Heuristic Optimization of Boolean Functions and Substitution Boxes for Cryptography

Total Page:16

File Type:pdf, Size:1020Kb

Heuristic Optimization of Boolean Functions and Substitution Boxes for Cryptography Heuristic Optimization of Boolean Functions and Substitution Boxes for Cryptography by Linda Burnett Previous qualifications { Bachelor of Applied Science (Honours) 1997 Thesis submitted in accordance with the regulations for Degree of Doctor of Philosophy Information Security Institute Faculty of Information Technology Queensland University of Technology 2005 ii Keywords boolean function, substitution box, heuristic techniques, Genetic Algorithm, Hill Climbing, cryptographic properties, autocorrelation, balance, nonlinearity, corre- lation immunity, resilience, propagation criteria iii iv Abstract Fundamental to the electronic security of information and communication sys- tems, is the correct use and application of appropriate ciphers. The strength of these ciphers, particularly in their ability to resist cryptanalytic attacks, di- rectly influences the overall strength of the entire system. The strength of the underlying cipher is reliant upon a robust structure and the carefully designed interaction between components in its architecture. Most importantly, however, cipher strength is critically dependent on the strength of the individual compo- nents of which it is comprised. Boolean functions and substitution boxes (s-boxes) are among the most com- mon and essential components of ciphers. This is because they are able to provide a cipher with strengthening properties to resist known and potential cryptanalytic attacks. Thus, it is not surprising that significant research effort has been made in trying to develop ways of obtaining boolean functions and substitution boxes with optimal achievable measures of desirable cryptographic properties. Three of the main cryptographic properties required by strong boolean functions and s-boxes are nonlinearity, correlation immunity and propagation criteria, with different cryptographic applications requiring different acceptable measures of these and other properties. As combinations of cryptographic properties exhibited by func- tions can be conflicting, finding cryptographically strong functions often means that a trade-off needs to be made when optimizing property values. Throughout this thesis, the term \optimization" specifically refers to seeking to obtain the best achievable combination of target property values which may be exhibited by boolean functions and s-boxes, regardless of whether the relevant properties are conflicting or complementary. This thesis focusses on a particular class of techniques for obtaining strong functions for cryptographic applications, referred to as heuristic methods or, sim- ply, heuristics. Three new heuristic methods, each aimed at generating boolean functions optimizing one or more of the main cryptographic properties mentioned v above, in addition to other desirable properties, are presented. The first of the new heuristic methods developed for this thesis focusses on generating boolean functions which are balanced and exhibit very high nonlinearities. Highly non- linear balanced functions are critical to many cryptographic applications, as they provide good resistance to linear cryptanalytic attacks. This first method is based on the recursive modification of a starting bent function and is shown to be highly successful and efficient at generating numerous such functions, which also exhibit low autocorrelation values, in a very short computational time. The generation of balanced, correlation immune boolean functions that also exhibit the conflicting property of high nonlinearity is the focus of the second new heuristic method developed for this thesis. By concatenating selected pairs of lower-dimensional boolean functions together in the Walsh Hadamard trans- form domain, direct optimization for both resilience and nonlinearity was able to take place at each level towards and for the final function. This second method was able to generate examples of boolean functions with almost all of the best known optimal combinations of target property values. Experiments have shown the success of this method in consistently generating highly nonlinear resilient boolean functions, for a range of orders of resilience, with such functions possess- ing optimal algebraic degree. A third new heuristic method, which searches for balanced boolean functions which satisfy a non-zero degree of propagation criteria and exhibit high nonlin- earity, is presented. Intelligent bit manipulations in the truth table of starting functions, based on fundamental relationships between boolean function trans- forms and measures, provide the design rationale for this method. Two new function generation schemes have been proposed for this method, to efficiently satisfy the requirements placed on the starting functions utilized in the compu- tational process. An optional process attempts to increase the algebraic degree of the resulting functions, without sacrificing the optimalities that are achiev- able. The validity of this method is demonstrated through the success of various experimental trials. Switching the focus from single output boolean functions to multiple out- put boolean functions (s-boxes), the effectiveness of existing heuristic techniques (namely Genetic Algorithm, Hill Climbing Method and combined Genetic Algo- rithm/Hill Climbing) in primarily being applied to improve the nonlinearity of s-boxes of various dimensions, is investigated. The prior success of these heuristic vi techniques for improving the nonlinearity of boolean functions has been previously demonstrated, as has the success of hill climbing in isolation when applied to bi- jective s-boxes. An extension to the bijective s-box optimization work is presented in this thesis. In this new research, a Genetic Algorithm, Hill Climbing Method and the two in combination are applied to the nonlinearity and autocorrelation optimization of regular NxM s-boxes (N > M) to investigate the effectiveness and efficiency of each of these heuristics. A new breeding scheme, utilized in the Genetic Algorithm and combined Genetic Algorithm/Hill Climbing trials, is also presented. The success of experimental results compared to random regular s-box generation is demonstrated. New research in applying the Hill Climbing Method to construct NxM s- boxes (N < M) required to meet specific property criteria is presented. The consideration of the characteristics desired by the constructed s-boxes largely dictated the generation process. A discussion on the generation process of the component functions is included. Part of the results produced by experimental trials were incorporated into a commonly used family of stream ciphers, thus further supporting the use of heuristic techniques as a useful means of obtaining strong functions suitable for incorporation into practical ciphers. An analysis of the cryptographic properties of the s-box used in the MARS block cipher, the method of generation and the computational time taken to obtain this s-box, led to the new research reported in this thesis on the generation of MARS-like s-boxes. It is shown that the application of the Hill Climbing Method, with suitable requirements placed on the component boolean functions, was able to generate multiple MARS-like s-boxes which satisfied the MARS s- box requirements and provided additional properties. This new work represented an alternative approach to the generation of s-boxes satisfying the MARS s- box property requirements but which are cryptographically superior and can be obtained in a fraction of the time than that which was taken to produce the MARS s-box. An example MARS-like s-box is presented in this thesis. The overall value of heuristic methods in generating strong boolean functions and substitution boxes is clearly demonstrated in this thesis. This thesis has made several significant contributions to the field, both in the development of new, specialized heuristic methods capable of generating strong boolean functions, and in the analysis and optimization of substitution boxes, the latter achieved through applying existing heuristic techniques. vii viii Contents Keywords iii Abstract v Declaration xvii Previously Published Material xix Acknowledgements xxi 1 Introduction 1 1.1 Objectives and Outcomes . 3 1.2 Structure of Thesis . 6 2 Review of Boolean Function and S-Box Theory 11 2.1 Boolean Function Theory . 11 2.1.1 Characteristics of Boolean Functions . 12 2.1.2 Cryptographic Properties of Boolean Functions . 18 Balance . 18 Nonlinearity . 19 Avalanche . 24 Correlation Immunity . 30 2.1.3 Relationships Between Cryptographic Properties of Boolean Functions . 32 Nonlinearity and Avalanche . 32 Nonlinearity and Correlation Immunity . 35 Correlation Immunity and Avalanche . 36 2.1.4 Some Special Boolean Functions . 37 Bent Functions . 37 ix Semi-Bent Functions . 38 Plateaued Functions . 39 2.2 S-Box Theory . 40 2.2.1 S-Box Definitions and Types . 41 2.2.2 Cryptographic Properties of S-Boxes . 42 2.3 Some Common Cryptanalytic Attacks on Cipher Systems . 44 2.3.1 Differential Cryptanalysis . 45 2.3.2 Linear Cryptanalysis . 47 2.3.3 Correlation Attacks . 50 2.4 Summary . 51 3 Heuristic Techniques 53 3.1 Overview of Existing Heuristic Techniques Used . 54 3.1.1 Hill Climbing . 55 Experimental Rationale . 56 Previously Reported Results . 58 Method Applicability . 59 3.1.2 Genetic Algorithms . 59 Experimental Rationale . 62 Previously Reported Results . 63 Method Applicability . 64 3.1.3 Combined Genetic Algorithm and Hill Climbing . 64 Experimental Rationale . 65 Previously Reported Results . 66 Method Applicability . 66 3.2 Summary . 67 4 The Development
Recommended publications
  • A Quantitative Study of Advanced Encryption Standard Performance
    United States Military Academy USMA Digital Commons West Point ETD 12-2018 A Quantitative Study of Advanced Encryption Standard Performance as it Relates to Cryptographic Attack Feasibility Daniel Hawthorne United States Military Academy, [email protected] Follow this and additional works at: https://digitalcommons.usmalibrary.org/faculty_etd Part of the Information Security Commons Recommended Citation Hawthorne, Daniel, "A Quantitative Study of Advanced Encryption Standard Performance as it Relates to Cryptographic Attack Feasibility" (2018). West Point ETD. 9. https://digitalcommons.usmalibrary.org/faculty_etd/9 This Doctoral Dissertation is brought to you for free and open access by USMA Digital Commons. It has been accepted for inclusion in West Point ETD by an authorized administrator of USMA Digital Commons. For more information, please contact [email protected]. A QUANTITATIVE STUDY OF ADVANCED ENCRYPTION STANDARD PERFORMANCE AS IT RELATES TO CRYPTOGRAPHIC ATTACK FEASIBILITY A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Computer Science By Daniel Stephen Hawthorne Colorado Technical University December, 2018 Committee Dr. Richard Livingood, Ph.D., Chair Dr. Kelly Hughes, DCS, Committee Member Dr. James O. Webb, Ph.D., Committee Member December 17, 2018 © Daniel Stephen Hawthorne, 2018 1 Abstract The advanced encryption standard (AES) is the premier symmetric key cryptosystem in use today. Given its prevalence, the security provided by AES is of utmost importance. Technology is advancing at an incredible rate, in both capability and popularity, much faster than its rate of advancement in the late 1990s when AES was selected as the replacement standard for DES. Although the literature surrounding AES is robust, most studies fall into either theoretical or practical yet infeasible.
    [Show full text]
  • Advanced Encryption Standard (Aes) Modes of Operation
    ADVANCED ENCRYPTION STANDARD (AES) MODES OF OPERATION 1 Arya Rohan Under the guidance of Dr. Edward Schneider University of Maryland, College Park MISSION: TO SIMULATE BLOCK CIPHER MODES OF OPERATION FOR AES IN MATLAB Simulation of the AES (Rijndael Algorithm) in MATLAB for 128 bit key-length. Simulation of the five block cipher modes of operation for AES as per FIPS publication. Comparison of the five modes based on Avalanche Effect. Future Work 2 OUTLINE A brief history of AES Galois Field Theory De-Ciphering the Algorithm-ENCRYPTION De-Ciphering the Algorithm-DECRYPTION Block Cipher Modes of Operation Avalanche Effect Simulation in MATLAB Conclusion & Future Work References 3 A BRIEF HISTORY OF AES 4 In January 1997, researchers world-over were invited by NIST to submit proposals for a new standard to be called Advanced Encryption Standard (AES). From 15 serious proposals, the Rijndael algorithm proposed by Vincent Rijmen and Joan Daemen, two Belgian cryptographers won the contest. The Rijndael algorithm supported plaintext sizes of 128, 192 and 256 bits, as well as, key-lengths of 128, 192 and 256 bits. The Rijndael algorithm is based on the Galois field theory and hence it gives the algorithm provable 5 security properties. GALOIS FIELD 6 GALOIS FIELD - GROUP Group/Albelian Group: A group G or {G, .} is a set of elements with a binary operation denoted by . , that associates to each ordered pair (a, b) of elements in G an element (a . b) such that the following properties are obeyed: Closure: If a & b belong to G, then a . b also belongs to G.
    [Show full text]
  • Block Ciphers
    Block Ciphers Chester Rebeiro IIT Madras CR STINSON : chapters 3 Block Cipher KE KD untrusted communication link Alice E D Bob #%AR3Xf34^$ “Attack at Dawn!!” message encryption (ciphertext) decryption “Attack at Dawn!!” Encryption key is the same as the decryption key (KE = K D) CR 2 Block Cipher : Encryption Key Length Secret Key Plaintext Ciphertext Block Cipher (Encryption) Block Length • A block cipher encryption algorithm encrypts n bits of plaintext at a time • May need to pad the plaintext if necessary • y = ek(x) CR 3 Block Cipher : Decryption Key Length Secret Key Ciphertext Plaintext Block Cipher (Decryption) Block Length • A block cipher decryption algorithm recovers the plaintext from the ciphertext. • x = dk(y) CR 4 Inside the Block Cipher PlaintextBlock (an iterative cipher) Key Whitening Round 1 key1 Round 2 key2 Round 3 key3 Round n keyn Ciphertext Block • Each round has the same endomorphic cryptosystem, which takes a key and produces an intermediate ouput • Size of the key is huge… much larger than the block size. CR 5 Inside the Block Cipher (the key schedule) PlaintextBlock Secret Key Key Whitening Round 1 Round Key 1 Round 2 Round Key 2 Round 3 Round Key 3 Key Expansion Expansion Key Key Round n Round Key n Ciphertext Block • A single secret key of fixed size used to generate ‘round keys’ for each round CR 6 Inside the Round Function Round Input • Add Round key : Add Round Key Mixing operation between the round input and the round key. typically, an ex-or operation Confusion Layer • Confusion layer : Makes the relationship between round Diffusion Layer input and output complex.
    [Show full text]
  • Constructing Low-Weight Dth-Order Correlation-Immune Boolean Functions Through the Fourier-Hadamard Transform Claude Carlet and Xi Chen*
    1 Constructing low-weight dth-order correlation-immune Boolean functions through the Fourier-Hadamard transform Claude Carlet and Xi Chen* Abstract The correlation immunity of Boolean functions is a property related to cryptography, to error correcting codes, to orthogonal arrays (in combinatorics, which was also a domain of interest of S. Golomb) and in a slightly looser way to sequences. Correlation-immune Boolean functions (in short, CI functions) have the property of keeping the same output distribution when some input variables are fixed. They have been widely used as combiners in stream ciphers to allow resistance to the Siegenthaler correlation attack. Very recently, a new use of CI functions has appeared in the framework of side channel attacks (SCA). To reduce the cost overhead of counter-measures to SCA, CI functions need to have low Hamming weights. This actually poses new challenges since the known constructions which are based on properties of the Walsh-Hadamard transform, do not allow to build unbalanced CI functions. In this paper, we propose constructions of low-weight dth-order CI functions based on the Fourier- Hadamard transform, while the known constructions of resilient functions are based on the Walsh-Hadamard transform. We first prove a simple but powerful result, which makes that one only need to consider the case where d is odd in further research. Then we investigate how constructing low Hamming weight CI functions through the Fourier-Hadamard transform (which behaves well with respect to the multiplication of Boolean functions). We use the characterization of CI functions by the Fourier-Hadamard transform and introduce a related general construction of CI functions by multiplication.
    [Show full text]
  • Ohio IT Standard ITS-SEC-01 Data Encryption and Cryptography
    Statewide Standard State of Ohio IT Standard Standard Number: Title: ITS-SEC-01 Data Encryption and Cryptography Effective Date: Issued By: 03/12/2021 Ervan D. Rodgers II, Assistant Director/State Chief Information Officer Office of Information Technology Ohio Department of Administrative Services Version Identifier: Published By: 2.0 Investment and Governance Division Ohio Office of Information Technology 1.0 Purpose This state IT standard defines the minimum requirements for cryptographic algorithms that are cryptographically strong and are used in security services that protect at-risk or sensitive data as defined and required by agency or State policy, standard or rule. This standard does not classify data elements; does not define the security schemes and mechanisms for devices such as tape backup systems, storage systems, mobile computers or removable media; and does not identify or approve secure transmission protocols that may be used to implement security requirements. 2.0 Scope Pursuant to Ohio Administrative Policy IT-01, “Authority of the State Chief Information Officer to Establish Ohio IT Policy,” this state IT standard is applicable to every organized body, office, or agency established by the laws of the state for the exercise of any function of state government except for those specifically exempted. 3.0 Background The National Institute for Science and Technology (NIST) conducts extensive research and development in cryptography techniques. Their publications include technical standards for data encryption, digital signature and message authentication as well as guidelines for implementing information security and managing cryptographic keys. These standards and guidelines have been mandated for use in federal agencies and adopted by state governments and private enterprises.
    [Show full text]
  • Visualization of the Avalanche Effect in CT2
    University of Mannheim Faculty for Business Informatics & Business Mathematics Theoretical Computer Science and IT Security Group Bachelor's Thesis Visualization of the Avalanche Effect in CT2 as part of the degree program Bachelor of Science Wirtschaftsinformatik submitted by Camilo Echeverri [email protected] on October 31, 2016 (2nd revised public version, Apr 18, 2017) Supervisors: Prof. Dr. Frederik Armknecht Prof. Bernhard Esslinger Visualization of the Avalanche Effect in CT2 Abstract Cryptographic algorithms must fulfill certain properties concerning their security. This thesis aims at providing insights into the importance of the avalanche effect property by introducing a new plugin for the cryptography and cryptanalysis platform CrypTool 2. The thesis addresses some of the desired properties, discusses the implementation of the plugin for modern and classic ciphers, guides the reader on how to use it, applies the proposed tool in order to test the avalanche effect of different cryptographic ciphers and hash functions, and interprets the results obtained. 2 Contents Abstract .......................................... 2 Contents .......................................... 3 List of Abbreviations .................................. 5 List of Figures ...................................... 6 List of Tables ....................................... 7 1 Introduction ..................................... 8 1.1 CrypTool 2 . 8 1.2 Outline of the Thesis . 9 2 Properties of Secure Block Ciphers ....................... 10 2.1 Avalanche Effect . 10 2.2 Completeness . 10 3 Related Work ..................................... 11 4 Plugin Design and Implementation ....................... 12 4.1 General Description of the Plugin . 12 4.2 Prepared Methods . 14 4.2.1 AES and DES . 14 4.3 Unprepared Methods . 20 4.3.1 Classic Ciphers, Modern Ciphers, and Hash Functions . 20 4.4 Architecture of the Code . 22 4.5 Limitations and Future Work .
    [Show full text]
  • A Block Cipher Algorithm to Enhance the Avalanche Effect Using Dynamic Key- Dependent S-Box and Genetic Operations 1Balajee Maram and 2J.M
    International Journal of Pure and Applied Mathematics Volume 119 No. 10 2018, 399-418 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu Special Issue ijpam.eu A Block Cipher Algorithm to Enhance the Avalanche Effect Using Dynamic Key- Dependent S-Box and Genetic Operations 1Balajee Maram and 2J.M. Gnanasekar 1Department of CSE, GMRIT, Rajam, India. Research and Development Centre, Bharathiar University, Coimbatore. [email protected] 2Department of Computer Science & Engineering, Sri Venkateswara College of Engineering, Sriperumbudur Tamil Nadu. [email protected] Abstract In digital data security, an encryption technique plays a vital role to convert digital data into intelligible form. In this paper, a light-weight S- box is generated that depends on Pseudo-Random-Number-Generators. According to shared-secret-key, all the Pseudo-Random-Numbers are scrambled and input to the S-box. The complexity of S-box generation is very simple. Here the plain-text is encrypted using Genetic Operations and S-box which is generated based on shared-secret-key. The proposed algorithm is experimentally investigates the complexity, quality and performance using the S-box parameters which includes Hamming Distance, Balanced Output and the characteristic of cryptography is Avalanche Effect. Finally the comparison results motivates that the dynamic key-dependent S-box has good quality and performance than existing algorithms. 399 International Journal of Pure and Applied Mathematics Special Issue Index Terms:S-BOX, data security, random number, cryptography, genetic operations. 400 International Journal of Pure and Applied Mathematics Special Issue 1. Introduction In public network, several types of attacks1 can be avoided by applying Data Encryption/Decryption2.
    [Show full text]
  • State of the Art in Lightweight Symmetric Cryptography
    State of the Art in Lightweight Symmetric Cryptography Alex Biryukov1 and Léo Perrin2 1 SnT, CSC, University of Luxembourg, [email protected] 2 SnT, University of Luxembourg, [email protected] Abstract. Lightweight cryptography has been one of the “hot topics” in symmetric cryptography in the recent years. A huge number of lightweight algorithms have been published, standardized and/or used in commercial products. In this paper, we discuss the different implementation constraints that a “lightweight” algorithm is usually designed to satisfy. We also present an extensive survey of all lightweight symmetric primitives we are aware of. It covers designs from the academic community, from government agencies and proprietary algorithms which were reverse-engineered or leaked. Relevant national (nist...) and international (iso/iec...) standards are listed. We then discuss some trends we identified in the design of lightweight algorithms, namely the designers’ preference for arx-based and bitsliced-S-Box-based designs and simple key schedules. Finally, we argue that lightweight cryptography is too large a field and that it should be split into two related but distinct areas: ultra-lightweight and IoT cryptography. The former deals only with the smallest of devices for which a lower security level may be justified by the very harsh design constraints. The latter corresponds to low-power embedded processors for which the Aes and modern hash function are costly but which have to provide a high level security due to their greater connectivity. Keywords: Lightweight cryptography · Ultra-Lightweight · IoT · Internet of Things · SoK · Survey · Standards · Industry 1 Introduction The Internet of Things (IoT) is one of the foremost buzzwords in computer science and information technology at the time of writing.
    [Show full text]
  • Construction of Stream Ciphers from Block Ciphers and Their Security
    Sridevi, International Journal of Computer Science and Mobile Computing, Vol.3 Issue.9, September- 2014, pg. 703-714 Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320–088X IJCSMC, Vol. 3, Issue. 9, September 2014, pg.703 – 714 RESEARCH ARTICLE Construction of Stream Ciphers from Block Ciphers and their Security Sridevi, Assistant Professor, Department of Computer Science, Karnatak University, Dharwad Abstract: With well-established encryption algorithms like DES or AES at hand, one could have the impression that most of the work for building a cryptosystem -for example a suite of algorithms for the transmission of encrypted data over the internet - is already done. But the task of a cipher is very specific: to encrypt or decrypt a data block of a specified length. Given an plaintext of arbitrary length, the most simple approach would be to break it down to blocks of the desired length and to use padding for the final block. Each block is encrypted separately with the same key, which results in identical ciphertext blocks for identical plaintext blocks. This is known as Electronic Code Book (ECB) mode of operation, and is not recommended in many situations because it does not hide data patterns well. Furthermore, ciphertext blocks are independent from each other, allowing an attacker to substitute, delete or replay blocks unnoticed. The feedback modes in fact turn the block cipher into a stream cipher by using the algorithm as a keystream generator. Since every mode may yield different usage and security properties, it is necessary to analyse them in detail.
    [Show full text]
  • Chapter 2 the Data Encryption Standard (DES)
    Chapter 2 The Data Encryption Standard (DES) As mentioned earlier there are two main types of cryptography in use today - symmet- ric or secret key cryptography and asymmetric or public key cryptography. Symmet- ric key cryptography is the oldest type whereas asymmetric cryptography is only being used publicly since the late 1970’s1. Asymmetric cryptography was a major milestone in the search for a perfect encryption scheme. Secret key cryptography goes back to at least Egyptian times and is of concern here. It involves the use of only one key which is used for both encryption and decryption (hence the use of the term symmetric). Figure 2.1 depicts this idea. It is necessary for security purposes that the secret key never be revealed. Secret Key (K) Secret Key (K) ? ? - - - - Plaintext (P ) E{P,K} Ciphertext (C) D{C,K} Plaintext (P ) Figure 2.1: Secret key encryption. To accomplish encryption, most secret key algorithms use two main techniques known as substitution and permutation. Substitution is simply a mapping of one value to another whereas permutation is a reordering of the bit positions for each of the inputs. These techniques are used a number of times in iterations called rounds. Generally, the more rounds there are, the more secure the algorithm. A non-linearity is also introduced into the encryption so that decryption will be computationally infeasible2 without the secret key. This is achieved with the use of S-boxes which are basically non-linear substitution tables where either the output is smaller than the input or vice versa. 1It is claimed by some that government agencies knew about asymmetric cryptography before this.
    [Show full text]
  • FPGA Implementation and Analysis of the Block Cipher Mode Architectures for the PRESENT Light Weight Encryption Algorithm
    ISSN (Print) : 0974-6846 Indian Journal of Science and Technology, Vol 9(38), DOI: 10.17485/ijst/2016/v9i38/90314, October 2016 ISSN (Online) : 0974-5645 FPGA Implementation and Analysis of the Block Cipher Mode Architectures for the PRESENT Light Weight Encryption Algorithm A. Prathiba* and V. S. Kanchana Bhaaskaran School of Electronics Engineering, VIT University Chennai, Chennai - 600127, India; prathi_communication@yahoo. co.in, [email protected] Abstract Objective: This paper presents the Field Programmable Gate Array (FPGA) implementations of the different block cipher mode architectures of the ISO standardized light weight block cipher PRESENT, designed for resource constrained devices. Methods/ Statistical Analysis: The performance evaluations compare the implementations of the different block cipher modes, namely Electronic Code Book (ECB) mode, Cipher Block Chaining (CBC) mode, Cipher Feedback Mode (CFB), Output Feed Back Mode (OFB) and CounTeR (CTR) mode for the PRESENT cipher. The throughput of encryption of three successive 64 bit blocks of data ranges from 565.312Mbps to 574.784Mbps for the modes other than the cipher feedback arrives as 68.912 Mbps, 155.392Mbps and300.8 Mbps for a 64 bit block of data for the input streams of size 8 bits, 16 bits andmode 32 in bits the respectively.Spartan-3 FPGA. Findings: The throughput The throughput for providing of the confidentialityblock cipher mode through hardware encryption architectures in the cipher of the feedback light weight mode cipher PRESENT demonstrates the high speed performance of the cipher in encryption/decryption of data as blocks and streams. Application/ Improvement: different modes of operation for the light weight block cipher PRESENT.
    [Show full text]
  • Implementation of Advanced Encryption Standard Algorithm
    International Journal of Scientific & Engineering Research Volume 3, Issue 3, March -2012 1 ISSN 2229-5518 Implementation of Advanced Encryption Standard Algorithm M.Pitchaiah, Philemon Daniel, Praveen Abstract—Cryptography is the study of mathematical techniques related to aspects of information security such as confidentiality, data integrity, entity authentication and data origin authentication. In data and telecommunications, cryptography is necessary when communicating over any unreliable medium, which includes any network particularly the internet. In this paper, a 128 bit AES encryption and Decryption by using Rijndael algorithm (Advanced Encryption Standard algorithm) is been made into a synthesizable using Verilog code which can be easily implemented on to FPGA. The algorithm is composed of three main parts: cipher, inverse cipher and Key Expansion. Cipher converts data to an unintelligible form called plaintext. Key Expansion generates a Key schedule that is used in cipher and inverse cipher procedure. Cipher and inverse cipher are composed of special number of rounds. For the AES algorithm, the number of rounds to be performed during the execution of the algorithm uses a round function that is composed of four different byte-oriented transformations: Sub Bytes, Shift Rows, Mix columns and Add Round Key. Index Terms—Advanced Encryption Standard, Cryptography, Decryption, Encryption. I. INTRODUCTION standard explicitly defines the allowed values for the key T HE Cryptography plays an important role in the security of length (Nk), block size (Nb), and number of rounds (Nr). data transmission [1]. This paper addresses efficient hardware B. AES Algorithm Specification implementation of the AES (Advanced Encryption Standard) algorithm and describes the design and performance testing of For the AES algorithm, the length of the input block, the Rijndael algorithm [3].
    [Show full text]