Betrfs: a Right-Optimized Write-Optimized File System

Total Page:16

File Type:pdf, Size:1020Kb

Betrfs: a Right-Optimized Write-Optimized File System BetrFS: A Right-Optimized Write-Optimized File System William Jannen, Jun Yuan, Yang Zhan, Amogh Akshintala, John Esmet∗, Yizheng Jiao, Ankur Mittal, Prashant Pandey, Phaneendra Reddy, Leif Walsh∗, Michael Bender, Martin Farach-Colton†, Rob Johnson, Bradley C. Kuszmaul‡, and Donald E. Porter Stony Brook University, ∗Tokutek Inc., †Rutgers University, and ‡Massachusetts Institute of Technology Abstract (microwrites). Examples include email delivery, creat- The Be -tree File System, or BetrFS, (pronounced ing lock files for an editing application, making small “better eff ess”) is the first in-kernel file system to use a updates to a large file, or updating a file’s atime. The un- write-optimized index. Write optimized indexes (WOIs) derlying problem is that many standard data structures in are promising building blocks for storage systems be- the file-system designer’s toolbox optimize for one case cause of their potential to implement both microwrites at the expense of another. and large scans efficiently. Recent advances in write-optimized indexes (WOI) [4, Previous work on WOI-based file systems has shown 8–10, 23, 27, 28] are exciting because they have the po- promise but has also been hampered by several open tential to implement both efficient microwrites and large problems, which this paper addresses. For example, scans. The key strength of the best WOIs is that they can FUSE issues many queries into the file system, su- ingest data up to two orders of magnitude faster than B- perimposing read-intensive workloads on top of write- trees while matching or improving on the B-tree’s point- intensive ones, thereby reducing the effectiveness of and range-query performance [4, 9]. WOIs. Moving to an in-kernel implementation can ad- WOIs have been successful in commercial key-value dress this problem by providing finer control of reads. stores and databases [2,3,12,17,20,33,34], and previous This paper also contributes several implementation tech- research on WOIs in file systems has shown promise [15, niques to leverage kernel infrastructure without throttling 25, 31]. However, progress towards a production-quality write performance. write-optimized file system has been hampered by sev- Our results show that BetrFS provides good perfor- eral open challenges, which we address in this paper: mance for both arbitrary microdata operations, which in- • Code complexity. A production-quality WOI can eas- clude creating small files, updating metadata, and small ily be 50,000 lines of complex code, which is difficult writes into large or small files, and for large sequen- to shoehorn into an OS kernel. Previous WOI file sys- tial I/O. On one microdata benchmark, BetrFS pro- tems have been implemented in user space. vides more than 4× the performance of ext4 or XFS. • FUSE squanders microwrite performance. BetrFS is an ongoing prototype effort, and requires ad- FUSE [16] issues a query to the underlying file ditional data-structure tuning to match current general- system before almost every update, superimposing purpose file systems on some operations such as deletes, search-intensive workloads on top of write-intensive directory renames, and large sequential writes. Nonethe- workloads. Although WOIs are no worse for point less, many applications realize significant performance queries than any other sensible data structure, writes improvements. For instance, an in-place rsync of the are much faster than reads, and injecting needless Linux kernel source realizes roughly 1.6–22× speedup point queries can nullify the advantages of write over other commodity file systems. optimization. • Mapping file system abstractions onto a WOI. We 1 Introduction cannot realize the full potential performance benefits of write-optimization by simply dropping in a WOI Today’s applications exhibit widely varying I/O patterns, as a replacement for a B-tree. The schema and use making performance tuning of a general-purpose file sys- of kernel infrastructure must exploit the performance tem a frustrating balancing act. Some software, such advantages of the new data structure. as virus scans and backups, demand large, sequential This paper describes the Be -tree File System, or scans of data. Other software requires many small writes BetrFS, the first in-kernel file system designed to take full advantage of write optimization. Specifically, Update-in-place file systems [11, 32] optimize for BetrFS is built using the mature, well-engineered Be - scans by keeping related items, such as entries in a di- tree implementation from Tokutek’s Fractal Tree index, rectory or consecutive blocks in a file, near each other. called TokuDB [33]. Our design is tailored to the perfor- However, since items are updated in place, update per- mance characteristics of Fractal Tree indexes, but other- formance is often limited by the random-write latency of wise uses them as a black-box key-value store, so many the underlying disk. of our design decisions may be applicable to other write- optimized file systems. B-tree-based file systems store related items logically Experiments show that BetrFS can give up to an order- adjacent in the B-tree, but B-trees do not guarantee that of-magnitude improvement to the performance of file logically-adjacent items will be physically adjacent. As creation, random writes to large files, recursive directory a B-tree ages, leaves become scattered across the disk traversals (such as occur in find, recursive greps, back- due to node splits from insertions and node merges from ups, and virus scans), and meta-data updates (such as up- deletions. In an aged B-tree, there is little correlation be- dating file atime each time a file is read). tween the logical and physical order of the leaves, and the The contributions of this paper are: cost of reading a new leaf involves both the data-transfer • The design and implementation of an in-kernel, write- cost and the seek cost. If leaves are too small to amor- optimized file system. tize the seek costs, then range queries can be slow. The • A schema, which ensures both locality and fast writes, seek costs can be amortized by using larger leaves, but for mapping VFS operations to a write-optimized in- this further throttles update performance. dex. At the other extreme, logging file systems [5,7,26,29, • A design that uses unmodified OS kernel infrastruc- 30] optimize for writes. Logging ensures that files are ture, designed for traditional file systems, yet mini- created and updated rapidly, but the resulting data and mizes the impact on write optimization. For instance, metadata can be spread throughout the log, leading to BetrFS uses the OS kernel cache to accelerate reads poor performance when reading data or metadata from without throttling writes smaller than a disk sector. disk. These performance problems are particularly no- • A thorough evaluation of the performance of the ticeable in large scans (recursive directory traversals and BetrFS prototype. For instance, our results show backups) that cannot be accelerated by caching. almost two orders of magnitude improvement on a small-write microbenchmark and a 1:5× speedup on The microwrite bottleneck creates problems for a applications such as rsync range of applications. HPC checkpointing systems gen- e Our results suggest that a well-designed B -tree-based erate so many microwrites that a custom file system, file system can match or outperform traditional file sys- PLFS, was designed to efficiently handle them [5] by tems on almost every operation, some by an order of exploiting the specifics of the checkpointing workload. magnitude. Comparisons with state-of-the-art file sys- Email servers often struggle to manage large sets of tems, such as ext4, XFS, zfs, and btrfs support this small messages and metadata about those messages, such claim. We believe that the few slower operations are not as the read flag. Desktop environments store prefer- fundamental to WOIs, but can be addressed with a com- ences and active state in a key-value store (i.e., a reg- bination of algorithmic advances and engineering effort istry) so that accessing and updating keys will not re- in future work. quire file-system-level microdata operations. Unix and Linux system administrators commonly report 10–20% 2 Motivation and Background performance improvements by disabling the atime op- tion [14]; maintaining the correct atime behavior in- duces a heavy microwrite load, but some applications re- This section summarizes background on the increasing quire accurate atime values. importance of microwrites, explains how WOIs work, and summarizes previous WOI-based file systems. Microwrites cause performance problems even when the storage system uses SSDs. In a B-tree-based file sys- 2.1 The microwrite problem tem, small writes trigger larger writes of entire B-tree nodes, which can further be amplified to an entire erase A microwrite is a write operation where the setup time block on the SSD. In a log-structured file system, mi- (i.e. seek time on a conventional disk) exceeds the data- crowrites can induce heavy cleaning activity, especially transfer time. Conventional file-system data structures when the disk is nearly full. In either case, the extra write force file-system designers to choose between optimizing activity reduces the lifespan of SSDs and can limit per- for efficient microwrites and efficient scans. formance by wasting bandwidth. 2 2.2 Write-Optimized Indexes Large nodes also speed up range queries, since the data is spread over fewer nodes, requiring fewer disk seeks to In this subsection, we review write-optimized indexes read in all the data. and their impact on performance. Specifically, we de- To get a feeling for what this speedup looks like, scribe the Be -tree [9] and why we have selected this data consider the following example. Suppose a key-value structure for BetrFS.
Recommended publications
  • Betrfs: a Right-Optimized Write-Optimized File System
    BetrFS: A Right-Optimized Write-Optimized File System William Jannen, Jun Yuan, Yang Zhan, Amogh Akshintala, Stony Brook University; John Esmet, Tokutek Inc.; Yizheng Jiao, Ankur Mittal, Prashant Pandey, and Phaneendra Reddy, Stony Brook University; Leif Walsh, Tokutek Inc.; Michael Bender, Stony Brook University; Martin Farach-Colton, Rutgers University; Rob Johnson, Stony Brook University; Bradley C. Kuszmaul, Massachusetts Institute of Technology; Donald E. Porter, Stony Brook University https://www.usenix.org/conference/fast15/technical-sessions/presentation/jannen This paper is included in the Proceedings of the 13th USENIX Conference on File and Storage Technologies (FAST ’15). February 16–19, 2015 • Santa Clara, CA, USA ISBN 978-1-931971-201 Open access to the Proceedings of the 13th USENIX Conference on File and Storage Technologies is sponsored by USENIX BetrFS: A Right-Optimized Write-Optimized File System William Jannen, Jun Yuan, Yang Zhan, Amogh Akshintala, John Esmet∗, Yizheng Jiao, Ankur Mittal, Prashant Pandey, Phaneendra Reddy, Leif Walsh∗, Michael Bender, Martin Farach-Colton†, Rob Johnson, Bradley C. Kuszmaul‡, and Donald E. Porter Stony Brook University, ∗Tokutek Inc., †Rutgers University, and ‡Massachusetts Institute of Technology Abstract (microwrites). Examples include email delivery, creat- The Bε -tree File System, or BetrFS, (pronounced ing lock files for an editing application, making small “better eff ess”) is the first in-kernel file system to use a updates to a large file, or updating a file’s atime. The un- write-optimized index. Write optimized indexes (WOIs) derlying problem is that many standard data structures in are promising building blocks for storage systems be- the file-system designer’s toolbox optimize for one case cause of their potential to implement both microwrites at the expense of another.
    [Show full text]
  • Algorithms and Complexity (AL)
    Algorithms and Complexity (AL) Algorithms are fundamental to computer science and software engineering. The real-world performance of any software system depends on the algorithms chosen and the suitability of the various layers of implementation. Good algorithm design is therefore crucial for the performance of all software systems. Moreover, the study of algorithms provides insight into the intrinsic nature of the problem as well as possible solution techniques independent of programming language, programming paradigm, computer hardware, or any other implementation aspect. An important part of computing is the ability to select algorithms appropriate to particular purposes and to apply them, recognizing the possibility that no suitable algorithm may exist. This facility relies on understanding the range of algorithms that address an important set of well-defined problems, recognizing their strengths and weaknesses, and their suitability in particular contexts. Efficiency is a pervasive theme throughout this area. This knowledge area defines the central concepts and skills required to design, implement, and analyze algorithms for solving problems. Algorithms are essential in all advanced areas of computer science: artificial intelligence, databases, distributed computing, graphics, networking, operating systems, programming languages, security, and so on. Algorithms that have specific utility in each of these are listed in the relevant knowledge areas. Cryptography, for example, appears in the new Knowledge Area on Information Assurance and Security (IAS), while parallel and distributed algorithms appear in the Knowledge Area in Parallel and Distributed Computing (PD). As with all knowledge areas, the order of topics and their groupings do not necessarily correlate to a specific order of presentation. Different programs will teach the topics in different courses and should do so in the order they believe is most appropriate for their students.
    [Show full text]
  • Assignment of Master's Thesis
    CZECH TECHNICAL UNIVERSITY IN PRAGUE FACULTY OF INFORMATION TECHNOLOGY ASSIGNMENT OF MASTER’S THESIS Title: Approximate Pattern Matching In Sparse Multidimensional Arrays Using Machine Learning Based Methods Student: Bc. Anna Kučerová Supervisor: Ing. Luboš Krčál Study Programme: Informatics Study Branch: Knowledge Engineering Department: Department of Theoretical Computer Science Validity: Until the end of winter semester 2018/19 Instructions Sparse multidimensional arrays are a common data structure for effective storage, analysis, and visualization of scientific datasets. Approximate pattern matching and processing is essential in many scientific domains. Previous algorithms focused on deterministic filtering and aggregate matching using synopsis style indexing. However, little work has been done on application of heuristic based machine learning methods for these approximate array pattern matching tasks. Research current methods for multidimensional array pattern matching, discovery, and processing. Propose a method for array pattern matching and processing tasks utilizing machine learning methods, such as kernels, clustering, or PSO in conjunction with inverted indexing. Implement the proposed method and demonstrate its efficiency on both artificial and real world datasets. Compare the algorithm with deterministic solutions in terms of time and memory complexities and pattern occurrence miss rates. References Will be provided by the supervisor. doc. Ing. Jan Janoušek, Ph.D. prof. Ing. Pavel Tvrdík, CSc. Head of Department Dean Prague February 28, 2017 Czech Technical University in Prague Faculty of Information Technology Department of Knowledge Engineering Master’s thesis Approximate Pattern Matching In Sparse Multidimensional Arrays Using Machine Learning Based Methods Bc. Anna Kuˇcerov´a Supervisor: Ing. LuboˇsKrˇc´al 9th May 2017 Acknowledgements Main credit goes to my supervisor Ing.
    [Show full text]
  • UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ Optimizing Large
    UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ Colegio de Ciencias e Ingenierías Optimizing Large Databases: A Study on Index Structures Proyecto de Investigación . Ricardo Andres Leon Ruiz Ingeniería en Sistemas Trabajo de titulación presentado como requisito para la obtención del título de Ingeniero en Sistemas Quito, 22 de Diciembre de 2017 2 UNIVERSIDAD SAN FRANCISCO DE QUITO USFQ COLEGIO DE CIENCIAS E INGENIERÍAS HOJA DE CALIFICACIÓN DE TRABAJO DE TITULACIÓN Optimizing Large Databases: A Study on Index Structures Ricardo Andres Leon Ruiz Calificación: Nombre del profesor, Título académico Aldo Cassola, Ph.D. Firma del profesor Quito, Diciembre de 2017 3 Derechos de Autor Por medio del presente documento certifico que he leído todas las Políticas y Manuales de la Universidad San Francisco de Quito USFQ, incluyendo la Política de Propiedad Intelectual USFQ, y estoy de acuerdo con su contenido, por lo que los derechos de propiedad intelectual del presente trabajo quedan sujetos a lo dispuesto en esas Políticas. Asimismo, autorizo a la USFQ para que realice la digitalización y publicación de este trabajo en el repositorio virtual, de conformidad a lo dispuesto en el Art. 144 de la Ley Orgánica de Educación Superior. Firma del estudiante: Nombres y Apellidos: Ricardo Andres Leon Ruiz Código de estudiante: 110346 C. I.: 1714286265 Lugar, Fecha Quito, 22 de Diciembre de 2017 4 RESUMEN La siguiente investigación trata sobre comparar estructuras de índice para grandes bases de datos, tanto analíticamente, como experimentalmente. El estudio se encuentra dividido en dos partes principales. La primera parte se centra en índices de hash y B-trees. Ambas estructuras son estudiadas en el contexto del modelo de acceso de disco tradicional.
    [Show full text]
  • Conception Et Exploitation D'une Base De Modèles: Application Aux Data
    Conception et exploitation d’une base de modèles : application aux data sciences Cyrille Ponchateau To cite this version: Cyrille Ponchateau. Conception et exploitation d’une base de modèles : application aux data sciences. Autre [cs.OH]. ISAE-ENSMA Ecole Nationale Supérieure de Mécanique et d’Aérotechique - Poitiers, 2018. Français. NNT : 2018ESMA0005. tel-01939430 HAL Id: tel-01939430 https://tel.archives-ouvertes.fr/tel-01939430 Submitted on 29 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE pour l’obtention du Grade de DOCTEUR DE L'ÉCOLE NATIONALE SUPÉRIEURE DE MÉCANIQUE ET D'AÉROTECHNIQUE (Diplôme National — Arrêté du 25 mai 2016) Ecole Doctorale : Sciences et Ingénierie des Systèmes, Mathématiques, Informatique (SISMI) Secteur de Recherche : INFORMATIQUE ET APPLICATIONS Présentée par : Cyrille PONCHATEAU ******************************************************** Conception et exploitation d’une base de modèles : application aux data sciences ******************************************************** Directeur de thèse : Ladjel BELLATRECHE
    [Show full text]
  • Percona Server for Mongodb Documentation Release 3.2.22-3.13
    Percona Server for MongoDB Documentation Release 3.2.22-3.13 Percona LLC and/or its affiliates 2015-2018 Jan 16, 2019 CONTENTS I Introduction3 II Installation7 III Features 21 IV Reference 51 i ii Percona Server for MongoDB Documentation, Release 3.2.22-3.13 Percona Server for MongoDB is a free, enhanced, fully compatible, open source, drop-in replacement for MongoDB 3.2 Community Edition with enterprise-grade features. It requires no changes to MongoDB applications or code. Percona Server for MongoDB provides the following features: • MongoDB’s original MMAPv1 storage engine, and the default WiredTiger engine • Optional PerconaFT, Percona Memory Engine, and MongoRocks storage engines • Percona TokuBackup for creating dynamic backups while data remains fully accessible and writable (hot backup) • External SASL authentication using OpenLDAP or Active Directory • Audit logging to track and query database interactions of users or applications Note: PerconaFT has been deprecated and will not be available in future releases. CONTENTS 1 Percona Server for MongoDB Documentation, Release 3.2.22-3.13 2 CONTENTS Part I Introduction 3 CHAPTER ONE PERCONA SERVER FOR MONGODB FEATURE COMPARISON Percona Server for MongoDB is based on MongoDB 3.2, and it is the successor to Percona TokuMX, which is based on MongoDB 2.4. Both MongoDB and Percona Server for MongoDB include a pluggable storage engine API. This enables you to select from a variety of storage engines depending on your needs. Previous MongoDB versions (before 3.0) and Percona TokuMX can run with only one default storage engine. The following table will help you evaluate the differences.
    [Show full text]
  • The Algorithmics of Write Optimization
    The Algorithmics of Write Optimization Michael A. Bender Stony Brook University Birds-eye view of data storage incoming data queries answers stored data Birds-eye view of data storage ? incoming data queries answers stored data Storage systems face a trade-off between the speed of inserts/deletes/updates and the speed of queries. Point of this talk The tradeoff Parallel hurts. computing is about high performance. x To get high performance, we need fast access to our data. Point of this talk The tradeoff Parallel hurts. computing is about high performance. x To get high performance, we need fast access to our data. How should we organize our stored data? Point of this talk The tradeoff Parallel hurts. computing is about high performance. x To get high performance, we need fast access to our data. How should we organize our stored data? This is a data- structural question. How should we organize our stored data? How should we organize our stored data? Like a librarian? How should we organize our stored data? Like a librarian? Fast to find stuff. Requires work to maintain. How should we organize our stored data? Like a librarian? Like a teenager? Fast to find stuff. Requires work to maintain. How should we organize our stored data? Like a librarian? Like a teenager? Fast to find stuff. Fast to add stuff. Requires work to maintain. Slow to find stuff. How should we organize our stored data? Like a librarian? Like a teenager? Fast to find stuff. Fast to add stuff. Requires work to maintain. Slow to find stuff.
    [Show full text]
  • Big Data Solutions and Applications
    P. Bellini, M. Di Claudio, P. Nesi, N. Rauch Slides from: M. Di Claudio, N. Rauch Big Data Solutions and applications Slide del corso: Sistemi Collaborativi e di Protezione Corso di Laurea Magistrale in Ingegneria 2013/2014 http://www.disit.dinfo.unifi.it Distributed Data Intelligence and Technology Lab 1 Related to the following chapter in the book: • P. Bellini, M. Di Claudio, P. Nesi, N. Rauch, "Tassonomy and Review of Big Data Solutions Navigation", in "Big Data Computing", Ed. Rajendra Akerkar, Western Norway Research Institute, Norway, Chapman and Hall/CRC press, ISBN 978‐1‐ 46‐657837‐1, eBook: 978‐1‐ 46‐657838‐8, july 2013, in press. http://www.tmrfindia.org/b igdata.html 2 Index 1. The Big Data Problem • 5V’s of Big Data • Big Data Problem • CAP Principle • Big Data Analysis Pipeline 2. Big Data Application Fields 3. Overview of Big Data Solutions 4. Data Management Aspects • NoSQL Databases • MongoDB 5. Architectural aspects • Riak 3 Index 6. Access/Data Rendering aspects 7. Data Analysis and Mining/Ingestion Aspects 8. Comparison and Analysis of Architectural Features • Data Management • Data Access and Visual Rendering • Mining/Ingestion • Data Analysis • Architecture 4 Part 1 The Big Data Problem. 5 Index 1. The Big Data Problem • 5V’s of Big Data • Big Data Problem • CAP Principle • Big Data Analysis Pipeline 2. Big Data Application Fields 3. Overview of Big Data Solutions 4. Data Management Aspects • NoSQL Databases • MongoDB 5. Architectural aspects • Riak 6 What is Big Data? Variety Volume Value 5V’s of Big Data Velocity Variability 7 5V’s of Big Data (1/2) • Volume: Companies amassing terabytes/petabytes of information, and they always look for faster, more efficient, and lower‐ cost solutions for data management.
    [Show full text]
  • The Tokufs Streaming File System
    The TokuFS Streaming File System John Esmet Michael A. Bender Martin Farach-Colton Bradley C. Kuszmaul Tokutek & Tokutek & Tokutek & Tokutek & Rutgers Stony Brook Rutgers MIT Abstract files can be created and updated rapidly, but queries, such as reads or metadata lookups, may suffer from the lack The TokuFS file system outperforms write-optimized file of an up-to-date index or from poor locality in indexes systems by an order of magnitude on microdata write that are spread through the log. workloads, and outperforms read-optimized file systems by an order of magnitude on read workloads. Microdata Large-block reads and writes, which we call macro- write workloads include creating and destroying many data operations, can easily run at disk bandwidth. For small files, performing small unaligned writes within small writes, which we call microdata operations, in large files, and updating metadata. TokuFS is imple- which the bandwidth time to write the data is much mented using Fractal Tree indexes, which are primarily smaller than a disk seek, the tradeoff becomes more se- used in databases. TokuFS employs block-level com- vere. Examples of microdata operations include creating pression to reduce its disk usage. or destroying microfiles (small files), performing small writes within large files, and updating metadata (e.g., in- ode updates). 1 Introduction In this paper, we introduce the TokuFS file system. File system designers often must choose between good TokuFS achieves good performance for both reads and read performance and good write performance. For ex- writes and for both microdata and macrodata. Compared ample, most of today’s file systems employ some com- to ext4, XFS, Btrfs, and ZFS, TokuFS runs at least 18.4 bination of B-trees and log-structured updates to achieve times faster than the nearest competitor (Btrfs) for cre- a good tradeoff between reads and writes.
    [Show full text]
  • Data Structures  Dagstuhl Seminar 
    10091 Abstracts Collection Data Structures Dagstuhl Seminar Lars Arge1, Erik Demaine2 and Raimund Seidel3 1 Univ. of Aarhus, DK [email protected] 2 MIT - Cambridge, US [email protected] 3 Saarland University, DE [email protected] Abstract. From February 28th to March 5th 2010, the Dagstuhl Sem- inar 10091 "Data Structures" was held in Schloss Dagstuhl Leibniz Center for Informatics. It brought together 45 international researchers to discuss recent developments concerning data structures in terms of re- search, but also in terms of new technologies that impact how data can be stored, updated, and retrieved. During the seminar a fair number of participants presented their current research and open problems where discussed. This document rst briey describes the seminar topics and then gives the abstracts of the presentations given during the seminar. Keywords. Data structures, information retrieval, complexity, algorithms 10091 Summary - Data Structures The purpose of this workshop was to discuss recent developments in various aspects of data structure research, and also to familiarize the community with some of the problems that arise in the context of modern commodity parallel hardware architectures, such as multicore and GPU architectures. Thus while several attendees reported on progress on (twists on) old fundamental problems in data structures e.g. Gerth Brodal, Rolf Fagerberg, John Iacono and Sid- dharrha Sen on search tree and dictionary structures, Bob Tarjan on heaps, Kasper D. Larsen and Peyman Afshani on range search data structures, and Peter Sanders and Michiel Smid on proximity data structures there were also very inspiring presentations on new models of computation by Erik Demaine and on data structures on the GPU by John Owens.
    [Show full text]
  • Workload Analysis of Key-Value Stores on Non-Volatile Media Vishal Verma (Performance Engineer, Intel) Tushar Gohad (Cloud Software Architect, Intel)
    Workload Analysis of Key-Value Stores on Non-Volatile Media Vishal Verma (Performance Engineer, Intel) Tushar Gohad (Cloud Software Architect, Intel) 1 2017 Storage Developer Conference. © Intel Corporation. All Rights Reserved. Outline KV Stores – What and Why Data Structures for KV Stores Design Choices and Trade-offs Performance on Non-Volatile Media Key Takeaways 2 2017 Storage Developer Conference. © Intel Corporation. All Rights Reserved. Intro to KV stores 3 2017 Storage Developer Conference. © Intel Corporation. All Rights Reserved. What are KV Stores Type of NoSQL database that uses simple key/value pair mechanism to store data Alternative to limitations of traditional relational databases (DB): Data structured and schema pre-defined Mismatch with today’s workloads. Data: Large and unstructured, lots of random writes and reads. Most flexible NoSQL model as application has complete control over what is stored inside the value 4 2017 Storage Developer Conference. © Intel Corporation. All Rights Reserved. What are KV Stores Key in a key-value pair must (or at least, should) be unique. Values identified via a key, and stored values can be numbers, strings, images, videos etc API operations: get(key) for reading data, put(key, value) for writing data and delete(key) for deleting keys. Phone Directory example: Key Value Bob (123) 456-7890 Kyle (245) 675-8888 Richard (787) 122-2212 5 2017 Storage Developer Conference. © Intel Corporation. All Rights Reserved. KV Stores benefits High performance: Enable fast location of object rather than searching through columns or tables to find an object in traditional relational DB Highly scalable: Can scale over several machines or devices by several orders of magnitude, without the need for significant redesign Flexible : No enforcement of any structure to data Low TCO: Simplify operations of adding or removing capacity as needed.
    [Show full text]
  • Data Management Organization Charter
    Large Synoptic Survey Telescope (LSST) Database Design Jacek Becla, Daniel Wang, Serge Monkewitz, K-T Lim, Douglas Smith, Bill Chickering LDM-135 08/02/2013 LSST Database Design LDM-135 08/02/13 Change Record Version Date Description Revision Author 1.0 6/15/2009 Initial version Jacek Becla 2.0 7/12/2011 Most sections rewritten, added scalability test Jacek Becla section 2.1 8/12/2011 Refreshed future-plans and schedule of testing Jacek Becla, sections, added section about fault tolerance Daniel Wang 3.0 8/2/2013 Synchronized with latest changes to the Jacek Becla, requirements (LSE-163). Rewrote most of the Daniel Wang, “Implementation” chapter. Documented new Serge Monkewitz, tests, refreshed all other chapters. Kian-Tat Lim, Douglas Smith, Bill Chickering 2 LSST Database Design LDM-135 08/02/13 Table of Contents 1. Executive Summary.....................................................................................................................8 2. Introduction..................................................................................................................................9 3. Baseline Architecture.................................................................................................................10 3.1 Alert Production and Up-to-date Catalog..........................................................................10 3.2 Data Release Production....................................................................................................13 3.3 User Query Access.............................................................................................................13
    [Show full text]