Geological Society of America Bulletin

Total Page:16

File Type:pdf, Size:1020Kb

Geological Society of America Bulletin Downloaded from gsabulletin.gsapubs.org on January 23, 2013 Geological Society of America Bulletin Early History of the Colorado River in the Basin and Range Province IVO LUCCHITTA Geological Society of America Bulletin 1972;83, no. 7;1933-1948 doi: 10.1130/0016-7606(1972)83[1933:EHOTCR]2.0.CO;2 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geological Society of America Bulletin Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. Notes Copyright © 1972, The Geological Society of America, Inc. Copyright is not claimed on any material prepared by U.S. government employees within the scope of their employment. Downloaded from gsabulletin.gsapubs.org on January 23, 2013 IVO LUCCHITTA U.S. Geological Survey, Center of Astrogeology, 601 E. Cedar Ave., Flagstaff, Arizona 86001 Early History of the Colorado River in the Basin and Range Province ABSTRACT 18 to 20 m.y. indicate drainage northward, across the present site of Lake Mead, and A reasonable interpretation of the geologic northeastward onto the Colorado Plateau. history of the Colorado River in the Basin and None of these drainages can be interpreted as Range province can be put together by con- being an ancestral Colorado River. The next sidering the work done by several geologists in youngest deposit is the Muddy Creek Forma- the Imperial Valley, California, the Parker- tion, which was laid down in interior basins Blythe-Cibola area, California and Arizona, formed when basin-range faulting disrupted the and, the Lake Mead and Hualapai Plateau older topography and drainage some time after areas, Arizona. 18 to 20 m.y. ago. There was no Colorado River In the Imperial Valley, the Imperial Forma- at this time. Deposition of the Muddy Creek tion, whose age has been interpreted variously Formation ended some time after 10.6 m.y. as late Miocene or early Pleistocene but most ago. Younger deposits reflect the Colorado commonly Pliocene, records a transgression of River which, by 3.3 m.y. ago, was a well- the marine waters of the Gulf of California and incised stream flowing within 350 ft of its deposition of sediments very probably of present grade. Colorado River origin. These sediments contain Deposits and erosion surfaces on the Hualapai reworked Late Cretaceous foraminifers derived Plateau reflect drainage northeastward onto from the Mancos Shale of the Colorado the region of the present plateau from the Basin Plateau. Later sediments record a gradual and Range province until about 18 m.y. ago, change from marine to continental conditions. when the two provinces became separated In the Parker-Blythe-Cibola area, extend- topographically by movements along the ing along the Colorado River, the Bouse Grand Wash fault. No Colorado River existed Formation (Metzger, 1968), of Pliocene age, before the faulting. After faulting, drainage records a marine transgression in the form of an became interior. In none of the areas is there embayment of the Gulf of California. A evidence to suggest that the Colorado River possible northward decrease in salinity, evi- has departed appreciably from its present denced by faunas in the Bouse Formation, and course. a volume of sediments too large to be ac- This information leads to the following hy- counted for by local sources, suggest that a pothesis: until about 10.6 m.y. ago, or shortly large river emptied into the Bouse embayment thereafter, there was no Colorado River. After from the north. Although other streams and that date, waters of the Gulf of California in- washes may have contributed sediments to the vaded the Bouse embayment, and the ancestral embayment, it is probable that the main source Colorado River became established in the Lake was the ancestral Colorado River. The Bouse Mead area. The river emptied into the embay- Formation does not contain Mancos-type ment, which it progressively filled with its sedi- foraminifers but, in some surface exposures, ments from north to south. At this time, the does include Late Cretaceous coccoliths, head of the river had not yet reached areas probably of relatively local derivation. Depos- where the Mancos Shale cropped out (probably its younger than those of the Bouse Formation east of the Kaibab upwarp). As the sediment consist of Colorado River alluvium generally fill continued to build toward and into the unconformable on the Bouse, but locally con- Imperial Valley area, the headwaters of the formable. river breached the uplift and reached the In the Lake Mead area, deposits as young as Mancos Shale. The sediments then continued Geological Society of America Bulletin, v. 83, p. 1933-1948, 3 figs., July 1972 1933 Downloaded from gsabulletin.gsapubs.org on January 23, 2013 1934 I. LUCCHITTA to build southward, rilling the head of the Gulf tions between the various areas, and points out of California, a process still going on. By 3.3 problems still unsolved. In addition, this in- m.y. ago, the river was a well-established formation supports a hypothesis that, though stream in the Lake Mead area, where it had highly tentative, can nevertheless provide a cut to within a few hundred feet of its present context for further research. This hypothesis is grade. controversial. I present it in the deliberate hope By this interpretation neither the Bouse that it will stimulate productive discussion of Formation nor the part of the Imperial Forma- the problem and perhaps bring out important tion containing Colorado River material is information not now generally available. This older than 10.6 m.y. If true, the Bouse Forma- paper does not attempt to be an exhaustive tion is in part older than and in part equivalent treatment of the subject, and many questions in time to the Imperial Formation. are touched on lightly or not at all. Some of these questions will be discussed in a paper INTRODUCTION being prepared by Lucchitta and Young. The origin, age, and history of the Colorado Others are treated in syntheses such as those River have long been of interest to geologists, of McKee and others (1967), and C. B. Hunt partly because unusual conditions must have (1969), which provide a broad perspective and existed to produce the Grand Canyon, and points of view in part alternative to that partly because great difficulties are encountered presented here. in explaining how the river could establish a The four areas considered in this report are course so independent of the major topographic (Fig. 1): Imperial Valley; Parker-Blythe- and structural features that lie across its path. Cibola area; Lake Mead area; and the Hualapai Probably the most impressive of these features, Plateau. Of these, I am personally acquainted and the one that raises most problems in un- with the last two, especially the Lake Mead derstanding the history of the river, is the area. Information for the other areas has been Kaibab upwarp, a structural and topographic obtained from the literature and from com- high trending approximately north, directly munication with geologists who have experi- athwart the general course of the river at the ence with these areas. eastern, or upstream, end of the Grand Canyon. Largely because of this, recent work IMPERIAL VALLEY AREA on the history of the Colorado River often This synthesis is made chiefly from the considers this upwarp as the dividing line be- papers of Allison (1964), Dibblee (1954), tween an upper and lower section of the Durham (1950), Durham and Allison (I960), Colorado River, and therefore tends to treat Merriam and Bandy (1965), and Muffler and the two sections individually, subsequently Doe (1968). Additional information is obtained attempting to tie them together across the from Smith (1970) and Bukry (1969, 1970, upwarp. written commun.). The scope of the present paper is restricted The Imperial Valley is in the Salton Trough, to the section of the Colorado downstream of a tectonic feature consisting of the northwest or the Kaibab upwarp, specifically from near the landward extension of the Gulf of California mouth of the Grand Canyon to about 100 mi structural depression. The valley is traversed upstream from the mouth of the river. Its at its southeastern end by the Colorado River, purpose is to summarize and tie together re- which in that area is about 100 mi upstream sults obtained by various geologists from key from its mouth. The highlands bordering the areas in this section. Although this part of the valley reach altitudes of 6,000 ft in the Penin- river is largely in the Basin and Range province, sular Range to the west. The San Andreas fault it has a profound influence on interpretations zone runs along the eastern margin of the valley of the history of the Grand Canyon and indeed (Fig- 1).
Recommended publications
  • Case Study the Belgian Coast
    Case Study The Belgian coast WP 2.5 Willekens Marian Maes Frank 1 Contents Introduction - Belgian Coast ....................................................................... 5 Expert Couplet Node (members) ............................................................. 7 Case study aims ....................................................................................... 8 Case study objectives .............................................................................. 8 Learning outcomes .................................................................................. 8 Key Themes ............................................................................................. 9 1. Belgian coastline historical context ...................................................... 10 1.1 Introduction .................................................................................... 10 1.2 historical context ............................................................................. 10 1.3 Conclusion ....................................................................................... 18 1.4 Glossary ........................................................................................... 18 1.5 information sources ........................................................................ 21 1.6 References ...................................................................................... 22 1.7 Further Reading ............................................................................... 22 1.8 End-of-section questions on historical
    [Show full text]
  • Oligocene and Miocene), in Southern Nevada and Northwest Arizona D.G
    New K-Ar age determinations from syntectonic deposits (Oligocene and Miocene), in southern Nevada and northwest Arizona D.G. Carpenter and J.G. Carpenter Isochron/West, Bulletin of Isotopic Geochronology, v. 55, pp. 10-12 Downloaded from: https://geoinfo.nmt.edu/publications/periodicals/isochronwest/home.cfml?Issue=55 Isochron/West was published at irregular intervals from 1971 to 1996. The journal was patterned after the journal Radiocarbon and covered isotopic age-dating (except carbon-14) on rocks and minerals from the Western Hemisphere. Initially, the geographic scope of papers was restricted to the western half of the United States, but was later expanded. The journal was sponsored and staffed by the New Mexico Bureau of Mines (now Geology) & Mineral Resources and the Nevada Bureau of Mines & Geology. All back-issue papers are available for free: https://geoinfo.nmt.edu/publications/periodicals/isochronwest This page is intentionally left blank to maintain order of facing pages. 10 NEW K-Ar AGE DETERMINATIONS FROM SYNTECTONIC DEPOSITS (OLIGOCENE AND MIOCENE), IN SOUTHERN NEVADA AND NORTHWEST ARIZONA DANIEL G. CARPENTER Department of Geology, Oregon State University, Corvaiiis, OR 97331-5506 JAMES G. CARPENTER Present address: Mobii Exploration and Producing U.S. inc., 1225 17th Street, Denver, CO 80202 Four new K-Ar age determinations were obtained on plagioclase, rare K-feldspar, quartz and biotite shards, and Cenozoic syntectonic deposits that are important to struc rare lithic fragments in a partially devitrified groundmass. tural and stratigraphic investigations in the southern These beds Me up section from the basal limestone and Nevada, southwest Utah, and northwest Arizona region.
    [Show full text]
  • Utah Geological Association Publication 30.Pub
    Utah Geological Association Publication 30 - Pacific Section American Association of Petroleum Geologists Publication GB78 239 CENOZOIC EVOLUTION OF THE NORTHERN COLORADO RIVER EXTEN- SIONAL CORRIDOR, SOUTHERN NEVADA AND NORTHWEST ARIZONA JAMES E. FAULDS1, DANIEL L. FEUERBACH2*, CALVIN F. MILLER3, 4 AND EUGENE I. SMITH 1Nevada Bureau of Mines and Geology, University of Nevada, Mail Stop 178, Reno, NV 89557 2Department of Geology, University of Iowa, Iowa City, IA 52242 *Now at Exxon Mobil Development Company, 16825 Northchase Drive, Houston, TX 77060 3Department of Geology, Vanderbilt University, Nashville, TN 37235 4Department of Geoscience, University of Nevada, Las Vegas, NV 89154 ABSTRACT The northern Colorado River extensional corridor is a 70- to 100-km-wide region of moderately to highly extended crust along the eastern margin of the Basin and Range province in southern Nevada and northwestern Arizona. It has occupied a criti- cal structural position in the western Cordillera since Mesozoic time. In the Cretaceous through early Tertiary, it stood just east and north of major fold and thrust belts and also marked the northern end of a broad, gently (~15o) north-plunging uplift (Kingman arch) that extended southeastward through much of central Arizona. Mesozoic and Paleozoic strata were stripped from the arch by northeast-flowing streams. Peraluminous 65 to 73 Ma granites were emplaced at depths of at least 10 km and exposed in the core of the arch by earliest Miocene time. Calc-alkaline magmatism swept northward through the northern Colorado River extensional corridor during early to middle Miocene time, beginning at ~22 Ma in the south and ~12 Ma in the north.
    [Show full text]
  • Bathymetry and Active Geological Structures in the Upper Gulf of California Luis G
    BOLETÍN DE LA SOCIEDAD GEOLÓ G ICA MEXICANA VOLU M EN 61, NÚ M . 1, 2009 P. 129-141 Bathymetry and active geological structures in the Upper Gulf of California Luis G. Alvarez1*, Francisco Suárez-Vidal2, Ramón Mendoza-Borunda2, Mario González-Escobar3 1 Departamento de Oceanografía Física, División de Oceanología. 2 Departamento de Geología, División de Ciencias de la Tierra. 3 Departamento de Geofísica Aplicada, División de Ciencias de la Tierra. Centro de Investigación Científica y de Educación Superior de Ensenada, B.C. Km 107 carretera Tijuana-Ensenada, Ensenada, Baja California, México, 22860. * Corresponding author: E-mail: [email protected] Abstract Bathymetric surveys made between 1994 and 1998 in the Upper Gulf of California revealed that the bottom relief is dominated by narrow, up to 50 km long, tidal ridges and intervening troughs. These sedimentary linear features are oriented NW-SE, and run across the shallow shelf to the edge of Wagner Basin. Shallow tidal ridges near the Colorado River mouth are proposed to be active, while segments in deeper water are considered as either moribund or in burial stage. Superposition of seismic swarm epicenters and a seismic reflection section on bathymetric features indicate that two major ridge-troughs structures may be related to tectonic activity in the region. Off the Sonora coast the alignment and gradient of the isobaths matches the extension of the Cerro Prieto Fault into the Gulf. A similar gradient can be seen over the west margin of the Wagner Basin, where in 1970 a seismic swarm took place (Thatcher and Brune, 1971) overlapping with a prominent ridge-trough structure in the middle of the Upper Gulf.
    [Show full text]
  • Managing the Anthropocene Marine Transgression to the Year 2100 and Beyond in the State of Florida U.S.A
    Climatic Change (2015) 128:85–98 DOI 10.1007/s10584-014-1301-2 Managing the Anthropocene marine transgression to the year 2100 and beyond in the State of Florida U.S.A. Randall W. Parkinson & Peter W. Harlem & John F. Meeder Received: 21 February 2014 /Accepted: 25 November 2014 /Published online: 10 December 2014 # Springer Science+Business Media Dordrecht 2014 Abstract We simulate the vulnerability of all 35 Florida coastal counties to the ongoing Anthropocene marine transgression using a bathtub model unconstrained by the artificial end date of year 2100. Our projections are based upon the association between rising sea level and atmospheric temperature; a 2.3 m rise per each 1 °C increase (Levermann et al., Proc Natl Acad Sci 10.1073/pnas.1219414110, 2013). Results are organized into seven regions based upon an assessment of hypsographic and geologic attributes. Each represents an area of common vulnerability characterized in this study as high (10 to 29 % average land loss), higher (15 to 77 % average land loss), and highest (43 to 95 % average land loss). This regional approach is designed to facilitate the implementation of effective adaptation activities by providing a logical basis for establishing or re-enforcing collaboration based upon a common threat and the utility of shared technical and financial resources. The benefits of a regional perspective in formulating an actionable response to climate change have already been demonstrated in south Florida. It is our intent to facilitate regional adaptation activities in other parts of the state and adjacent southern and southeastern seaboard. 1 Introduction The State of Florida is especially vulnerable to climate change and concomitant sea level rise.
    [Show full text]
  • Regional Stratigraphy of Oligocene and Lower Miocene Strata in the Yucca Mountain Region
    * *0Ad REGIONAL STRATIGRAPHY OF OLIGOCENE AND LOWER MIOCENE STRATA IN THE YUCCA MOUNTAIN REGION Prepared for U.S. Nuclear Regulatory Commission Contract NRC-02-97-009 Prepared by Danielle A. Murray John A. Stamatakos Kenneth D. Ridgway Center for Nuclear Waste Regulatory Analyses San Antonio, Texas July 2002 CONTENTS Section Page FIGURES ............... ................ TABLES ................ ................ .vii ACKNOWLEDGMENTS .... ................ ..... ix EXECUTIVE SUMMARY .... ................ ..... xi 1 INTRODUCTION ...... ................ .... 1-1 1.1 Purpose........ ................ .... 1-1 1.2 Scope ......... ................ .... 1-2 2 GEOLOGIC SETTING .. 2-1 OLIGOCENE AND LOWER MIOCENE STRATIGRAPHY ..... 3-1 ...... 3 . 3.1 Outcrop Stratigraphy ............................ 3-1 ...... 3.1.1 Funeral Mountains ....................... ...... 3.1.2 Nevada Test Site ........................ 3-7 ...... 3.1.3 Oligocene and Lower Miocene Lithostratigraphy . ..... 3.2 Subsurface Stratigraphy ......................... 3-12 ..... 3.2.1 Nye County Well NC-EWDP-1 DX ........... 3-13 ..... 3.2.2 Nye County Well NC-EWDP-2DB ........... 3-15 ..... 3.2.3 Nye County Well NC-EWDP-3D ............ ..... 3.3 Correlation of Well Stratigraphy to Outcrop Exposures . ..... 3.3.1 Nye County Well NC-EWDP-2DB ........... ..... 3.3.2 Nye County Well NC-EWDP-1 DX ........... ..... 3.3.3 Nye County Well NC-EWDP-3D ............ ..... 4 CROSS SECTIONS ......................................... ........... 4.1 Regional Cross Section ................................
    [Show full text]
  • Importance of Groundwater in Propagating
    CRevolution 2: Origin and Evolution of the Colorado River System II themed issue Crossey et al. Importance of groundwater in propagating downward integration of the 6–5 Ma Colorado River system: Geochemistry of springs, travertines, and lacustrine carbonates of the Grand Canyon region over the past 12 Ma L.C. Crossey1, K.E. Karlstrom1, R. Dorsey2, J. Pearce3, E. Wan4, L.S. Beard5, Y. Asmerom1, V. Polyak1, R.S. Crow1, A. Cohen6, J. Bright6, and M.E. Pecha6 1Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico, 87131, USA 2Department of Geological Sciences, 1272 University of Oregon, Eugene, Oregon 97403-1272, USA 3U.S. Forest Service, Grand Mesa, Uncompahgre and Gunnison National Forests, Paonia Ranger District, 403 North Rio Grande Avenue, P.O. Box 1030, Paonia, Colorado 81428, USA 4U.S. Geological Survey, 345 Middlefield Road, MS977, Menlo Park, California 94025, USA 5U.S. Geological Survey, 2255 North Gemini Drive, Flagstaff, Arizona 86001, USA 6Department of Geosciences, The University of Arizona, 1040 East 4th Street, Tucson, Arizona 85721, USA ABSTRACT travertines, suggesting a long-lived spring- basins. Bouse carbonates display a southward fed lake/marsh system sourced from western trend toward less radiogenic 87Sr/86Sr values, We applied multiple geochemical tracers Colorado Plateau groundwater. Progressive higher [Sr], and heavier d18O that we attribute (87Sr/86Sr, [Sr], d13C, and d18O) to waters and up-section decrease in 87Sr/86Sr and d13C and to an increased proportion of Colorado River carbonates of the lower Colorado River sys- increase in d18O in the uppermost 50 m of the water through time plus increased evapora- tem to evaluate its paleohydrology over the Hualapai Limestone indicate an increase in tion from north to south.
    [Show full text]
  • Continental Shelf Morphology and Stratigraphy Offshore San Onofre, California: the Interplay Between Rates of Eustatic Change and Sediment Supply
    Marine Geology 369 (2015) 116–126 Contents lists available at ScienceDirect Marine Geology journal homepage: www.elsevier.com/locate/margeo Continental shelf morphology and stratigraphy offshore San Onofre, California: The interplay between rates of eustatic change and sediment supply Shannon Klotsko a,⁎, Neal Driscoll a,GrahamKentb, Daniel Brothers c a Scripps Institution of Oceanography, UC San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States b Nevada Seismological Laboratory, University of Nevada, Reno, Laxalt Mineral Engineering Building, Room 322, Reno, NV 89557, United States c U.S. Geological Survey, 400 Natural Bridges Drive, Santa Cruz, CA 95060, United States article info abstract Article history: New high-resolution CHIRP seismic data acquired offshore San Onofre, southern California reveal that shelf Received 31 January 2015 sediment distribution and thickness are primarily controlled by eustatic sea level rise and sediment supply. Received in revised form 18 July 2015 Throughout the majority of the study region, a prominent abrasion platform and associated shoreline cutoff Accepted 1 August 2015 are observed in the subsurface from ~72 to 53 m below present sea level. These erosional features appear to Available online 5 August 2015 have formed between Melt Water Pulse 1A and Melt Water Pulse 1B, when the rate of sea-level rise was lower. There are three distinct sedimentary units mapped above a regional angular unconformity interpreted Keywords: San Onofre to be the Holocene transgressive surface in the seismic data. Unit I, the deepest unit, is interpreted as a lag deposit Continental margin processes that infills a topographic low associated with an abrasion platform.
    [Show full text]
  • Pliocene Marine Transgressions of Northern Alaska: Circumarctic
    ARCTIC VOL. 45, NO. 1 (MARCH 1992) P. 74-89 Pliocene Marine Transgressionsof Northern Alaska: Circumarctic Correlationsand Paleoclimatic Interpretations’ J. BRIGHAM-GREITE* and L.D. CARTER3 (Received 5 July 1990; accepted in revised form 22 May 1991) ABSTRACT. At least three marine transgressions of Pliocene age are recorded by littoral to inner-shelf sediments of the Gubik Formation, which mantles the Arctic Coastal Plainof northern Alaska. The three recognized transgressions wereeustatic high sea levels that, from oldest to youngest, are informally named the Colvillian, Bigbendian, and Fishcreekian transgressions. The geochronology is based upon amino acid geochemistry, paleo- magnetic studies, vertebrate and invertebrate paleontology, and strontium isotope age estimates. Pollen, plant macrofossils, and marine vertebrate and invertebrate remains indicate that these trangressions occurred when the Arctic was at least intermittently much warmer than it is now. The Colvillian transgression took place at sometime between2.48 and 2.7 Ma, when adjacent coastal areas supported an open boreal forestor spruce-birch wood- land with scattered pine and rarefir and hemlock. The Bigbendian transgression occurred about 2.48 Ma. Climaticconditions were probably slightly cooler than during the Colvillian transgression, but probably toowarm for permafrost and too warm for even seasonal seaice in the region. Nearby vegetation was open spruce-birch woodland or parkland, possibly with rare scattered pine. The Fishcreekian transgression took place sometime between 2.14 and 2.48 Ma and was also characterized by warm marine conditions without sea ice. During the waning stages of this transgression, however, terrestrialconditions were relatively cool, and coastal vegetation was herbaceous tundra with scattered larch trees in the vicinity.
    [Show full text]
  • Beach Forms Induced by Coastal Structures Forming Embayments in Fetch-Limited Environments
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1990 Beach Forms Induced by Coastal Structures Forming Embayments in Fetch-Limited Environments Jian Hua Li College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Ocean Engineering Commons, and the Oceanography Commons Recommended Citation Li, Jian Hua, "Beach Forms Induced by Coastal Structures Forming Embayments in Fetch-Limited Environments" (1990). Dissertations, Theses, and Masters Projects. Paper 1539617617. https://dx.doi.org/doi:10.25773/v5-ys6f-4f09 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. BEACH FORMS INDUCED BY COASTAL STRUCTURES FORMING EMBAYMENTS IN FETCH-LIMITED ENVIRONMENTS A Thesis Presented to The Faculty of the School of Marine Science The College of William and Mary in Virginia In Partial Fulfillment of the Requirements for the Degree of Master of Arts by Jian Hua Li August,1990 f LIBRARY \ / of the i VIRGINIA INSTITUTE \ of \ m m m scie n c e / APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of master of arts in Marine Science Jian Hua Li Approved, August 199 0 ^ * p L. Donelson Wright, Ph.D. Committee Chairman/Advisor Robert J . Byrne U Ph.D . Diazober •h.D. Evon P. Ruzecki, Ph.D.
    [Show full text]
  • Transgressive Systems Tract of a Ria-Type Estuary: the Late Holocene Vilaine River Drowned Valley (France)
    Marine Geology 337 (2013) 140–155 Contents lists available at SciVerse ScienceDirect Marine Geology journal homepage: www.elsevier.com/locate/margeo Transgressive systems tract of a ria-type estuary: The Late Holocene Vilaine River drowned valley (France) C. Traini a,⁎, D. Menier a,b, J.-N. Proust c, P. Sorrel d a Geoarchitecture EA2219, Géosciences Marine & Géomorphologie Littorale, Université de Bretagne Sud, rue Yves Mainguy, 56017 Vannes cedex, France b Universiti Teknologi PETRONAS Tronoh, Perak, Malaysia c UMR CNRS 6118 Géosciences, Université Européenne de Bretagne, Campus de Beaulieu, 35000 Rennes, France d UMR CNRS 5276 LGL-TPE (Laboratoire de Géologie de Lyon: Terre, Planètes, Environnements), Université Claude Bernard–Lyon 1/ENS Lyon, 27-43 bd du 11 Novembre, 69622 Villeurbanne cedex, France article info abstract Article history: The understanding of control parameters of estuarine-infilling at different scales in time and space is impor- Received 24 April 2012 tant for near-future projections and better management of these areas facing sea-level change. During the Received in revised form 18 February 2013 last 20 years, the stratigraphy of late Quaternary estuaries has been extensively investigated leading to the Accepted 19 February 2013 development of depositional models which describe the sedimentary facies distribution according to changes Available online 4 March 2013 in sea level, tidal range and wave activity but few of them describe in detail the influence of the estuarine Communicated by J.T. Wells geomorphology. On the Atlantic coast, recent studies provide a detailed understanding of the sedimentary infill succession of incised valleys during the late Holocene transgression with recent emphasis on the Keywords: macrotidal bay of the Vilaine River in South Brittany.
    [Show full text]
  • Modern Analogues and Depositional Models
    201 CHAPTER 6: MODERN ANALOGUES AND DEPOSITIONAL MODELS 202 6.1 Introduction Sequence stratigraphic position plays an important role in peat formation and coal seam thickness, extent, and distribution. Peat-forming environments and depositional environments of surrounding and adjacent strata may also affect coal characteristics by simultaneously influencing coal continuity, thickness, geometry, distribution, and quality (Flores, 1993). This chapter will discuss relationships between coal properties and the depositional environments of peat and surrounding strata. Depositional interpretations of coal-bearing facies successions together with comparisons to modern depositional analogues is the basis for the creation of depositional models for Desmoinesian coals across the Bourbon arch. To enhance coalbed methane exploration and production strategies, Flores (1993) emphasized the importance of understanding the heterogeneities of properties such as coal thickness, extent, geometry, and distribution, as well as the properties of surrounding sediments and their depositional environments. Creating depositional models of significant coal-bearing intervals can improve understanding of Desmoinesian coals in eastern Kansas. Depositional models are summaries of sedimentary environments or systems, which can be used for comparison to other environments or systems. Depositional models provide a guide for future observations, evaluate the validity of existing concepts, and can be used as a tool for prediction of geologic situations with incomplete data
    [Show full text]