Myrmica Ants Host Highly Diverse Parasitic Communities: from Social Parasites to Microbes

Total Page:16

File Type:pdf, Size:1020Kb

Myrmica Ants Host Highly Diverse Parasitic Communities: from Social Parasites to Microbes Insect. Soc. (2014) 61:307–323 DOI 10.1007/s00040-014-0362-6 Insectes Sociaux REVIEW ARTICLE Myrmica ants host highly diverse parasitic communities: from social parasites to microbes M. Witek · F. Barbero · B. Markó Received: 23 December 2013 / Revised: 16 July 2014 / Accepted: 18 July 2014 / Published online: 22 August 2014 © International Union for the Study of Social Insects (IUSSI) 2014 Abstract Myrmica ants have been model species for present limitations of the knowledge at present of their studies in a variety of disciplines, including insect physio- impact on individuals and host colony fitness. In conclu- logy, chemical communication, ant social dynamics, ant sion, we argue that Myrmica ants serve as remarkable population, community ecology, and ant interactions with resource for the evolution of a wide variety of associated other organisms. Species belonging to the genus Myrmica organisms. can be found in virtually every habitat within the temperate regions of the northern hemisphere and their biology and Keywords Host–parasite interaction · Maculinea · systematics have been thoroughly studied. These ants serve Microdon · Myrmecophily · Nematodes · Rickia as hosts to highly diverse parasitic organisms from socially wasmannii parasitic butterfly caterpillars to microbes, and many Myrmica species even evolved into parasitizing species of their own genus. These parasites have various impacts both The Red Ants of the genus Myrmica on the individuals and on the social structure of their hosts, ranging from morphological malformations to reduction in In the temperate zone of North America, Asia and Europe colony fitness. A comprehensive review of the parasitic one of the most common insect groups is the Red Ants of the organisms supported by Myrmica and the effects of these genus Myrmica (Radchenko and Elmes, 2010). There are organisms on individuals and on whole ant colonies has not about 180 described species belonging to the genus Myrmica yet been compiled. Here, we provide a review of the in the Holarctic. Most of the species, however, are found in interactions of these organisms with Myrmica ants by dis- Europe and Asia, while a smaller proportion occurs in North cussing host and parasite functional, behavioral or physio- America (Radchenko and Elmes, 2010). They occur in logical adaptations. In addition, for all “symbiont groups” virtually every terrestrial habitat, including meadows, for- of Myrmica ants described in this paper, we examine the ests, steppes and mountains (Radchenko and Elmes, 2010). The variations in the habitats occupied across the range are likely to result in different diets, habits, and ant or non-ant M. Witek and F. Barbero equally contributed to the manuscript. associations. Myrmica colonies contain on average 200–500 M. Witek (&) workers and usually one, but sometimes a few functional Museum and Institute of Zoology, Polish Academy of Science, queens (Elmes and Petal, 1990; Wardlaw and Elmes, 1996). Wilcza 64, 00-679 Warszawa, Poland New nests can be founded by a single newly mated queen or, e-mail: [email protected] quite often, through the process known as colony budding F. Barbero (Elmes et al., 1998). Oviposition starts in early spring and Department of Life Sciences and Systems Biology, University of lasts through the summer until autumn (Radchenko and Turin, Via Accademia Albertina 13, 10123 Turin, Italy Elmes, 2010). Parts of the larvae develop rapidly, but others enter diapause and overwinter (Fig. 1). The latter group B. Markó Hungarian Department of Biology and Ecology, Babeş-Bolyai includes both workers and all the gyne-presumptive larvae University, Clinicilor 5-7, 400006 Cluj-Napoca, Romania (Brian and Kelly, 1967). 123 308 M. Witek et al. Fig. 1 The life cycle of Myrmica ants (My.) and some of their frequent social parasites: Microdon myrmicae (Mi.), Maculinea alcon pneumonanthe ecotype (Ma.) and Lomechusa pubicollis. The fungal ectoparasite Rickia wasmannii is located inside the nest as it infects both workers and queens. Arrows reflect moments of entering and leaving host colony by social parasites. Numbers I, II, III, IV refer to particular larval instars Myrmica ants have been model species for studies in a as the current knowledge on the impact of these organisms variety of disciplines, including insect physiology, chemi- on the individuals, and on the colony structure of their cal communication, social dynamics, ant population and Myrmica hosts. community ecology, phylogeography and speciation (Rad- chenko and Elmes, 2010). There are slightly more than 700 scientific publications on Myrmica ants recorded on the Exploitation of an ant society: social parasites WoS (as of 12/05/2014), although most concentrate on a handful of species. In addition, a comprehensive mono- There are many definitions of social parasitism in ants (see graph on the biology and systematics of Myrmica ants in Buschinger, 2009). In our review we present organisms that the Palearctic has been recently published by Radchenko fit (i) the strict definition of social parasites, implying and Elmes (2010). interaction between two social species, and (ii) the more Myrmica ants support a highly diverse array of parasitic broad definition that applies to other insects exploiting the organisms, many of which also have conservation value resources of a single ant colony for a long period of time (see Thomas and Settele, 2004). The considerable amount (see also Nash and Boomsma, 2008). of published data on these parasitic species notwithstand- ing, a comprehensive review treating these organisms and Ants parasitizing ants their known or probable effects on Myrmica ants has not been published yet. In our paper, we focus on Myrmica ants Most ant social parasites of Myrmica species are members as hosts of many parasitic organisms belonging to various of the same genus (Radchenko and Elmes, 2003), with the taxonomic groups, including social parasites, ecto- and exception of Formicoxenus provancheri and F. quebecen- endoparasitic species, such as fungi and nematodes, and sis. These two latter species are xenobiotic ants, i.e., they microbial pathogens. Our aim is to review host and parasite are able to build their own nest and take care of their brood, functional, behavioral or physiological adaptations as well but they depend on their host for nutrition (Buschinger, 123 Myrmica Table 1 Records of association between Myrmica ant species and the wide spectrum of their parasites Taxonomic Parasite species Type of Myrmica host species References group of parasite association ants host highly diverse parasitic communities Ants Formicoxenus xenobiosis M. incompleta Francoeur et al., 1985 provancheri Formicoxenus xenobiosis M. alaskensis Francoeur et al., 1985 quebecensis Myrmica arnoldii temporal Myrmica sp. Radchenko and Elmes, 2010 inquilinism (?) Myrmica bibikoffi temporal M. sabuleti, M. spinosior Radchenko and Elmes, 2010 inquilinism Myrmica luteola temporal Myrmica sp. Radchenko and Elmes, 2010 inquilinism Myrmica semiparasitica temporal M. punctiventris Francoeur, 2007 inquilinism Myrmica vandeli temporal M. scabrinodis Radchenko and Elmes, 2010 inquilinism Myrmica nefaria not clear; M. rupestris Bharti, 2012 workers present Myrmica colax inquilinism M. striologaster Cole, 1957 Myrmica ereptrix inquilinism M. aimonissabaudiae Radchenko and Elmes, 2001 Myrmica hirsuta inquilinism M. sabuleti, M. lonae Radchenko and Elmes, 2010 Myrmica kabylica inquilinism M. cagnianti Radchenko and Elmes, 2010 Myrmica karavajevi inquilinism M. scabrinodis, M. sabuleti, M. lonae, M. rugulosa, M. Radchenko and Elmes, 2010; Witek et al., 2013a gallienii Myrmica lampra inquilinism M. alaskenisis Francoeur, 2002 Myrmica laurae inquilinism M. scabrinodis, M. spinosior Radchenko and Elmes, 2010 Myrmica lemasnei inquilinism M. sabuleti or M. spinosior Radchenko and Elmes, 2010 microgyne of M. rubra inquilinism M. rubra Radchenko and Elmes, 2010 Myrmica myrmicoxena inquilinism M. lobulicornis Radchenko and Elmes, 2010 Beetle Lomechusa pubicollis predatory/ Myrmica sp. Ho¨lldobler and Wilson, 1990 cuckoo 123 309 310 123 Table 1 continued Taxonomic Parasite species Type of Myrmica host species References group of parasite association Butterflies Maculinea alcon cuckoo M. ruginodis Thomas et al., 1989; Elmes et al., 1994; Als et al., 2004 pneumonanthe ecotype M. rubra Thomas et al., 1989; Elmes et al., 1994; Als et al., 2004 M. scabrinodis Ho¨ttinger et al., 2003; Elmes et al., 2003; Sielezniew and Stankiewicz, 2004; Tartally et al., 2008a; Witek et al., 2008 M. vandeli Sielezniew and Stankiewicz, 2004; Tartally et al., 2008a M. salina Tartally et al., 2008a M. aloba Arnaldo et al., 2011; Tartally et al., 2013 Maculinea alcon cuckoo M. schencki Thomas et al., 1989; Steiner et al., 2003; Stankiewicz et al., 2005a; Tartally cruciata ecotype et al., 2008a, Sielezniew and Dziekanska, 2009 M. sabuleti Thomas et al., 1989; Steiner et al., 2003; Tartally et al., 2008a M. scabrinodis Thomas et al., 1989; Steiner et al., 2003; Tartally et al., 2008a M. specioides Steiner et al., 2003;Tartally et al., 2008a M. sulcinodis Steiner et al., 2003 M. lonae Tartally et al., 2008a M. ruginodis Steiner et al., 2003 M. rugulosa Stankiewicz et al., 2005b Maculinea arion predatory M. sabuleti, M. scabrinodis Thomas et al., 1989; Sielezniew et al., 2010a M. schencki, M. lobicornis, M. hellenica, M. rugulosa Sielezniew and Stankiewicz, 2008; Sielezniew et al., 2010 Maculinea nausithous cuckoo/ M. lonae, M. sulcinodis Sielezniew et al., 2010b; Casacci et al., 2011 predatory
Recommended publications
  • First Record of the Ant-Loving Cricket Myrmecophilus Crenatus Gorochov, 1986 (Orthoptera, Myrmecophilidae) in Kazakhstan
    Acta Biologica Sibirica 6: 407–412 (2020) doi: 10.3897/abs.6.e54135 https://abs.pensoft.net RESEARCH ARTICLE First record of the ant-loving cricket Myrmecophilus crenatus Gorochov, 1986 (Orthoptera, Myrmecophilidae) in Kazakhstan Izbasar I. Temreshev1 1 LLP "Ecoservice-С", 050009, Almaty, 202a Tole Bi St, Office 408, Kazakhstan Corresponding author: Izbasar I. Temreshev ([email protected]) Academic editor: R. Yakovlev | Received 10 May 2020 | Accepted 29 June 2020 | Published 6 November 2020 http://zoobank.org/328F5ADF-A4FC-487F-95F3-FA7295BB2512 Citation: Temreshev II (2020) First record of the ant-loving cricket Myrmecophilus crenatus Gorochov, 1986 (Orthoptera, Myrmecophilidae) in Kazakhstan. Acta Biologica Sibirica 6: 407–412. https://doi.org/10.3897/ abs.6.e54135 Abstract The ant-loving cricket Myrmecophilus crenatus Gorochov, 1986 was found in the Turkestan oblast of southern Kazakhstan. This is the first species record for this area. Thus, the current fauna of ant-loving crickets in Kazakhstan includes three species – Myrmecophilus crenatus, M. acervorum (Panzer, 1799) and Bothriophylax semenovi (Miram, 1930). Keywords New record, Myrmecophilus crenatus, crickets, ant guest, Kazakhstan Introduction Ant-loving crickets (Myrmecophilidae Saussure, 1874) are the obligate inquilines within ant and termites nests or burrows of various rodent and other vertebrate species. The crickets are very small, wingless and flattened, yellow, brown or nearly black in color. Ant-loving crickets do not produce sound and lack both wings and tympanal organs on the front tibia. Two subfamilies – Botryophilacinae Miram, 1934 (vertebrates guest) and Myrmecophilinae Saussure, 1874 (ant and termites Copyright Izbasar I. Temreshev. This is an open access article distributed under the terms of the Creative Commons At- tribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Inter-Parasitic Interactions in Myrmica Ants: Ectoparasitic Fungus Affecting the Success of Socially Parasitic Caterpillars
    Inter-Parasitic Interactions in Myrmica Ants: Ectoparasitic Fungus Affecting the Success of Socially Parasitic Caterpillars András Tartally ( [email protected] ) University of Debrecen Norbert Szabó University of Debrecen Anna Ágnes Somogyi University of Debrecen Ferenc Báthori University of Debrecen Danny Haelewaters Ghent University András Mucsi Bezerédi str. 10, Cibakháza Ágnes Fürjes-Mikó University of Sopron-Forest Research Institute David R. Nash University of Copenhagen Research Article Keywords: Complex interactions, Maculinea, Myrmica scabrinodis, Parasitology, Phengaris alcon, Rickia wasmannii Posted Date: July 20th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-712976/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/25 Abstract Exploitation of organisms by multiple parasite species is common in nature, but interactions among parasites have rarely been studied. Myrmica ants are rich in parasites. Among others, the ectoparasitic Rickia wasmannii fungus and the socially parasitic caterpillars of myrmecophilous Phengaris butteries often infect the same Myrmica colonies. In this study, we examined the effects of R. wasmannii on the adoption, long-term development, and survival of P. alcon. In laboratory conditions, caterpillars introduced into nests of Myrmica scabrinodis uninfected with R. wasmannii survived signicantly longer compared to caterpillars introduced into infected nests. In the eld, joint infection was less common than expected if both parasites exploited M. scabrinodis colonies independently. Pre-pupal caterpillars of P. alcon were somewhat larger in nests infected with R. wasmannii than those found in uninfected nests. Based on these results it seems that R. wasmannii infection of M. scabrinodis affects the survival and development of P.
    [Show full text]
  • Green-Tree Retention and Controlled Burning in Restoration and Conservation of Beetle Diversity in Boreal Forests
    Dissertationes Forestales 21 Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Esko Hyvärinen Faculty of Forestry University of Joensuu Academic dissertation To be presented, with the permission of the Faculty of Forestry of the University of Joensuu, for public criticism in auditorium C2 of the University of Joensuu, Yliopistonkatu 4, Joensuu, on 9th June 2006, at 12 o’clock noon. 2 Title: Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Author: Esko Hyvärinen Dissertationes Forestales 21 Supervisors: Prof. Jari Kouki, Faculty of Forestry, University of Joensuu, Finland Docent Petri Martikainen, Faculty of Forestry, University of Joensuu, Finland Pre-examiners: Docent Jyrki Muona, Finnish Museum of Natural History, Zoological Museum, University of Helsinki, Helsinki, Finland Docent Tomas Roslin, Department of Biological and Environmental Sciences, Division of Population Biology, University of Helsinki, Helsinki, Finland Opponent: Prof. Bengt Gunnar Jonsson, Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden ISSN 1795-7389 ISBN-13: 978-951-651-130-9 (PDF) ISBN-10: 951-651-130-9 (PDF) Paper copy printed: Joensuun yliopistopaino, 2006 Publishers: The Finnish Society of Forest Science Finnish Forest Research Institute Faculty of Agriculture and Forestry of the University of Helsinki Faculty of Forestry of the University of Joensuu Editorial Office: The Finnish Society of Forest Science Unioninkatu 40A, 00170 Helsinki, Finland http://www.metla.fi/dissertationes 3 Hyvärinen, Esko 2006. Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests. University of Joensuu, Faculty of Forestry. ABSTRACT The main aim of this thesis was to demonstrate the effects of green-tree retention and controlled burning on beetles (Coleoptera) in order to provide information applicable to the restoration and conservation of beetle species diversity in boreal forests.
    [Show full text]
  • Iberomyrmex 7 2015.Pdf
    Asociación Ibérica de Mirmecología , diciembre 2015 ISSN 1989-7928 Asociación Ibérica de Mirmecología Iberomyrmex nº 7 www.mirmiberica.org Iberomyrmex. Número 7, diciembre 2015 IBEROMYRMEX Boletín de la Asociación Ibérica de Mirmecología Publicación anual de acceso gratuito. Disponible en “http://www.mirmiberica.org/iberomyrmex” Número 7. Fecha: 31 de diciembre de 2015. Asociación Ibérica de Mirmecología “www.mirmiberica.org” ISSN 1989-7928 Título clave: Iberomyrmex Tít. abreviado: Iberomyrmex Diseño y maquetación del presente volumen: Amonio David Cuesta Segura, excepto portada y contraportada: Natalia Arnedo Rodríguez. Editor del presente volumen: Sílvia Abril Meléndez. Asesor lingüístico: Pedro Peña Varó. Revisores de los trabajos del presente volumen (por orden alfabético de los apellidos): Sílvia Abril, Xavier Espadaler, Crisanto Gómez y Joaquín Reyes. Nota de copyright © AIM, 2015; © Los autores, 2015; Los originales publicados en la edición electrónica de Iberomyrmex son propiedad de la Asociación Ibérica de Mirmecología y de los propios autores, siendo necesario citar la procedencia en cualquier reproducción parcial o total. Salvo que se indique lo contrario, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento- No Comercial 3.0 España” (CC-by-nc). Puede consultar desde aquí la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario. Normas de publicación: http://www.mirmiberica.org/iberomyrmex Envío de manuscritos: “[email protected]” Los autores se responsabilizan de las opiniones contenidas en los artículos y comunicaciones. Artículos y notas Artículos y notas Artículos y notas Artículos y notas Artículos y notas Artículos y notas Artículos y notas Artículos Artículos y notasy notas Artículos y notas Artículos Iberomyrmex.
    [Show full text]
  • Diversity from the Lower Kennebec Valley Region of Maine
    J. Acad. Entomol. Soc. 8: 48-51 (2012) NOTE Formicidae [Hymenoptera] diversity from the Lower Kennebec Valley Region of Maine Gary D. Ouellette and André Francoeur Ants [Hymenoptera: Formicidae] occupy an important ecological position in most terrestrial habitats and have been investigated for evaluating the effects of ecosystem characteristics such as soil, vegetation, climate and habitat disturbance (Sanders et al., 2003; Rios-Casanova et al., 2006). At present, Maine’s myrmecofauna has not been extensively studied (Ouellette et al., 2010). Early in the 20th century, Wheeler (1908) presented results from a small survey of the Casco Bay region and Wing (1939) published a checklist of ant species recorded from the state. Both Procter (1946) and Ouellette et al. (2010) reported ant species surveyed from the Mount Desert Island region. The importance of expanding this knowledge base is highlighted by a recent discovery of the invasive ant species Myrmica rubra (Linnaeus) (Garnas 2004; Groden et al. 2005; Garnas et al. 2007; McPhee et al. 2012). The present study represents the first evaluation and characterization of Formicidae from a White Pine- Mixed Hardwoods Forest (WPMHF) ecosystem (Gawler & Cutko 2010) located in the lower Kennebec Valley region. The species reported here provide a baseline condition and a means for future biodiversity comparison. Fifteen study sites, located in the lower Kennebec Valley region, were sampled 1 to 8 times between May 1998 and July 2011 (Figure 1). Habitats comprised of a closed-canopy, WPMHF ecosystem covered by hemlock forests, mixed beech forests, red-oak-northern-hardwood-white pine-forests, and white pine mixed conifer forests.
    [Show full text]
  • This Article Appeared in a Journal Published by Elsevier. the Attached
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Ecological Indicators 13 (2012) 303–313 Contents lists available at ScienceDirect Ecological Indicators jo urnal homepage: www.elsevier.com/locate/ecolind Life-history strategies as a tool to identify conservation constraints: A case-study ଝ on ants in chalk grasslands a,b,∗ c d a,b,1 C.G.E. (Toos) van Noordwijk , Peter Boer , A.A. (Bram) Mabelis , Wilco C.E.P. Verberk , b,d Henk Siepel a Bargerveen Foundation, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands b Department of Animal Ecology and Ecophysiology, Institute of Water and Wetland Research, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands c Gemene Bos 12, 1861 HG Bergen, The Netherlands d Centre for Ecosystem Studies, Alterra, Wageningen UR, P.O. Box 47, 6700 AA Wageningen, The Netherlands a r t i c l e i n f o a b s t r a c t Article history: Species’ life-history traits underlie species–environment relationships.
    [Show full text]
  • Bacterial Infections Across the Ants: Frequency and Prevalence of Wolbachia, Spiroplasma, and Asaia
    Hindawi Publishing Corporation Psyche Volume 2013, Article ID 936341, 11 pages http://dx.doi.org/10.1155/2013/936341 Research Article Bacterial Infections across the Ants: Frequency and Prevalence of Wolbachia, Spiroplasma,andAsaia Stefanie Kautz,1 Benjamin E. R. Rubin,1,2 and Corrie S. Moreau1 1 Department of Zoology, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605, USA 2 Committee on Evolutionary Biology, University of Chicago, 1025 East 57th Street, Chicago, IL 60637, USA Correspondence should be addressed to Stefanie Kautz; [email protected] Received 21 February 2013; Accepted 30 May 2013 Academic Editor: David P. Hughes Copyright © 2013 Stefanie Kautz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Bacterial endosymbionts are common across insects, but we often lack a deeper knowledge of their prevalence across most organisms. Next-generation sequencing approaches can characterize bacterial diversity associated with a host and at the same time facilitate the fast and simultaneous screening of infectious bacteria. In this study, we used 16S rRNA tag encoded amplicon pyrosequencing to survey bacterial communities of 310 samples representing 221 individuals, 176 colonies and 95 species of ants. We found three distinct endosymbiont groups—Wolbachia (Alphaproteobacteria: Rickettsiales), Spiroplasma (Firmicutes: Entomoplasmatales),
    [Show full text]
  • Radiation in Socially Parasitic Formicoxenine Ants
    RADIATION IN SOCIALLY PARASITIC FORMICOXENINE ANTS DISSERTATION ZUR ERLANGUNG DES DOKTORGRADES DER NATURWISSENSCHAFTEN (D R. R ER . N AT .) DER NATURWISSENSCHAFTLICHEN FAKULTÄT III – BIOLOGIE UND VORKLINISCHE MEDIZIN DER UNIVERSITÄT REGENSBURG vorgelegt von Jeanette Beibl aus Landshut 04/2007 General Introduction II Promotionsgesuch eingereicht am: 19.04.2007 Die Arbeit wurde angeleitet von: Prof. Dr. J. Heinze Prüfungsausschuss: Vorsitzender: Prof. Dr. S. Schneuwly 1. Prüfer: Prof. Dr. J. Heinze 2. Prüfer: Prof. Dr. S. Foitzik 3. Prüfer: Prof. Dr. P. Poschlod General Introduction I TABLE OF CONTENTS GENERAL INTRODUCTION 1 CHAPTER 1: Six origins of slavery in formicoxenine ants 13 Introduction 15 Material and Methods 17 Results 20 Discussion 23 CHAPTER 2: Phylogeny and phylogeography of the Mediterranean species of the parasitic ant genus Chalepoxenus and its Temnothorax hosts 27 Introduction 29 Material and Methods 31 Results 36 Discussion 43 CHAPTER 3: Phylogenetic analyses of the parasitic ant genus Myrmoxenus 46 Introduction 48 Material and Methods 50 Results 54 Discussion 59 CHAPTER 4: Cuticular profiles and mating preference in a slave-making ant 61 Introduction 63 Material and Methods 65 Results 69 Discussion 75 CHAPTER 5: Influence of the slaves on the cuticular profile of the slave-making ant Chalepoxenus muellerianus and vice versa 78 Introduction 80 Material and Methods 82 Results 86 Discussion 89 GENERAL DISCUSSION 91 SUMMARY 99 ZUSAMMENFASSUNG 101 REFERENCES 103 APPENDIX 119 DANKSAGUNG 120 General Introduction 1 GENERAL INTRODUCTION Parasitism is an extremely successful mode of life and is considered to be one of the most potent forces in evolution. As many degrees of symbiosis, a phenomenon in which two unrelated organisms coexist over a prolonged period of time while depending on each other, occur, it is not easy to unequivocally define parasitism (Cheng, 1991).
    [Show full text]
  • How Does a Strip of Clearing Affect the Forest Community of Ants (Hymenoptera: Formicidae)?
    Fragmenta Faunistica 52 (2): 125-141, 2009 PL ISSN 0015-9301 O MUSEUM AND INSTITUTE OF ZOOLOGY PAS How does a strip of clearing affect the forest community of ants (Hymenoptera: Formicidae)? Hanna B a b ik *, Wojciech CZECHOWSKI*, Tomasz WŁODARCZYK** and Maria STERZYŃSKA* * Museum and Institute of Zoology PAS, Laboratory of Social and Myrmecophilous Insects, Wilcza St 64, 00-679 Warszawa, Poland; e-mails: [email protected], [email protected], [email protected] **University o f Białystok, Department o f Invertebrate Zoology, Świerkowa St 20B, 15-950 Białystok, Poland; e-mail: t. wlodar@uwb. edu.pl Abstract: Tlie species composition, nest density, structure and ecological profile of an ant community were studied within a transect encompassing the forest interior, forest edge and a belt-shaped clearing in a moist mixed pine forest habitat (Querco roboris-Pinetum) in the Kampinos Forest (Central Poland) in the context of direct and indirect human impact and the bioindicator importance of ants. Altogether, 19 ant species were found; the most abundant ones (in respect of number of nests) in the entire habitat under study were Temnothorax crassispinus (Karav.) and Myrmica rubra (L.). All analysed parameters of individual subcommunities, except for nest density (highest on the forest edge, lowest in the cleared belt), showed a gradient pattern of variability, with species richness and the index of general diversity increasing and the dominance index decreasing within the transect from the forest interior to the cleared belt. Differences between the two subcommunities from the forested area (forest interior and forest edge), both highly dominated by T.
    [Show full text]
  • Myrmecophilus Balcanicus, a New Species of Ant-Loving Cricket from the Former Yugoslav Republic of Macedonia, with Notes on the Synonymy of Myrmecophilus Zorae
    29 ENTOMOLOGIA HELLENICA 22 (2013): 29-34 Myrmecophilus balcanicus, a new species of ant-loving cricket from the Former Yugoslav Republic of Macedonia, with notes on the synonymy of Myrmecophilus zorae THOMAS STALLING* Möndenweg 26, D–79594 Inzlingen, Germany ABSTRACT A new species of ant-loving cricket, Myrmecophilus balcanicus sp. n., is described and illustrated based on individuals collected in the Former Yugoslav Republic of Macedonia (FYROM). It’s habitat is described. The species belongs to the subgenus Myrmecophilus Berthold, 1827. Myrmecophilus zorae Karaman, 1963 is recognized as a junior synonym of Myrmecophilus hirticaudus Fischer von Waldheim, 1846. KEY WORDS: ant guest, Myrmecophilus balcanicus sp. n., Myrmecophilus hirticaudus, Myrmecophilus zorae syn. n., new species, new synonymy, taxonomy. Introduction known from Greece (Schimmer 1909, Schimmer 1911, Maran 1959, Baccetti 1966, Ant-loving crickets (genus Myrmecophilus Harz 1969, Baccetti 1992, Stalling 2010); Berthold, 1827) are small insects, which are Myrmecophilus termitophilus Maran, 1959 is known to live as guests in the nests of ants. known from Greece (Maran 1959); and Fifty eight valid species have been described Myrmecophilus zorae Karaman, 1963 is worldwide (Eades et al. 2013, Stalling 2013). described from the Former Yugoslav Most species are known to live as Republic of Macedonia (FYROM) by kleptoparasites in the nests of ants (Schimmer Karaman 1963. Myrmecophilus acervorum 1909, Hölldobler 1947, Junker 1997, (Panzer, 1799) was described from Greece by Wetterer and Hugel 2008). They are known to Maran (1959), but was not included in the list feed on food resources in the ant nest and of Greek fauna (Willemse 1984, Willemse induce their hosts to regurgitate liquid food and Willemse 2008, Chobanov and Mihajlova (Wetterer and Hugel 2008).
    [Show full text]
  • Akes an Ant an Ant? Are Insects, and Insects Are Arth Ropods: Invertebrates (Animals With­
    ~ . r. workers will begin to produce eggs if the queen dies. Because ~ eggs are unfertilized, they usually develop into males (see the discus­ : ~ iaplodiploidy and the evolution of eusociality later in this chapter). =- cases, however, workers can produce new queens either from un­ ze eggs (parthenogenetically) or after mating with a male ant. -;c. ant colony will continue to grow in size and add workers, but at -: :;oint it becomes mature and will begin sexual reproduction by pro· . ~ -irgin queens and males. Many specie s produce males and repro­ 0 _ " females just before the nuptial flight . Others produce males and ---: : ._ tive fem ales that stay in the nest for a long time before the nuptial :- ~. Our largest carpenter ant, Camponotus herculeanus, produces males _ . -:= 'n queens in late summer. They are groomed and fed by workers :;' 0 it the fall and winter before they emerge from the colonies for their ;;. ights in the spring. Fin ally, some species, including Monomoriurn : .:5 and Myrmica rubra, have large colonies with multiple que ens that .~ ..ew colonies asexually by fragmenting the original colony. However, _ --' e polygynous (literally, many queens) and polydomous (literally, uses, referring to their many nests) ants eventually go through a -">O=- r' sexual reproduction in which males and new queens are produced. ~ :- . ant colony thus functions as a highly social, organ ized "super­ _ _ " 1." The queens and mo st workers are safely hidden below ground : : ~ - ed within the interstices of rotting wood. But for the ant workers ~ '_i S ' go out and forage for food for the colony,'life above ground is - =- .
    [Show full text]
  • Occasional and Established Introduced Ants in Washington and Oregon
    Occasional and established introduced ants in Washington and Oregon Invasive Species Research Conference Kamloops, British Columbia June 20-22, 2017 Laurel D. Hansen Biology Department MS 3280 Spokane Falls Community College 3410 W Fort Wright Drive Spokane, WA 99224 Ant life cycles Hawaiian Islands ALL ants species are alien 44 species: majority in the 100 years Upset ecosystem: no predators no defenses by plants and animals Pantry/ grain pests Why a survey? 1. Reports of exotic/tramp ants 2. Reports of stings 3. Reports of unidentified ants 4. Reports of damage-not carpenter ants 5. Identifications not confirmed 6. Ants in question not collected Coordinate activities with Pest Management Companies Two surveys: 1. Canada 2010-2011 2. Pacific Northwest: Washington and Oregon 2015-2016 • Samples sent; catalogued, identified Pest Management Companies selected Geographical representation Ant collections VIALS ENVELOPES MAILERS Cascade Pest Control Whitworth Pest Solutions Survey of Ants in Canada 332 samplesCollection from 9 provinces Sites per Prov ince Quebec British Saskatchewan Manitoba Ontario 1 Newfoundland Columbia Alberta 3 1 22 88 3 207 New Brunswick 19 Nova Scotia 2 Exotic/tramp ants • Newfoundland (3) • Ontario (82) – Hypoponera – Camponotus (4) – Lasius – Myrmica – Formica – Lasius (3) – 3 species – Prenolepis – Solenopsis • Nova Scotia (2) – Tetramorium – Formica – Lasius – Formica (2) – 2 species – Monomorium – Crematogaster • New Brunswick (17) – Hypoponera – Camponotus (4) – Acanthomyops – Lasius (2) – Tapinoma – Formca (2)
    [Show full text]