground Vehicles (UGVs) through environmental interactions using different sensory systems, such as tactile sensors and wireless receivers. We argue that a geometric representation of the robot surroundings built upon vi- sion data only, may not suffice in overcoming challenging scenarios, and show that robot interactions with the environment can provide a rich layer of new information that needs to be suitably represented and merged into the cognitive world model. Visual perception for mobile ground vehicles is one of the fundamental problems in rescue robotics. Phenomena such as rain, fog, darkness, dust, smoke and fire heav- ily influence the performance of visual sensors, and often result in highly noisy data, leading to unreliable or incomplete maps. We address this problem through a collection of studies and structure the thesis as fol- low: Firstly, we give an overview of the Search & Rescue (SAR) robotics field, and discuss scenarios, hardware and related scientific questions.
    [Show full text]
  • Robots and Healthcare Past, Present, and Future
    ROBOTS AND HEALTHCARE PAST, PRESENT, AND FUTURE COMPILED BY HOWIE BAUM What do you think of when you hear the word “robot”? 2 Why Robotics? Areas that robots are used: Industrial robots Military, government and space robots Service robots for home, healthcare, laboratory Why are robots used? Dangerous tasks or in hazardous environments Repetitive tasks High precision tasks or those requiring high quality Labor savings Control technologies: Autonomous (self-controlled), tele-operated (remote control) 3 The term “robot" was first used in 1920 in a play called "R.U.R." Or "Rossum's universal robots" by the Czech writer Karel Capek. The acclaimed Czech playwright (1890-1938) made the first use of the word from the Czech word “Robota” for forced labor or serf. Capek was reportedly several times a candidate for the Nobel prize for his works and very influential and prolific as a writer and playwright. ROBOTIC APPLICATIONS EXPLORATION- – Space Missions – Robots in the Antarctic – Exploring Volcanoes – Underwater Exploration MEDICAL SCIENCE – Surgical assistant Health Care ASSEMBLY- factories Parts Handling - Assembly - Painting - Surveillance - Security (bomb disposal, etc) - Home help (home sweeping (Roomba), grass cutting, or nursing) 7 Isaac Asimov, famous write of Science Fiction books, proposed his three "Laws of Robotics", and he later added a 'zeroth law'. Law Zero: A robot may not injure humanity, or, through inaction, allow humanity to come to harm. Law One: A robot may not injure a human being, or, through inaction, allow a human being to come to harm, unless this would violate a higher order law. Law Two: A robot must obey orders given it by human beings, except where such orders would conflict with a higher order law.
    [Show full text]
  • Top Robotics Companies Continue to Innovate, Grow Market TABLE of CONTENTS SPONSORED BY
    2O19 ROBOTICS BUSINESS REVIEW RBR C5OMP0ANY Top Robotics Companies Continue to Innovate, Grow Market TABLE OF CONTENTS SPONSORED BY A GROWING MARKET WHAT’S DIFFERENT THIS YEAR EXPANDING OUR “COMPANIES WE’RE WATCHING” LIST GOING SLIGHTLY BEYOND 50 “COMPANIES” ONE MORE THING … THE 2019 RBR50 WINNERS COMPONENTS COBOTS AUTONOMOUS MOBILE ROBOTS PIECE-PICKING & AI AUTONOMOUS VEHICLES AERIAL ROBOTS (AKA DRONES) AUTONOMY SOFTWARE INDUSTRIAL AUTOMATION, ROBOTICS HEALTHCARE OR SERVICE ROBOTS INFRASTRUCTURE SUPPORT FOR ROBOTICS NOTABLE TRANSACTIONS AMONG THE RBR 50 COMPANIES WE’RE WATCHING roboticsbusinessreview.com 2 2019 RBR50: TOP ROBOTICS COMPANIES CONTINUE TO INNOVATE, GROW MARKET Success comes in many flavors for robotics companies around the world. By Keith Shaw, Robotics Business Review, and John Santagate, IDC Starting and growing any business is difficult, but when you’re in an emerging market such as robotics, 2O19 ROBOTICS BUSINESS REVIEW automation, or artificial intelligence, the highs are higher and the lows can be lower. The meteoric rise of new companies and competition, along with RBR record investments and high demand from potential customers, can lead to distraction for even the most stalwart entrepreneur. Throw in an intense spotlight from a media looking 50 to make headlines around the negatives of robotics, COMPANY and you have a recipe for potential disaster at every turn. Yet the top companies in the robotics field continue to stay focused on their mission – building robots, software and services that enable companies to optimize their processes, improve efficiencies, become more profitable, or solve human worker labor shortages. For the past eight years, the RBR50 has provided the robotics industry with its own spotlight on the leaders in the robotics, AI, and autonomy industry.
    [Show full text]
  • Human-Tracking Strategies for a Six-Legged Rescue Robot Based on Distance and View
    CHINESE JOURNAL OF MECHANICAL ENGINEERING Vol. 29,aNo. 2,a2016 ·219· DOI: 10.3901/CJME.2015.1212.146, available online at www.springerlink.com; www.cjmenet.com Human-Tracking Strategies for a Six-legged Rescue Robot Based on Distance and View PAN Yang, GAO Feng*, QI Chenkun, and CHAI Xun State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China Received May 13, 2015; revised November 24, 2015; accepted December 12, 2015 Abstract: Human tracking is an important issue for intelligent robotic control and can be used in many scenarios, such as robotic services and human-robot cooperation. Most of current human-tracking methods are targeted for mobile/tracked robots, but few of them can be used for legged robots. Two novel human-tracking strategies, view priority strategy and distance priority strategy, are proposed specially for legged robots, which enable them to track humans in various complex terrains. View priority strategy focuses on keeping humans in its view angle arrange with priority, while its counterpart, distance priority strategy, focuses on keeping human at a reasonable distance with priority. To evaluate these strategies, two indexes(average and minimum tracking capability) are defined. With the help of these indexes, the view priority strategy shows advantages compared with distance priority strategy. The optimization is done in terms of these indexes, which let the robot has maximum tracking capability. The simulation results show that the robot can track humans with different curves like square, circular, sine and screw paths. Two novel control strategies are proposed which specially concerning legged robot characteristics to solve human tracking problems more efficiently in rescue circumstances.
    [Show full text]
  • Current Research, Key Performances and Future Development of Search and Rescue Robots
    Front. Mech. Eng. China 2007, 2(4): 404–416 DOI 10.1007/s11465-007-0070-2 REVIEW ARTICLE LIU Jinguo, WANG Yuechao, LI Bin, MA Shugen Current research, key performances and future development of search and rescue robots © Higher Education Press and Springer-Verlag 2007 Abstract Frequent natural disasters and man-made cata- 1 Introduction strophes have threatened the safety of citizens and have attracted much more attention. The rescue mission under In recent years, people’s safety has been greatly threatened disaster environment is very complicated and dangerous for by frequent natural disasters such as earthquakes, fires a rescue team. Search and rescue (SAR) robots can not only and floods; the man-made dangers such as terrorism and improve the efficiency of rescue operations but also reduce armed conflicts; biochemical virus such as anthrax, severe the casualty of rescuers. Robots can help rescue teams and acute respiratory syndrome (SARS), avian flu; and toxic even replace rescuers to perform dangerous missions. Search substances and the radioactive substances such as nuclear and rescue robots will play a more and more important role leakage. They have attracted extensive concern. Although in the rescue operations. A survey of the research status people have improved their alert and response capabilities of search and rescue robots in Japan, USA, China and other to various disasters, there are still fewer adequate prepa rations countries has been provided. According to current research, for devastating disasters. Many people still died because experiences and the lessons learned from applications, the of unprofessional and time pressure rescue operations [1–2].
    [Show full text]
  • Allocation of Radiation Shielding Boards to Protect the Urban Search
    S S symmetry Article Allocation of Radiation Shielding Boards to Protect the Urban Search and Rescue Robots from Malfunctioning in the Radioactive Environments Arising from Decommissioning of the Nuclear Facility Yingjie Zhao 1 , Yuxian Zhang 2,* and Zhaoyang Xie 3 1 College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China; [email protected] 2 Quzhou College of Technology, Quzhou 324000, China 3 College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China; [email protected] * Correspondence: [email protected] Received: 4 July 2020; Accepted: 31 July 2020; Published: 4 August 2020 Abstract: A group of Urban Search and Rescue (USAR) Unmanned Ground Vehicles (UGVs) works in the city’s dangerous places that are caused by natural disasters or the decommissioning of nuclear facilities such as the nuclear power plant. Consider the multi sensor platform that the USAR UGV is equipped with, protecting the sensors from the danger that dwells in the working environments is highly related to the success of the USAR mission. The radioactive working environments due to the diffusion of the radioactive materials during the decommissioning of the nuclear facilities are proposed in this work. Radiation shielding boards are used to protect the sensors by installing them on the UGV. Generally, the more shielding boards installed on the UGV, the lower the probability of the sensor malfunctioning. With a large number of UGVs that are used in missions, a large number of shielding boards are needed. Considering the cost of the boards, a conflict between the finite budget and the best protection for the UGV swarm occurs.
    [Show full text]
  • A Biologically Inspired Robot for Assistance in Urban Search and Rescue
    A Biologically Inspired Robot for Assistance in Urban Search and Rescue by ALEXANDER HUNT Submitted in partial fulfillment of the requirements For the degree of Master of Science in Mechanical Engineering Advisor: Dr. Roger Quinn Department of Mechanical and Aerospace Engineering CASE WESTERN RESERVE UNIVERSITY May 2010 Table of Contents A Biologically Inspired Robot for Assistance in Urban Search and Rescue ...................................... 0 Table of Contents ............................................................................................................................. 1 List of Tables .................................................................................................................................... 3 List of Figures ................................................................................................................................... 4 Acknowledgements.......................................................................................................................... 6 Abstract ............................................................................................................................................ 7 Chapter 1: Introduction ................................................................................................................... 8 1.1 Search and Rescue ................................................................................................................. 8 1.2 Robots in Search and Rescue ................................................................................................
    [Show full text]