Algorithmic Approaches to Siegel's Fundamental Domain

Total Page:16

File Type:pdf, Size:1020Kb

Algorithmic Approaches to Siegel's Fundamental Domain Algorithmic approaches to Siegel’s fundamental domain Carine Jaber To cite this version: Carine Jaber. Algorithmic approaches to Siegel’s fundamental domain. General Mathematics [math.GM]. Université Bourgogne Franche-Comté, 2017. English. NNT : 2017UBFCK006. tel- 01813184 HAL Id: tel-01813184 https://tel.archives-ouvertes.fr/tel-01813184 Submitted on 12 Jun 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE DE BOURGOGNE U.F.R Sciences et Techniques Institut de Mathématiques de Bourgogne Algorithmic approaches to Siegel’s fundamental domain THESE présentée et soutenue publiquement le 28 juin 2017 pour l’obtention du grade de Docteur de l’Université de Bourgogne (Specialité Mathématiques) par Carine Jaber Devant le jury composé des Professeurs COUVEIGNES Jean-Marc Université de Bordeaux (Président du jury) BRADEN Harry Université d’Edimbourg (Rapporteur) KOROTKIN Dmitri Université Concordia (Rapporteur) Montréal ABENDA Simonetta Université de Bologne (Examinatrice) SCHAUENBURG Peter Université de Bourgogne- (Examinateur) Franche-Comté KLEIN Christian Université de Bourgogne- (Directeur de thèse) Franche-Comté Remerciements Les remerciements constituent une partie facile et en même temps difficile à écrire. Facile car elle est exclue des corrections mais en même temps un exer- cice difficile pour les matheux qui n’aiment pas beaucoup parler ni exprimé leur propres sentiments (même si les femmes ne sont pas vraiment reconnues pour cela!). J’ai toujours considéré la recherche non pas comme un travail mais plutôt comme une passion. Le défi et la curiosité sont les deux mots qui résument mon histoire avec les maths. Ces trois années ont été pour moi une expérience très enrichissante. J’aimerai commencer par remercier celui qui m’a lancé dans cette fabuleuse aventure, celui avec lequel j’ai pris un très grand plaisir à travailler: mon directeur de thèse Christian Klein que je ne saurai jamais assez remercier pour tout ce qu’il m’a apporté. Je le remercie énormément pour ses précieuses remarques, la qualité de nos discussions mathématiques mais aussi pour sa gentillesse et son écoute. Je tiens également à remercier Peter Schauenburg pour son aide, sa gentillesse et aussi pour sa disponibilité malgré un planning chargé. J’ai eu également la chance et le plaisir de rencontrer Jörg Frauendi- ener, que je remercie pour son attention, son suivi tout au long de ces trois ans, à distance mais également en n’hesitant pas à venir depuis la Nouvelle Zélande. Je remercie également Damien Stehlé pour les conseils prodigués et les discus- sions que nous avons pu avoir. Il me faut également remercier Harry Braden et Dmitri Korotkin pour avoir accepter d’être mes rapporteurs. Merci encore à Simonetta Abenda d’avoir accepter de faire partie du jury et à Jean-Marc Couveignes d’être le président de ce jury. Faire une thèse, c’est également faire des rencontres! Je salue et remercie tous les thésards que j’ai pu rencontrer et je leur souhaite une bonne chance pour leur thèses. Je remercie également les membres du laboratoire. Ce travail n’aurait pu s’effectuer sans la bourse de la société libanaise L’orient SAL que je ne remercierai jamais assez de m’avoir offrir l’opportunité pour- suivre mes études en réalisant cette thèse. Enfin un grand merci à ma famille: ma sœur Léa, mes deux frères et tout particulièrement mes parents qui ont toujours été à mes côtés et fières de leur fille. Je remercie énormément mon amour (mon mari Jamal) et ma princesse (Ella) dont j’étais enceinte durant ma première année de thèse. Ils m’ont apporté tant de bonheur me permettant d’oublier tout mon stress. Merci à vous tous!! 2 Contents Remerciements 1 List of Figures 5 List of Tables 6 1 Introduction 2 1.1 Lattices and lattice reductions . .2 1.1.1 Gram-Schmidt orthogonalization . .4 1.1.2 Size-reduction . .5 1.1.3 The Shortest vector problem (SVP) . .5 1.1.4 Lattice reduction algorithms . .8 1.2 Siegel’s fundamental domain . 18 1.3 Theta Functions . 24 1.4 Outline of the thesis . 30 2 Lattice and lattice reduction 32 2.1 Introduction . 32 2.2 Lattice . 34 2.2.1 The Dual Lattice . 36 2.2.2 Gram-Schmidt Orthogonalization . 39 2.2.3 The Determinant . 43 2.2.4 Complex-Valued Lattices . 45 2.2.5 Size Reduction . 46 2.2.6 Minkowski’s Successive Minimum And Hermite’s Constant . 46 2.2.7 Minkowski’s Theorem . 47 2.3 The Shortest vector problem and Sphere decoding algorithms . 50 2.3.1 The Closest Point And The Shortest Vector Problem . 51 2.3.2 The Sphere Decoding Algorithms . 54 2.3.3 The Algorithms for SVP . 55 3 2.4 Lattice reduction: . 60 2.5 An introduction to the fundamental domain of Minkowski reduction . 77 2.5.1 Equivalence of reduced quadratic forms . 79 2.5.2 The exact domain of Minkowski reduction for m= 3 .. 83 3 Time Complexity Of Reduction Algorithms 89 3.1 Mathematical Preliminaries . 89 3.2 Introduction . 91 3.3 Computational Complexity . 93 3.4 Complexity of the Gauss algorithm . 97 3.5 Complexity of the LLL algorithm . 100 3.6 Complexity of HKZ and Minkowski algorithms . 108 4 Minkowski reduction algorithm 109 4.1 A Descripition Of The Algorithm . 110 4.1.1 Where This Idea Comes From? . 110 4.1.2 Why do we change every time the Transform function? 115 4.2 Comparison Between Reduction Algorithms . 124 4.3 The Orthogonality Defect Of Lattice Reduction Algorithms . 128 5 On the action of the Symplectic Group on the Siegel Upper Half Space 130 5.1 Siegel fundamental domain for general g . 132 5.2 Genus 1 .............................. 137 5.3 Genus 2 .............................. 142 5.4 Genus 3 .............................. 146 5.4.1 F3 ............................. 147 5.5 Approximation to the Siegel fundamental domain . 153 5.5.1 Theta functions . 155 5.5.2 Example . 157 Bibliography 161 4 List of Figures 1.1 The lattice generated by two different bases . .4 1.2 GSO . .5 1.3 Idea behind the sphere decoder for the shortest lattice vector .7 1.4 Enumeration tree . .7 1.5 Gauss’s reduction . .9 1.6 Gauss’s algorithm . .9 1.7 The elliptic fundamental domain [Mumford] . 21 2.1 Lattice in R2 ........................... 35 2.2 A "good" basis and a "bad" basis . 36 2.3 Gram-Schmidt orthogonalization . 39 2.4 Example lattice Z2 with bases B = 1 00 1 and B˜ = 1 20 1 and associated fundamental parallelograms . 43 3.1 Illustration of size reduction (red) and Gauss reduction (green) for a two-dimensional lattice L spanned by the basis vectors u = [2.1 1]> and v = [3 1]> (shown in blue) . 100 5.1 F1 ................................. 139 ˜ 5.2 F1 ................................. 139 5 List of Tables 4.1 Upper bounds for the orthogonality defect of HKZ, LLL (δ = 3/4) and Minkowski reduced bases. 128 6 List of Abbreviations 01×m−1 the column vector of m − 1 zeros 0n,n the n × n zero matrix det(A) the determinant of a matrix A dxe the smallest integer greater than x bxe the nearest integer to x bxc the greatest integer smaller than x I(x) the imaginary part of a variable x R(x) the real part of a variable x A the complex conjugate of A A(:, i) the ith column of A A(:, i : j) a sub-matrix of A which contains the columns of A from the ith to the jth position A−1 the inverse of a matrix A A⊥ the orthogonal of A A> the transpose of a matrix A Aij the ith row and jth column of A CVP the closest vector problem GL(n, F ) the group of all invertible n × n matrices with entries in F GSO Gram-Schmidt orthogonalization 7 HKZ Hermite-Korkine-Zolotarev i the complex unit, i2 = −1 In or simply I the n × n identity matrix LLL Lenstra, Lenstra and Lovász M(n, F ) the space of all n × n matrices with entries in the field F Pn the space of positive definite symmetric, real, n × n matrix SV P the shortest vector problem 8 Abstract The action of the symplectic group Sp(2g, R) on Siegel upper half space is a generalization of the action of the group SL(2, R) = Sp(2, R) on the usual complex upper half plane to higher dimensions. A study of the latter action was done by Siegel in 1943 and led to the well known elliptic fundamental domain. This action for dimension 2, goes back to Gottschling’s work in 1959 where 19 conditions were identified to construct this fundamental domain for g = 2. However, for g > 2, no results appear to be known until now. The construction of a fundamental domain for the symplectic group is essen- tially based on the Minkowski reduction theory of positive definite quadratic forms, i.e., a collection of shortest lattice vectors which can be extended to a basis for the lattice and on the maximal height condition (det(CΩ + D) ≥ 1), i.e., find the symplectic element in order to maximize the length of the shortest vector of the lattice generated by the imaginary part of the Riemann matrix.
Recommended publications
  • An Introduction to Orbifolds
    An introduction to orbifolds Joan Porti UAB Subdivide and Tile: Triangulating spaces for understanding the world Lorentz Center November 2009 An introduction to orbifolds – p.1/20 Motivation • Γ < Isom(Rn) or Hn discrete and acts properly discontinuously (e.g. a group of symmetries of a tessellation). • If Γ has no fixed points ⇒ Γ\Rn is a manifold. • If Γ has fixed points ⇒ Γ\Rn is an orbifold. An introduction to orbifolds – p.2/20 Motivation • Γ < Isom(Rn) or Hn discrete and acts properly discontinuously (e.g. a group of symmetries of a tessellation). • If Γ has no fixed points ⇒ Γ\Rn is a manifold. • If Γ has fixed points ⇒ Γ\Rn is an orbifold. ··· (there are other notions of orbifold in algebraic geometry, string theory or using grupoids) An introduction to orbifolds – p.2/20 Examples: tessellations of Euclidean plane Γ= h(x, y) → (x + 1, y), (x, y) → (x, y + 1)i =∼ Z2 Γ\R2 =∼ T 2 = S1 × S1 An introduction to orbifolds – p.3/20 Examples: tessellations of Euclidean plane Rotations of angle π around red points (order 2) An introduction to orbifolds – p.3/20 Examples: tessellations of Euclidean plane Rotations of angle π around red points (order 2) 2 2 An introduction to orbifolds – p.3/20 Examples: tessellations of Euclidean plane Rotations of angle π around red points (order 2) 2 2 2 2 2 2 2 2 2 2 2 2 An introduction to orbifolds – p.3/20 Example: tessellations of hyperbolic plane Rotations of angle π, π/2 and π/3 around vertices (order 2, 4, and 6) An introduction to orbifolds – p.4/20 Example: tessellations of hyperbolic plane Rotations of angle π, π/2 and π/3 around vertices (order 2, 4, and 6) 2 4 2 6 An introduction to orbifolds – p.4/20 Definition Informal Definition • An orbifold O is a metrizable topological space equipped with an atlas modelled on Rn/Γ, Γ < O(n) finite, with some compatibility condition.
    [Show full text]
  • Presentations of Groups Acting Discontinuously on Direct Products of Hyperbolic Spaces
    Presentations of Groups Acting Discontinuously on Direct Products of Hyperbolic Spaces∗ E. Jespers A. Kiefer Á. del Río November 6, 2018 Abstract The problem of describing the group of units U(ZG) of the integral group ring ZG of a finite group G has attracted a lot of attention and providing presentations for such groups is a fundamental problem. Within the context of orders, a central problem is to describe a presentation of the unit group of an order O in the simple epimorphic images A of the rational group algebra QG. Making use of the presentation part of Poincaré’s Polyhedron Theorem, Pita, del Río and Ruiz proposed such a method for a large family of finite groups G and consequently Jespers, Pita, del Río, Ruiz and Zalesskii described the structure of U(ZG) for a large family of finite groups G. In order to handle many more groups, one would like to extend Poincaré’s Method to discontinuous subgroups of the group of isometries of a direct product of hyperbolic spaces. If the algebra A has degree 2 then via the Galois embeddings of the centre of the algebra A one considers the group of reduced norm one elements of the order O as such a group and thus one would obtain a solution to the mentioned problem. This would provide presentations of the unit group of orders in the simple components of degree 2 of QG and in particular describe the unit group of ZG for every group G with irreducible character degrees less than or equal to 2.
    [Show full text]
  • Fundamental Domains for Genus-Zero and Genus-One Congruence Subgroups
    LMS J. Comput. Math. 13 (2010) 222{245 C 2010 Author doi:10.1112/S1461157008000041e Fundamental domains for genus-zero and genus-one congruence subgroups C. J. Cummins Abstract In this paper, we compute Ford fundamental domains for all genus-zero and genus-one congruence subgroups. This is a continuation of previous work, which found all such groups, including ones that are not subgroups of PSL(2; Z). To compute these fundamental domains, an algorithm is given that takes the following as its input: a positive square-free integer f, which determines + a maximal discrete subgroup Γ0(f) of SL(2; R); a decision procedure to determine whether a + + given element of Γ0(f) is in a subgroup G; and the index of G in Γ0(f) . The output consists of: a fundamental domain for G, a finite set of bounding isometric circles; the cycles of the vertices of this fundamental domain; and a set of generators of G. The algorithm avoids the use of floating-point approximations. It applies, in principle, to any group commensurable with the modular group. Included as appendices are: MAGMA source code implementing the algorithm; data files, computed in a previous paper, which are used as input to compute the fundamental domains; the data computed by the algorithm for each of the congruence subgroups of genus zero and genus one; and an example, which computes the fundamental domain of a non-congruence subgroup. 1. Introduction The modular group PSL(2; Z) := SL(2; Z)={±12g is a discrete subgroup of PSL(2; R) := SL(2; R)={±12g.
    [Show full text]
  • REPLICATING TESSELLATIONS* ANDREW Vincet Abstract
    SIAM J. DISC. MATH. () 1993 Society for Industrial and Applied Mathematics Vol. 6, No. 3, pp. 501-521, August 1993 014 REPLICATING TESSELLATIONS* ANDREW VINCEt Abstract. A theory of replicating tessellation of R is developed that simultaneously generalizes radix representation of integers and hexagonal addressing in computer science. The tiling aggregates tesselate Eu- clidean space so that the (m + 1)st aggregate is, in turn, tiled by translates of the ruth aggregate, for each m in exactly the same way. This induces a discrete hierarchical addressing systsem on R'. Necessary and sufficient conditions for the existence of replicating tessellations are given, and an efficient algorithm is provided to de- termine whether or not a replicating tessellation is induced. It is shown that the generalized balanced ternary is replicating in all dimensions. Each replicating tessellation yields an associated self-replicating tiling with the following properties: (1) a single tile T tesselates R periodically and (2) there is a linear map A, such that A(T) is tiled by translates of T. The boundary of T is often a fractal curve. Key words, tiling, self-replicating, radix representation AMS(MOS) subject classifications. 52C22, 52C07, 05B45, 11A63 1. Introduction. The standard set notation X + Y {z + y z E X, y E Y} will be used. For a set T c Rn denote by Tx z + T the translate of T to point z. Throughout this paper, A denotes an n-dimensional lattice in l'. A set T tiles a set R by translation by lattice A if R [-JxsA T and the intersection of the interiors of distinct tiles T and Tu is empty.
    [Show full text]
  • Distortion Elements for Surface Homeomorphisms
    Geometry & Topology 18 (2014) 521–614 msp Distortion elements for surface homeomorphisms EMMANUEL MILITON Let S be a compact orientable surface and f be an element of the group Homeo0.S/ of homeomorphisms of S isotopic to the identity. Denote by fz a lift of f to the universal cover S of S . In this article, the following result is proved: If there exists a z fundamental domain D of the covering S S such that z ! 1 lim dn log.dn/ 0; n n D !C1 n where dn is the diameter of fz .D/, then the homeomorphism f is a distortion element of the group Homeo0.S/. 37C85 1 Introduction r Given a compact manifold M , we denote by Diff0.M / the identity component of the group of C r–diffeomorphisms of M . A way to understand this group is to try to describe its subgroups. In other words, given a group G , does there exist an injective r group morphism from the group G to the group Diff0.M /? In case the answer is positive, one can try to describe the group morphisms from the group G to the group r Diff0.M / (ideally up to conjugacy, but this is often an unattainable goal). The concept of distortion element allows one to obtain rigidity results on group mor- r phisms from G to Diff0.M /. It will provide some very partial answers to these questions. Here is the definition. Remember that a group G is finitely generated if there exists a finite generating set G : any element g in this group is a product of elements 1 2 of G and their inverses, g s s s , where the si are elements of G and the i D 1 2 n are equal to 1 or 1.
    [Show full text]
  • Coxeter Groups As Automorphism Groups of Solid Transitive 3-Simplex Tilings
    Filomat 28:3 (2014), 557–577 Published by Faculty of Sciences and Mathematics, DOI 10.2298/FIL1403557S University of Nis,ˇ Serbia Available at: http://www.pmf.ni.ac.rs/filomat Coxeter Groups as Automorphism Groups of Solid Transitive 3-simplex Tilings Milica Stojanovi´ca aFaculty of Organizational Sciences, Jove Ili´ca154, 11040 Belgrade, Serbia Abstract. In the papers of I.K. Zhuk, then more completely of E. Molnar,´ I. Prok, J. Szirmai all simplicial 3-tilings have been classified, where a symmetry group acts transitively on the simplex tiles. The involved spaces depends on some rotational order parameters. When a vertex of a such simplex lies out of the absolute, e.g. in hyperbolic space H3, then truncation with its polar plane gives a truncated simplex or simply, trunc-simplex. Looking for symmetries of these tilings by simplex or trunc-simplex domains, with their side face pairings, it is possible to find all their group extensions, especially Coxeter’s reflection groups, if they exist. So here, connections between isometry groups and their supergroups is given by expressing the generators and the corresponding parameters. There are investigated simplices in families F3, F4, F6 and appropriate series of trunc-simplices. In all cases the Coxeter groups are the maximal ones. 1. Introduction The isometry groups, acting discontinuously on the hyperbolic 3-space with compact fundamental domain, are called hyperbolic space groups. One possibility to describe them is to look for their fundamental domains. Face pairing identifications of a given polyhedron give us generators and relations for a space group by Poincare´ Theorem [1], [3], [7].
    [Show full text]
  • Local Symmetry Preserving Operations on Polyhedra
    Local Symmetry Preserving Operations on Polyhedra Pieter Goetschalckx Submitted to the Faculty of Sciences of Ghent University in fulfilment of the requirements for the degree of Doctor of Science: Mathematics. Supervisors prof. dr. dr. Kris Coolsaet dr. Nico Van Cleemput Chair prof. dr. Marnix Van Daele Examination Board prof. dr. Tomaž Pisanski prof. dr. Jan De Beule prof. dr. Tom De Medts dr. Carol T. Zamfirescu dr. Jan Goedgebeur © 2020 Pieter Goetschalckx Department of Applied Mathematics, Computer Science and Statistics Faculty of Sciences, Ghent University This work is licensed under a “CC BY 4.0” licence. https://creativecommons.org/licenses/by/4.0/deed.en In memory of John Horton Conway (1937–2020) Contents Acknowledgements 9 Dutch summary 13 Summary 17 List of publications 21 1 A brief history of operations on polyhedra 23 1 Platonic, Archimedean and Catalan solids . 23 2 Conway polyhedron notation . 31 3 The Goldberg-Coxeter construction . 32 3.1 Goldberg ....................... 32 3.2 Buckminster Fuller . 37 3.3 Caspar and Klug ................... 40 3.4 Coxeter ........................ 44 4 Other approaches ....................... 45 References ............................... 46 2 Embedded graphs, tilings and polyhedra 49 1 Combinatorial graphs .................... 49 2 Embedded graphs ....................... 51 3 Symmetry and isomorphisms . 55 4 Tilings .............................. 57 5 Polyhedra ............................ 59 6 Chamber systems ....................... 60 7 Connectivity .......................... 62 References
    [Show full text]
  • Chen/Ruan Orbifold Cohomology of the Bianchi Groups Alexander Rahm
    Chen/Ruan orbifold cohomology of the Bianchi groups Alexander Rahm To cite this version: Alexander Rahm. Chen/Ruan orbifold cohomology of the Bianchi groups. 2011. hal-00627034v1 HAL Id: hal-00627034 https://hal.archives-ouvertes.fr/hal-00627034v1 Preprint submitted on 27 Sep 2011 (v1), last revised 24 Aug 2018 (v4) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. CHEN/RUAN ORBIFOLD COHOMOLOGY OF THE BIANCHI GROUPS ALEXANDER D. RAHM Abstract. We give formulae for the Chen / Ruan orbifold cohomology for the orbifolds given by a Bianchi group acting on a model for its classifying space for proper actions: complex hyperbolic space. The Bianchi groups are the arithmetic groups PSL2(O), where O is the ring of integers in an imaginary quadratic number field. The underlying real orbifolds which help us in our study, have applications in Physics [2]. Contents 1. Introduction 1 Acknowledgements 2 2. The vector space structure of Chen/Ruan Orbifold Cohomology 2 3. The orbifold cohomology product 2 3.1. Groups of hyperbolic motions 3 4. The conjugacy classes of finite order elements in the Bianchi groups 5 5. The Kr¨amer numbers and orbifold cohomology of the Bianchi groups 7 6.
    [Show full text]
  • The Modular Group and the Fundamental Domain Seminar on Modular Forms Spring 2019
    The modular group and the fundamental domain Seminar on Modular Forms Spring 2019 Johannes Hruza and Manuel Trachsler March 13, 2019 1 The Group SL2(Z) and the fundamental do- main Definition 1. For a commutative Ring R we define GL2(R) as the following set: a b GL (R) := A = for which det(A) = ad − bc 2 R∗ : (1) 2 c d We define SL2(R) to be the set of all B 2 GL2(R) for which det(B) = 1. Lemma 1. SL2(R) is a subgroup of GL2(R). Proof. Recall that the kernel of a group homomorphism is a subgroup. Observe ∗ that det is a group homomorphism det : GL2(R) ! R and thus SL2(R) is its kernel by definition. ¯ Let R = R. Then we can define an action of SL2(R) on C ( = C [ f1g ) by az + b a a b A:z := and A:1 := ;A = 2 SL (R); z 2 : (2) cz + d c c d 2 C Definition 2. The upper half-plane of C is given by H := fz 2 C j Im(z) > 0g. Restricting this action to H gives us another well defined action ":" : SL2(R)× H 7! H called the fractional linear transformation. Indeed, for any z 2 H the imaginary part of A:z is positive: az + b (az + b)(cz¯ + d) Im(z) Im(A:z) = Im = Im = > 0: (3) cz + d jcz + dj2 jcz + dj2 a b Lemma 2. For A = c d 2 SL2(R) the map µA : H ! H defined by z 7! A:z is the identity if and only if A = ±I.
    [Show full text]
  • Irreducibility of the Fermi Surface for Planar Periodic Graph Operators
    Irreducibility of the Fermi Surface for Planar Periodic Graph Operators Wei Li and Stephen P. Shipman1 Department of Mathematics, Louisiana State University, Baton Rouge Abstract. We prove that the Fermi surface of a connected doubly periodic self-adjoint discrete graph operator is irreducible at all but finitely many energies provided that the graph (1) can be drawn in the plane without crossing edges (2) has positive coupling coefficients (3) has two vertices per period. If \positive" is relaxed to \complex", the only cases of reducible Fermi surface occur for the graph of the tetrakis square tiling, and these can be explicitly parameterized when the coupling coefficients are real. The irreducibility result applies to weighted graph Laplacians with positive weights. Key words: Graph operator, Fermi surface, Floquet surface, reducible algebraic variety, planar graph, graph Laplacian MSC: 47A75, 47B39, 39A70, 39A14, 39A12 1 Introduction The Fermi surface (or Fermi curve) of a doubly periodic operator at an energy E is the analytic set of complex wavevectors (k1; k2) admissible by the operator at that energy. Whether or not it is irreducible is important for the spectral theory of the operator because reducibility is required for the construction of embedded eigenvalues induced by a local defect [10, 11, 14] (except, as for graph operators, when an eigenfunction has compact support). (Ir)reducibility of the Fermi surface has been established in special situations. It is irreducible for the discrete Laplacian plus a periodic potential in all dimensions [13] (see previous proofs for two dimensions [1],[7, Ch. 4] and three dimensions [2, Theorem 2]) and for the continuous Laplacian plus a potential that is separable in a specific way in three dimensions [3, Sec.
    [Show full text]
  • On the Dedekind Tessellation
    On the Dedekind tessellation Jerzy Kocik Department of Mathematics Southern Illinois University [email protected] Abstract The Dedekind tessellation – the regular tessellation of the upper half-plane by the Möbius action of the modular group – is usually viewed as a system of ideal triangles. We change the focus from triangles to circles and give their complete algebraic characterization with the help of a representation of the modular group acting by Lorentz transformations on Minkowski space. This interesting example of the interplay of geometry, group theory and number theory leads also to convenient algorithms for computer drawing of the Dedekind tessellation. Key words: Dedekind tessellation, Minkowski space, Lorentz transformations, modular group. AMS Classification: 52C20, 51F25, 11A05 1 Introduction Figure (1.1) shows the well-known regular tessellation of the Poincaré half-plane H, the upper half of the plane of complex numbers. It was first discussed in the 1877 paper by Richard Dedekind [1], which justifies the name Dedekind tessellation, but the first illustration appeared in Felix Klein’s paper [2] (see [6, 7] for these credits). Usually, the tessellation is understood in the context of the action of the modular group PSL±¹2; Zº on H as a model of non-Euclidean, hyperbolic geometry. It is viewed as a set of "ideal triangles” (triangles with arc sides) that results as an orbit of any of them via the action of the modular group. arXiv:1912.05768v1 [math.HO] 12 Dec 2019 Figure 1.1: The Dedekind tessellation 1 Recall that the group PSL¹2; Zº acts on the extended complex plane CÛ = C [ f1g (Riemann sphere) via Möbius transformations defined by a b az + b z 7! · z ≡ ; ad − bc = 1: (1.1) c d cz + d with a; b; c; d 2 Z.
    [Show full text]
  • Collection Volume I
    Collection volume I PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Thu, 29 Jul 2010 21:47:23 UTC Contents Articles Abstraction 1 Analogy 6 Bricolage 15 Categorization 19 Computational creativity 21 Data mining 30 Deskilling 41 Digital morphogenesis 42 Heuristic 44 Hidden curriculum 49 Information continuum 53 Knowhow 53 Knowledge representation and reasoning 55 Lateral thinking 60 Linnaean taxonomy 62 List of uniform tilings 67 Machine learning 71 Mathematical morphology 76 Mental model 83 Montessori sensorial materials 88 Packing problem 93 Prior knowledge for pattern recognition 100 Quasi-empirical method 102 Semantic similarity 103 Serendipity 104 Similarity (geometry) 113 Simulacrum 117 Squaring the square 120 Structural information theory 123 Task analysis 126 Techne 128 Tessellation 129 Totem 137 Trial and error 140 Unknown unknown 143 References Article Sources and Contributors 146 Image Sources, Licenses and Contributors 149 Article Licenses License 151 Abstraction 1 Abstraction Abstraction is a conceptual process by which higher, more abstract concepts are derived from the usage and classification of literal, "real," or "concrete" concepts. An "abstraction" (noun) is a concept that acts as super-categorical noun for all subordinate concepts, and connects any related concepts as a group, field, or category. Abstractions may be formed by reducing the information content of a concept or an observable phenomenon, typically to retain only information which is relevant for a particular purpose. For example, abstracting a leather soccer ball to the more general idea of a ball retains only the information on general ball attributes and behavior, eliminating the characteristics of that particular ball.
    [Show full text]