4. Environmental Setting

Total Page:16

File Type:pdf, Size:1020Kb

4. Environmental Setting 4. Environmental Setting The purpose of this section is to provide a “description of the physical environmental conditions in the vicinity of the Project, as they exist at the time the Notice of Preparation (NOP) is published, from both a local and a regional perspective” pursuant to CEQA Guidelines Section 15125(a). In addition to the summary below, detailed environmental setting descriptions are provided in each subsection of Section 5 of this Draft EIR. 4.1 PROJECT LOCATION The Project site is 14.58 acres and located at 2300, 2310, and 2320 South Redhill Avenue in the City of Santa Ana and is identified by APN 430-222-01 and 430-222-16. The site is located at the southwest corner of Red Hill Avenue and Warner Avenue. Regional access to the Project site is generally provided via State Route (SR) 55 at the Dyer Road exit. The regional location of the Project site is shown in Figure 3-1in Section 3.0, Project Description. Access to the Project site is provided by Red Hill Avenue and Warner Avenue. The Project site is located within the southeastern most portion of the City of Santa Ana. Areas across from Red Hill Avenue (to the east) are within the City of Tustin and are part of the former Tustin Marine Corps Air Station (MCAS), now known as the Tustin Legacy. Areas across from Dyer Road (0.5 mile south of the site) are in the City of Irvine, within the Irvine Business Complex (IBC). The local vicinity is shown is Figure 3-2 in Section 3.0, Project Description. 4.2 PROJECT SITE DESCRIPTION The Project site is relatively flat and approximately 60 feet above mean sea level (msl). The site is currently developed with three partially occupied industrial buildings, parking areas, and vehicle circulation drives. The site has little vegetation other than an approximately 2.5-acre undeveloped grass area at the corner of Red Hill and Warner Avenues, some ornamental trees scattered throughout the site, and street trees along Red Hill Avenue and Warner Avenue. The 3 existing buildings total 212,121 square feet and consist of the following structures: • 2300 South Redhill Avenue: 30,129 square foot building with a 3,330 SF square foot mezzanine and 6 loading docks • 2310 South Redhill Avenue: 68,992 square foot building with a 9,992 square foot mezzanine office and 6 loading docks • 2320 South Redhill Avenue: 113,000 square foot building with a 43,000 square foot mezzanine office and 7 loading docks The buildings are currently utilized by various lessees, which include 119,121 square feet that is utilized by warehousing and distribution operations; 5,000 square feet that is utilized for research and development; and 30,000 square feet in the 2320 South Redhill Avenue building that is being utilized as a 200-bed temporary homeless shelter by the City of Santa Ana. The remaining 53,000 square feet of building area is currently vacant. The Project site was formerly occupied by Ricoh Electronics, Inc., a manufacturer and distributor of thermal paper and toner from approximately 1985 through 2017. The existing buildings include two and three-story high concrete industrial buildings. Building exteriors are distinguished by detailing around the entrances that include steel framed or wood framed doorways, and various loading docks. Wire fencing currently surrounds the 2320 South Redhill Avenue building that is located on the northeastern portion of the Project site, and approximately 6-foot high retaining wall is City of Santa Ana 4-1 Draft EIR January 2020 The Bowery Mixed-Use Project 4. Environmental Setting located on the western boundary of the Project site. Lighting is present in parking areas and on the exterior of the buildings, mainly focused on entrances and exits, as well as loading docks. An aerial photograph of the Project site is shown as Figure 3-3 in Section 3.0, Project Description. The Project site has a General Plan Land Use designation of P (Professional) and is zoned Light Industrial (M-1). 4.3 AESTHETICS Scenic Vistas: The Project site and surrounding areas are either urbanized or planned for urbanization and do not contain any sensitive scenic vistas. The General Plan Scenic Corridors Element identifies street corridors, watercourse corridors, inter-city corridors, City entries, and selected/screened views from a highway that are considered unique visual resources within the City. Exhibit 4 of the Scenic Corridors Element does not identify any scenic resources or vistas at or adjacent to the Project site. The nearest feature identified by the General Plan is Edinger Avenue, a “Secondary Street Corridor”, which is approximately 1 mile north of the site. State Scenic Highways: There are no officially designated state scenic highways in the vicinity of the proposed Project (Caltrans 2019). The only officially designated scenic highway within Orange County is a portion of SR‐91 that is located between SR-55 to east of the Anaheim city limit (Caltrans 2019), which is not in the vicinity of the Project site. Likewise, there are no County‐designated scenic highways that run through the City of Santa Ana. Visual Character of Project Site: The visual character of the Project site is urban and light industrial in nature. The Project site is developed with three large industrial buildings that total 212,121 square feet, parking areas, and vehicle circulation drives. Two of the industrial buildings are two-stories in height and one is three- stories in height. The vegetation on site consists of an approximately 2.5-acre undeveloped grass area at the corner of Red Hill and Warner Avenues, some ornamental trees scattered throughout the site, and street trees along Red Hill Avenue and Warner Avenue. The exterior of the buildings are long and flat, without architectural treatments. The buildings have a typical boxy modern office/industrial structure appearance, with large dark tinted windows line the first and second floors of the 2310 South Redhill building and that make up a large portion of the front of the 2320 South Redhill building. The dark window tinting provides a black appearance from the outside. The 2320 building has exterior metal stairs to access the second story of the building and the 2310 building has very few windows, which adds to the industrial appearance. All three buildings have loading docks and industrial door openings. The buildings are surrounded by asphalt paved surface parking areas, as shown in Figure 5.1-1. The site is surrounded by 5-foot high wrought iron fencing along Warner Avenue and Red Hill Avenue, which is setback from the roadways by landscaped setbacks and sidewalks. The other two sides of the Project site, that are adjacent to existing business park uses, are bound by 6-foot high cement walls. Visual Character of Surrounding Area: The existing visual character of the area surrounding the Project site is urban. There is no consistent architectural or visual theme within the surrounding area and significant visual resources are limited. The parcel adjacent to the Project site on Red Hill Avenue is developed with 3-story high tilt-up cement light industrial buildings and associated parking areas. Areas across Red Hill Avenue, which is a 6-lane arterial roadway, from the Project site are within the Tustin Legacy Specific Plan area and undergoing new urban development. Areas across from the site, on the northeast corner of Red Hill Avenue and Warner Avenue, are developed with two-story rectangular urban City of Santa Ana 4-2 Draft EIR January 2020 The Bowery Mixed-Use Project 4. Environmental Setting buildings that are used for public and social service uses. In addition, the large airplane hangar that was previously used by the no longer existing Naval Air Station is located within middle ground views provides for an urban visual setting. Foreground views include screened chain linked fencing that surrounds a weedy open space area with a tall Tustin Legacy monument sign on the southeast corner of the Redhill Avenue and Warner Avenue intersection. The area directly across Red Hill Avenue from the site currently consists of an undeveloped disturbed area that consists of bare ground, weedy vegetation, cement building pads that are remnants of previous development, areas that appear to be used for construction staging. Foreground views of the areas are dominated by the screened chained link fencing that surrounds the undeveloped area. Long range views include another large airplane hangar that was previously used by the Naval Air Station. Areas across Red Hill Avenue to the southeast, also provides foreground views of the screened chained link fencing that surrounds the undeveloped area. However, middle ground views are of new four-story office structures that are rectangular and modern in design. Longer range views include a new 5-story hotel located on Barranca that also has a modern rectangular and boxy architecture. The Project site is bounded to the north and northwest by Warner Avenue, which is a 6-lane arterial roadway with sidewalks and street trees. The parcel adjacent to the Project site on Warner Avenue is developed with one-story linear commercial and business park uses. These buildings have both a modern commercial appearance, with large store front type windows and parking adjacent to the front entrances of the businesses, and an industrial appearance with large roll up doors on the sides and rears of the buildings, some of which can be viewed from Warner Avenue. Areas across the street from the Project site on Warner Avenue are developed with two-story office buildings that are surrounded by surface parking areas, as shown in Figure 5.1-8.
Recommended publications
  • California Fire Siege 2007 an Overview Cover Photos from Top Clockwise: the Santiago Fire Threatens a Development on October 23, 2007
    CALIFORNIA FIRE SIEGE 2007 AN OVERVIEW Cover photos from top clockwise: The Santiago Fire threatens a development on October 23, 2007. (Photo credit: Scott Vickers, istockphoto) Image of Harris Fire taken from Ikhana unmanned aircraft on October 24, 2007. (Photo credit: NASA/U.S. Forest Service) A firefighter tries in vain to cool the flames of a wind-whipped blaze. (Photo credit: Dan Elliot) The American Red Cross acted quickly to establish evacuation centers during the siege. (Photo credit: American Red Cross) Opposite Page: Painting of Harris Fire by Kate Dore, based on photo by Wes Schultz. 2 Introductory Statement In October of 2007, a series of large wildfires ignited and burned hundreds of thousands of acres in Southern California. The fires displaced nearly one million residents, destroyed thousands of homes, and sadly took the lives of 10 people. Shortly after the fire siege began, a team was commissioned by CAL FIRE, the U.S. Forest Service and OES to gather data and measure the response from the numerous fire agencies involved. This report is the result of the team’s efforts and is based upon the best available information and all known facts that have been accumulated. In addition to outlining the fire conditions leading up to the 2007 siege, this report presents statistics —including availability of firefighting resources, acreage engaged, and weather conditions—alongside the strategies that were employed by fire commanders to create a complete day-by-day account of the firefighting effort. The ability to protect the lives, property, and natural resources of the residents of California is contingent upon the strength of cooperation and coordination among federal, state and local firefighting agencies.
    [Show full text]
  • The 2007 Southern California Wildfires: Lessons in Complexity
    fire The 2007 Southern California Wildfires: Lessons in Complexity s is evidenced year after year, the na- ture of the “fire problem” in south- Jon E. Keeley, Hugh Safford, C.J. Fotheringham, A ern California differs from most of Janet Franklin, and Max Moritz the rest of the United States, both by nature and degree. Nationally, the highest losses in ϳ The 2007 wildfire season in southern California burned over 1,000,000 ac ( 400,000 ha) and property and life caused by wildfire occur in included several megafires. We use the 2007 fires as a case study to draw three major lessons about southern California, but, at the same time, wildfires and wildfire complexity in southern California. First, the great majority of large fires in expansion of housing into these fire-prone southern California occur in the autumn under the influence of Santa Ana windstorms. These fires also wildlands continues at an enormous pace cost the most to contain and cause the most damage to life and property, and the October 2007 fires (Safford 2007). Although modest areas of were no exception because thousands of homes were lost and seven people were killed. Being pushed conifer forest in the southern California by wind gusts over 100 kph, young fuels presented little barrier to their spread as the 2007 fires mountains experience the same negative ef- reburned considerable portions of the area burned in the historic 2003 fire season. Adding to the size fects of long-term fire suppression that are of these fires was the historic 2006–2007 drought that contributed to high dead fuel loads and long evident in other western forests (e.g., high distance spotting.
    [Show full text]
  • CAL FIRE Mobilizing for Santa Ana Winds
    CAL FIRE NEWS RELEASE California Department of Forestry and Fire Protection CONTACT: Duty Information Officer RELEASE October 20, (916) 651-FIRE (3473) DATE: 2017 @CALFIRE_PIO CAL FIRE Mobilizing for Santa Ana Winds SACRAMENTO – After one of the deadliest and most destructive weeks in California’s history, firefighters are preparing for another significant wind event in Southern California. The National Weather service has issued several Red Flag Warnings and Fire Weather Watches across Southern California starting this weekend through early next week due to gusty winds, low humidity and high temperatures. In response to these anticipated conditions, CAL FIRE is increasing its staffing levels with additional firefighters, fire engines, fire crews, and aircraft to respond to any new wildfires. “This is traditionally the time of year when we see these strong Santa Ana winds,” said Chief Ken Pimlott, director of CAL FIRE. “and with an increased risk for wildfires, our firefighters are ready. Not only do we have state, federal and local fire resources, but we have additional military aircraft on the ready. Firefighters from other states, as well as Australia, are here and ready to help in case a new wildfire ignites.” The weather warnings stretch from Santa Barbara, San Diego, Orange, Riverside, Los Angeles, San Bernardino, and Ventura counties. The winds are expected to reach gusts of up to 50 mph, along with record breaking heat, fire danger in these areas is high. It is vital that the public use caution when outside and avoid activities that may spark a new fire. Any new fires can spread rapidly under these types of weather conditions.
    [Show full text]
  • Categorization of Santa Ana Winds with Respect to Large Fire Potential
    Categorization of Santa Ana Winds With Respect To Large Fire Potential Tom Rolinski1, Brian D’Agostino2, and Steve Vanderburg2 1US Forest Service, Riverside, California. 2San Diego Gas and Electric, San Diego, California. ABSTRACT Santa Ana winds, common to southern California during the fall through early spring, are a type of katabatic wind that originates from a direction generally ranging from 360°/0° to 100° and is usually accompanied by very low humidity. Since fuel conditions tend to be driest from late September through the middle of November, Santa Ana winds occurring during this time have the greatest potential to produce large, devastating fires when an ignition occurs. Such catastrophic fires occurred in 1993, 2003, 2007, and 2008. Because of the destructive nature of such fires, there has been a growing desire to categorize Santa Ana wind events in much the same way that tropical cyclones and tornadoes have been categorized. The Offshore Flow Severity Index (OFSI), previously developed by Predictive Services, is an attempt to categorize such events with respect to large fire potential, specifically the potential for new ignitions to reach or exceed 100 ha based on breakpoints of surface wind speed and humidity. More recently, Predictive Services has collaborated with meteorologists from the San Diego Gas and Electric utility to develop a new methodology that addresses flaws inherent in the initial index. Specific methods for improving spatial coverage and the effects of fuel moisture have been employed. High resolution reanalysis data from the Weather Research and Forecasting (WRF) model generated by the Department of Atmospheric and Oceanic Sciences at UCLA is being used to redefine the OFSI.
    [Show full text]
  • News Headlines 01/21/2021
    ____________________________________________________________________________________________________________________________________ News Headlines 01/21/2021 Strong winds create hazardous driving conditions, bring fire danger and power shutoffs across SoCal Spectacular House Fire Lights Up the Sky in Yucca Valley Early This Morning 1 Strong winds create hazardous driving conditions, bring fire danger and power shutoffs across SoCal Rob McMillan, Marc Cota-Robles and Sid Garcia, ABC7 News Posted: January 19, 2021 at 12:55PM San Bernardino County Fire Engineer, Eric Sherwin, warns ABC7 News “The tendency to start a ‘warming’ fire can result in destructive and truly out-of-control fires very quickly.” He encourages residents to report fires right away to give Firefighters the opportunity to knockdown fires before the wind takes control. FONTANA, Calif. (KABC) -- Dangerous Santa Ana winds are whipping through the Southland, bringing increased fire danger and causing hazardous driving conditions as thousands are under the threat of having their power shut off. Southern California on Tuesday will be hit with the trifecta of increased winds, low relative humidity and low moisture, prompting firefighters to be on alert. A huge area is affected - from Santa Clarita to the high country, from the Los Angeles basin to the Santa Monica Mountains and all the way to the coast. In the highest elevations, gusts could reach up to 90 mph. Those gusts posed a challenge for some drivers in Fontana Tuesday morning, where at least five big rigs flipped over near the 15 and 210 freeway interchange. Nobody was hurt, but several other drivers stopped on the side of the freeway to wait for the strong gusts to subside.
    [Show full text]
  • III. General Description of Environmental Setting Acres, Or Approximately 19 Percent of the City’S Area
    III. GENERAL DESCRIPTION OF ENVIRONMENTAL SETTING A. Overview of Environmental Setting Section 15130 of the State CEQA Guidelines requires an EIR to include a discussion of the cumulative impacts of a proposed project when the incremental effects of a project are cumulatively considerable. Cumulative impacts are defined as impacts that result from the combination of the proposed project evaluated in the EIR combined with other projects causing related impacts. Cumulatively considerable means that the incremental effects of an individual project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects. Section 15125 (c) of the State CEQA Guidelines requires an EIR to include a discussion on the regional setting that the project site is located within. Detailed environmental setting descriptions are contained in each respective section, as presented in Chapter IV of this Draft EIR. B. Project Location The City of Ontario (City) is in the southwestern corner of San Bernardino County and is surrounded by the Cities of Chino and Montclair, and unincorporated areas of San Bernardino County to the west; the Cities of Upland and Rancho Cucamonga to the north; the City of Fontana and unincorporated land in San Bernardino County to the east; the Cities of Eastvale and Jurupa Valley to the east and south. The City is in the central part of the Upper Santa Ana River Valley. This portion of the valley is bounded by the San Gabriel Mountains to the north; the Chino Hills, Puente Hills, and San Jose Hills to the west; the Santa Ana River to the south; and Lytle Creek Wash on the east.
    [Show full text]
  • Santa Ana Wildfire Threat Index
    Developing and Validating the Santa Ana Wildfire Threat Index Tom Rolinski1, Robert Fovell2, Scott B Capps3, Yang Cao2, Brian D”Agostino4, Steve Vanderburg4 (1)USDA Forest Service (Predictive Services), Riverside, CA, United States, (2)Department of Oceanic and Atmospheric Sciences UCLA, Los Angeles, CA, United States, (3)Vertum Partners, Los Angeles, CA, United States, (4)SDG&E, San Diego, CA, United States 65 60 LFP depicting Santa Ana Wind Events 2007-2014 55 Santa Ana Events – weather parameters only 50 Santa Ana Events – weather and fuels 45 40 35 LFP 30 25 20 15 10 5 0 1- Introduction 2- Methodology From the fall through spring, offshore winds, commonly referred • The SAWTI which predicts Large Fire Potential (LFP) during to as "Santa Ana" winds, occur across southern California from Santa Ana wind events, is informed by both weather and fuels Used by fire agencies and the general public, the Santa Ana Wildfire Threat Index (SAWTI) was made publically available on September 17, 2014. The product Ventura County south to Baja California and west of the coastal information. can be accessed at: santaanawildfirethreat.com mountains and passes. Each of these synoptically driven wind • We define LFP to be the likelihood of an ignition reaching or events vary in frequency, intensity, duration, and spatial coverage, exceeding 250 acres or approximately 100 ha. thus making them difficult to categorize. Since fuel conditions • For SAWTI, the following equation was formulated: 4- Operational SAWTI tend to be driest from late September through the middle of In 2013, the SAWTI was beta tested through a controlled 2 November, Santa Ana winds occurring during this time have the 퐿퐹푃 = 푊푠 퐷푑퐹푀퐶 release via a password protected website.
    [Show full text]
  • Santa Ana: a Dangerous Wind
    ample, they are called mistrals in southern elevation. France, chinooks in the Rocky Mountains In the case of California’s Santa Anas, Geography and boras in northeast Italy and Slovenia. the air that reaches the coast may be very In The In the U.S. Southwest, the katabatic winds hot. Air that descends in elevation heats are called Santa Ana winds. through a process known as adiabatic News™ Winds blowing out of high pressure warming. As air descends, it is compressed cells generate katabatic winds, often be- and it warms at 5.5 degrees Fahrenheit per ginning as cold winds. These high pres- 1,000 feet (1 degree C/100 m). sure cells, containing cold, dense air, may Additionally, katabatic winds are very, Neal Lineback become situated over mountains or high very dry winds. Having originated as and Mandy Lineback Gritzner plateaus. Because air tends to move from cold, dry air and then warmed adiabati- high pressure areas toward surrounding cally, this air may arrive at sea level with low pressure, the air rushes outward from a relative humidity below 10 percent. The SANTA ANA: the center of the high pressure area and temperature of typical Santa Ana wind gravity pulls it into the valleys below. The may exceed100 F (37.8 C) by the time it ap- A DANGEROUS air’s relative weight causes it to hug the proaches sea level. ground. Santa Ana winds normally occur in WIND As the air fl ows toward the lowlands, its Southern California in the fall season fol- Blistering Santa Ana winds whipped velocities increase.
    [Show full text]
  • Damaging Downslope Wind Events in the San Gabriel Valley of Southern California
    DAMAGING DOWNSLOPE WIND EVENTS IN THE SAN GABRIEL VALLEY OF SOUTHERN CALIFORNIA SCOTT SUKUP NOAA/NWS, Oxnard, California 1. Introduction The complex terrain of southern California (Fig. 1) poses a number of forecast challenges for various types of wind events that impact the region. For example, there are the well documented “sundowner” winds along the Santa Ynez Range of Santa Barbara County (Ryan 1996). There are also the infamous and heavily researched Santa Ana winds that can fuel large wildfires throughout much of southern California (Raphael 2003). Another type of wind event that is less well-known is the “Palmdale Wave”, which affects the Antelope Valley in Los Angeles (LA) County (Fig. 2), and is associated with strong south or southwest flow over the San Gabriel Mountains (Kaplan and Thompson 2005). The San Gabriel Mountains (SGM) also play an important role in damaging northerly wind events that impact the San Gabriel Valley (SGV) and eastern portions of the San Fernando Valley (SFV) (Fig. 2). Like the “Palmdale Wave”, there is little research on this last type of wind event and thus it is the focus of this paper. The motivation for this paper largely comes from an extreme northerly wind event that brought widespread damage across much of the SGV and eastern portions of the SFV from the late evening hours on 30 November 2011 through the early morning hours on 1 December 2011 (Fig. 3). Some of the highlights of this event include: 13 Proclamations of Local Emergency; 350,000 residents in the SGV losing power, some for over a week; an estimated $40 million in damages; a ground-stop and multiple power outages at Los Angeles International Airport (LAX) that resulted in 23 flights being diverted to Ontario International Airport (ONT).
    [Show full text]
  • Variability of Marine Fog Along the California Coast
    VARIABILITY OF MARINE FOG ALONG THE CALIFORNIA COAST Maria K. Filonczuk, Daniel R. Cayan, and Laurence G. Riddle Climate Research Division Scripps Institution of Oceanography University of California, San Diego La Jolla, California 92093-0224 SIO REFERENCE NO. 95-2 July 1995 Table of Contents 1. Introduction ......................................................................1 2 . Climatological and Topographic Influences ................................2 2.1. General Climatology ...................................................2 2.2. Topography .............................................................3 3 . Background and Objectives ...................................................5 3.1 . Fog Mechanisms .......................................................5 3 .2. Objectives ...............................................................6 4 . Data .............................................................................6 5 . Climatology of West Coast Fog .............................................13 5.1. Seasonal Variability .................................................. 13 5.1.1. Coastal Station Fog Climatology .................................. 13 5.1.2. Marine Fog Climatology .............................................16 5.2. Interannual Variability ...............................................21 5.2.1. Coastal Stations .......................................................21 5.2.2. Marine Observations .................................................31 6 . Local Connections with Marine Fog ......................................
    [Show full text]
  • California Wildfires: a Demographic Time Bomb That Has Exploded
    California Wildfires: A Demographic Time Bomb That Has Exploded March 2020 TransRe California Wildfires | 1 | March 2020 Insight Into Wildfire The wildfire exposure of the Western United States vegetation (brush and trees). Dead vegetation fuels (California, Oregon, Colorado and Nevada) has fires. Extended dry seasons overlap with seasonal increased as the population in the wildland-urban winds to fan those fires. Westward winds then push interface has grown. This paper focuses on how the fires through exposed areas faster. demographic changes and climate changes impact one state, California. Wildfires are a global, not just national issue. Changing climate conditions and human development trends Approximately 90% of US wildland fires are caused by remain key factors in wildfire generation and impact. people (according to the U.S. Department of Interior). Further study of the implications of these changes is The other 10% are started by lightning, lava etc. required to improve the responses to the issue. Several environmental factors affect wildfire behavior – including atmospheric conditions, fuel supply and Proactive Wildfires Exposure Management topography. The factors are highly variable, but when combined they create dangerous conditions that 2019 conditions still favored wildfires, and there were make wildfire behavior difficult to predict. many ignitions. In October 2019, PG&E took preventive measures and de-energized its grid, to avoid arcing and We observe Californians relocating from expensive, equipment failures during high wind events. urban areas to more rural locations. Whether due to cost of living, or quality of life, this population shift PG&E cut power to ~800,000 electric and gas means greater human development around a natural customers in nine counties (all except San Francisco) catastrophe exposure.
    [Show full text]
  • A Vertical Perspective of Santa Ana Winds in a Canyon. Berkeley, Calif., Pacific SW
    PACIFIC SOUTHWEST Forest and Range FOREST SERVICE U. S. DEPARTMENT OF AGRICULTURE P.O. BOX 245, BERKELEY, CALIFORNIA 94701 Experiment Station U.S.D.A. FOREST SERVICE RESEARCH PAPER PSW- 52 /1969 Ryan , Bill C. 1969. A vertical perspective of Santa Ana winds in a canyon. Berkeley, Calif., Pacific SW. Forest & Range Exp. Sta., 13 p., illus. (U.S.D.A. Forest Serv. Res Paper PSW-52) Vertical cross-section isentropic and streamline analyses were made of three cases of light Santa Ana winds in southern California. Data were obtained by means of an instrumented aircraft, a GMD-2 Rawin set, two double-theodolite pibal stations, and recording surface weather stations. The streamline analyses reveal clearly the significant depth of the wind field down the lee side of the range, and how opposing wind systems interact on the lee side to allow rapidly changing surface winds. Oxford: 431 .1 : 111.5 :(794). Retrieval Terms: fire weather; fire behavior; foehn winds; Santa Ana winds; cross-section analysis; streamline analysis; southern California. Ryan , Bill C. 1969. A vertical perspective of Santa Ana winds in a canyon. Berkeley, Calif., Pacific SW. Forest & Range Exp. Sta., 13 p., illus. (U.S.D.A. Forest Serv. Res Paper PSW-52) Vertical cross-section isentropic and streamline analyses were made of three cases of light Santa Ana winds in southern California. Data were obtained by means of an instrumented aircraft, a GMD-2 Rawin set, two double-theodolite pibal stations, and recording surface weather stations. The streamline analyses reveal clearly the significant depth of the wind field down the lee side of the range, and how opposing wind systems interact on the lee side to allow rapidly changing surface winds.
    [Show full text]