Biochemical Activity and Hypoglycemic Effects of Rumex Obtusifolius L

Total Page:16

File Type:pdf, Size:1020Kb

Biochemical Activity and Hypoglycemic Effects of Rumex Obtusifolius L Hindawi BioMed Research International Volume 2018, Article ID 4526352, 9 pages https://doi.org/10.1155/2018/4526352 Research Article Biochemical Activity and Hypoglycemic Effects of Rumex obtusifolius L. Seeds Used in Armenian Traditional Medicine Anush Aghajanyan, Armine Nikoyan, and Armen Trchounian Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, 0025 Yerevan, Armenia Correspondence should be addressed to Armen Trchounian; [email protected] Received 26 July 2018; Revised 24 September 2018; Accepted 24 October 2018; Published 7 November 2018 Academic Editor: Nabil Souissi Copyright © 2018 Anush Aghajanyan et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Diabetes mellitus (DM) is a serious chronic metabolic disorder. Various diseases are being treated with medicinal plants and that is because of the less side efects of the current therapy. Te diversity of plants in Armenia is due to the singularity of natural environment. However, biochemical activity of these plants has not been studied well. Tus, the goal was to investigate biochemical activity and antihyperglycemic properties of Rumex obtusifolius L. in rabbits with hyperglycemia. Te high content of total phenolic compounds, favonoids, and tannins has been determined in this plant extract. Oral administration of ethanol extract showed signifcant efect on hyperglycemia, reducing fasting glucose levels (57.3%, p<0.05), improving glucose tolerance, and increasing liver glycogen content (1.5-fold, p<0.01) compared to the hyperglycemic control group. Furthermore, ethanol extract of R. obtusifolius reduced total cholesterol, low-density lipoprotein cholesterol levels, and vice versa increased high-density lipoprotein cholesterol levels and also decreased liver enzymes levels (alanine aminotransferase and aspartate aminotransferase) compared with untreated group. Tese fndings suggest that R. obtusifolius may have benefcial efects and should be supplement, as herbal remedy in the treatment of DM. 1. Introduction stages [7]. Te oxidative damage and infammatory mediators induced by chronic psychological stress play a key role in this Hyperglycemia is a metabolic disorder of the endocrine process. Furthermore, durable immobilization can contribute system characterized by abnormal glucose metabolism which to the formation of unstable atherosclerotic lesions as a result is demonstrated by high blood sugar (hyperglycemia), hyper- of immune system cells accumulation and molecules adhe- cholesterolemia, high blood pressure, and cardiovascular sion, leading to thrombosis and cardiac complications [7, 8]. disease due to the disturbances of carbohydrate, lipid, and Tere are many drugs currently used in the treatment of protein metabolism resulting from insulin resistant and diabetes. Some reports indicate that treatments with synthetic � -cell dysfunction [1–3]. Dyslipidemia is a very frequent antidiabetic drugs have toxicity and cause adverse efects, metabolic disorder which is characterized by an increase of such as hypoglycemia, gastrointestinal and liver problems [9]. the rates of triglycerides (TG), total cholesterol (TC), low- Secondary metabolites of plants are responsible for preven- density lipoprotein (LDL), and reduction of the high-density tion and treatment of various diseases. Tissues of many plant lipoprotein (HDL) [4–6]. It is known that hypercholes- species contain secondary metabolites such as favonoids, gly- terolemia contributes to development of the atherosclerosis cosides, saponins, steroids, tannins, alkaloids, and terpenes. and subsequent of hypertension, ischemic heart disease, and It is known that therapeutic efects of medicinal plants are renal failure [3, 6]. specifed due to biological active compounds. In fact, one Immobilization stress can increase the blood glucose part of the plant may exert a benefcial medicinal property, levels and the risk of cardiovascular diseases due to impaired while other parts of the same plant may be inefective or even endothelial function. Chronic immobilization stress leads to toxic. Consequently, screening of diferent parts of plants with atherosclerosis, which has an endothelial dysfunction at early antihyperglycemic and antihyperlipidemic activities which 2 BioMed Research International may be efective in the treatment of diabetes mellitus would was measured at 500 nm wavelength, methanol was used, as be of a great interest. blank. Quantity of total tannins was expressed as micrograms Armenian fora has large diversity of plants which might of (+)-catechin equivalent per mg dry extract (CE/mg DW). delay the development of diabetic complications and correct metabolic disorders. Tus, the identifcation of potent antidi- 2.3. Animals. Nine domestic male rabbits (Oryctolagus abetic agents from natural sources, such as edible plants with cuniculus domesticus)(1800-1900g)wereusedinthisstudy, minimum side efects for diabetic patients, is crucial. Plants which was authorized by the “International Recommenda- belonging to the genus Rumex have been used traditionally tion on Carrying out of Biomedical Researches with use either as edible plants or for the treatment of several diseases of Animals,” and the study plan has been approved by in many parts of the world [10]. Rumex species are important the National Center of Bioethics (Armenia). Tey were edible and medicinal plants used in Armenian traditional acclimatized for 1 week prior to experimentation. Te ani- medicine. Tese plant species have been used in folk medicine mals were housed under standard environmental conditions ∘ for the treatment of various diseases and ailments, including (temperature 22±2 C in a light/dark cycle of 12 h) and had hypertension, infammation, and bacterial infections [11, 12]. free access to food and water during the experimental period. Rumex obtusifolius (RO) has been shown to have antibacterial Initial body weights were recorded one day before the start of activity [11]. Methanol extract of the leaves showed cytotoxic experiments. and high antioxidant activity due to its phenolic content [13]. However biochemical properties and hypoglycemic efects of 2.4. Induction of Hyperglycemia in Experimental Rabbits and RO have been not studied thoroughly. Blood Sampling. Hyperglycemia was induced by immobi- Tus, the goal was to investigate biochemical properties lization stress in the rabbits during 21 days (5 h daily) [7, and antihyperglycemic properties of RO in rabbits with 8]. Tey were roughly fxed on the board. Group 1 served hyperglycemia. as normoglycemic, group 2 was the hyperglycemic control (putting immobilization), and group 3— in common with 2. Materials and Methods immobilization—was administrated in single orally doses in 2 ml ethanol extract of RO. Blood glucose levels, lipid profle, 2.1. Plant Material and Preparation of the Extract. Te seeds and body weight of rabbits were measured at the beginning of the plant were harvested afer maturation. Identifcation of the experiment and then on the 1, 7, 14, and 21 days of oral of plant was carried out at the Department of Botany and treatment. At the end of the experiment, the animals were Mycology, Yerevan State University, Yerevan (Armenia). A sacrifced and analysis of liver and muscle glycogen content voucher specimen (No ERCB13208) has been deposited in was carried out. Blood samples were taken from the aural the herbarium of Yerevan State University. Te dried seeds vein and collected in serum separation tubes (Clot Activator ∘ were extracted with 40% ethanol for 20 min at 60 C. Briefy, & Gel, Turkey). Blood clot was removed by centrifugation ∘ 270-280 mg dry matter in 6 ml of ethanol. Te extract was at 3000 g for 10 min in a centrifuge at 4 C. Te resulting fltered with Watman flter paper (N1, Unichem, China) and supernatant was designated as a serum. afer cooling at room temperature was orally administrated. 2.5. Study Design. Te animals were randomly divided into 2.2. Quantitative Phytochemical Analysis. Te total phenolic three groups (n=9) as follows: group 1: normoglycemic, group content (TPC) of crude extracts was measured using Folin- 2: hyperglycemic control, putting immobilization, and group Ciocalteu method [14]. 2.5 mL 10% Folin-Ciocalteu reagent 3: hyperglycemic experimental, received RO seed extract and 2.5 mL 7.5% Na2CO3 were added to 0.5 mL sample (150 mg of extract per kg body weight (BW). Tis number extract (200 mg/mL concentration). Te reaction mixture of animals was chosen because they showed reliable repro- ∘ was incubated at 45 C for 40 min, and aferwards absorption ducible results. Each rabbit was housed individually in a sepa- was measured at 765 nm wavelength (GENESYS 10S UV- rate cage (0.90 × 0.60 × 0.40 m) with standard laboratory diet. VIS spectrophotometer, USA). Solvent was used, as blank. TPC of plant extracts was evaluated according to gallic acid 2.6. Biochemical Analysis. Te biochemical analysis was calibration curve and expressed as micrograms of gallic acid performed determining the serum level of glucose, TC, equivalents per mg of dry extract (GAE/mg DW). Flavonoids HDL- cholesterol, and LDL-cholesterol. All parameters were were determined by the colorimetric method with AlCl3 [15]. assayed using enzymatic kit. Serum glucose level (mmol/L) 0.75 mL methanol, 0.05 mL 10% AlCl3, 0.05 mL 1 M Na-K was determined using glucose test kit based
Recommended publications
  • Guidance Note on the Methods That Can Be Used to Control Harmful Weeds
    Department for Environment, Food and Rural Affairs Guidance note on the methods that can be used to control harmful weeds March 2007 Contents Guidance note on the methods that can be used to control harmful weeds ............... 1 Introduction ................................................................................................................ 2 Control methods - general guidance .......................................................................... 2 Use of herbicides ....................................................................................................... 2 Non-selective herbicide treatment .............................................................................. 3 Selective herbicide treatment ..................................................................................... 3 Ragwort control .......................................................................................................... 3 Ragwort control methods ........................................................................................... 4 Cutting .................................................................................................................... 4 Pulling (and digging) ............................................................................................... 5 Herbicides ............................................................................................................... 5 Spear thistle control ...............................................................................................
    [Show full text]
  • Rumex Crispus L.; Curly Dock R
    A WEED REPORT from the book Weed Control in Natural Areas in the Western United States This WEED REPORT does not constitute a formal recommendation. When using herbicides always read the label, and when in doubt consult your farm advisor or county agent. This WEED REPORT is an excerpt from the book Weed Control in Natural Areas in the Western United States and is available wholesale through the UC Weed Research & Information Center (wric.ucdavis.edu) or retail through the Western Society of Weed Science (wsweedscience.org) or the California Invasive Species Council (cal-ipc.org). Rumex crispus L.; curly dock R. crispus R. obtusifolius Rumex obtusifolius L.; broadleaf dock Curly and broadleaf dock Family: Polygonaceae Range: Curly dock is found throughout the U.S., including every western state. Broadleaf dock is found in most of the western states, except Nevada, Wyoming and North Dakota. Habitat: Ditches, roadsides, wetlands, meadows, riparian areas, alfalfa and pasture fields (especially with poor drainage), orchards and other disturbed moist areas. Plants prefer wet to moist soils but tolerate periods of dryness, and can grow in most climates and soil types. Origin: R. crispus, Eurasia; R. obtusifolia, western Europe. Impact: Both species can be very competitive and outcompete more desirable vegetation for water, nutrients and light. Under certain conditions, they can accumulate soluble oxalates making them toxic to livestock. California Invasive Plant Council (Cal-IPC) Inventory: R. crispus, Limited Invasiveness Both species are erect perennials from 1.5 to 3 ft tall, occasionally to 5 ft tall. Curly dock leaves are lanceolate and up to 20 inches long, whereas broadleaf dock has lanceolate-ovate leaves that are up to 30 inches long.
    [Show full text]
  • Redalyc.A NEW ANTHRAQUINONE ISOLATED from RUMEX OBTUSIFOLIUS
    Revista Boliviana de Química ISSN: 0250-5460 [email protected] Universidad Mayor de San Andrés Bolivia Ibáñez-Calero, Sandra L.; Jullian, Valérie; Sauvain, Michel A NEW ANTHRAQUINONE ISOLATED FROM RUMEX OBTUSIFOLIUS Revista Boliviana de Química, vol. 26, núm. 2, julio-diciembre, 2009, pp. 49-56 Universidad Mayor de San Andrés La Paz, Bolivia Available in: http://www.redalyc.org/articulo.oa?id=426339672002 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative REVISTA BOLIVIANA DE QUÍMICA VOLUMEN 26, No.2 – 2009 Received: 10/09/09 Approved: 21/10/09 Published: 2/12/09 A NEW ANTHRAQUINONE ISOLATED FROM RUMEX OBTUSIFOLIUS Sandra L. Ibáñez-Calero1, Valérie Jullian2, Michel Sauvain3 1Instituto de Investigaciones Químicas (IIQ), Carrera de Ciencias Químicas, Universidad Mayor de San Andrés, (UMSA), La Paz- Bolivia. 2Université de Toulouse ; UPS ; UMR 152 (Laboratoire de pharmacochimie des substances naturelles et pharmacophores redox), F-31062 Toulouse cedex 9, France. 3IRD, UMR 152 (LPSNPR), F-31062 Toulouse cedex 9, France. Keywords: Rumex obtusifolius, Ferriprotoporphyrine Biocrystallization Inhibition Test, NMR, Malaria, Anthraquinone, structure-activity relationship ABSTRACT In this research we studied Rumex obtusifolius (Polygonaceae) along with other plants used in traditional medicine in relation to the chemical reaction FBIT (Ferriprotoporphyrine Biocrystallization Inhibition Test) which may provide information on a possible action mechanism for presumed antimalarial plants. According to folk medicine Rumex obtusifolius has a pronounced detoxifying effect on the liver and is used against jaundice and fever.
    [Show full text]
  • Please Don't Mow the Japanese Knotweed!
    A peer-reviewed open-access journal NeoBiota 60: 19–23 (2020) Please don't mow the Japanese knotweed! 19 doi: 10.3897/neobiota.60.56935 LETTER TO THE EDITOR NeoBiota http://neobiota.pensoft.net Advancing research on alien species and biological invasions Please don’t mow the Japanese knotweed! Daniel Jones1,2, Mike S. Fowler1, Sophie Hocking1, Daniel Eastwood1 1 Department of Biosciences, Swansea University, Singleton Park, Swansea, SA2 8PP, UK 2 Advanced Invasi- ves Ltd., Institute of Life Science 2, Swansea University, Singleton Park, SA2 8PP, UK Corresponding author: Daniel Jones ([email protected]) Academic editor: Ingolf Kühn | Received 27 July 2020 | Accepted 27 July 2020 | Published 12 August 2020 Citation: Jones D, Fowler MS, Hocking S, Eastwood D (2020) Please don’t mow the Japanese knotweed!. NeoBiota 60: 19–23. https://doi.org/10.3897/neobiota.60.56935 We welcome Martin et al.’s (2020) significant contributions toward advancing under- standing of Reynoutria japonica var. japonica (Japanese knotweed) clonal growth strate- gies and resource allocation in response to environmental heterogeneity; understand- ing knotweed ecophysiology is essential to inform and enhance large-scale invasive knotweed management. However, we strongly disagree that mowing should be recom- mended for the landscape management of invasive knotweeds on the grounds of lim- ited efficacy, practicality and environmental and economic sustainability. To achieve the successful control and long-term management of invasive rhizome-forming plants, we should do more with less, as the evidence guides us (Jones et al. 2018). Invasive Knotweed Management As Martin et al. (2020) state, Japanese knotweed is very difficult to control (Child 1999; Skibo 2007; Delbart et al.
    [Show full text]
  • Himalayan Knotweed
    www.nonnativespecies.org Produced by Michael Collings and Nicola Morris Himalayan Knotweed Species Description Scientific name: Persicaria wallichii AKA: Cultivated Knotweed Native to: China, India, Afghanistan, Nepal and Pakistan Habitat: Abundant throughout both dry and moist areas including rocky outcrops, meadows, riparian woodlands and marshes. Himalayan Knotweed is a lesser known relative of the notorious Fallopia japonica Japanese Knotweed ( ) yet is forecast to cause many of the same economic, environmental and social problems once it becomes better established. Popularised as an attractive ornamental, this species was first recorded in the UK countryside in 1917, but has since spread from the confines of the garden via underground rhizomes (subterranean rootlike structures) and the illegal dumping of green waste throughout the British countryside. Similar in appearance to its Japanese counterpart, P. wallichii is comparatively shorter, growing to a height of approximately 1.8m. Furthermore, in contrast to Japanese Knotweed which possesses distinctly triangularly shaped leaves, the leaves of Himalayan Knotweed are much longer, growing to 20cm in length and finish in a distinct point. Its current range is largely restricted to Scotland, Wales and the England-Wales border region. Commonly found along road verges, streamsides and grasslands, plants can grow rapidly from root fragments which rapidly develop into dense mats. This plant has no natural predators in the UK and its spread is of significant concern to areas inhabited by numerous threatened species of flora and fauna alike. Leaves grow to 20cm long Key ID Features Creamy-white or pinkish flowers growing in clusters Distinctive red petiole Clearly defined midrib Elongated leaves ending in a definite point Identification throughout the Year Similar to Japanese Knotweed, P.
    [Show full text]
  • Rumex Crispus L
    Ecological Studies of Rumex crispus L. Propagation, Competition and Demography Alexandra Pye Faculty of Natural Resources and Agricultural Sciences Department of Crop Production Ecology Uppsala Doctoral Thesis Swedish University of Agricultural Sciences Uppsala 2008 Acta Universitatis agriculturae Sueciae 2008:101 Front cover: Fruits, young rosette, and taproot of Rumex crispus L. (Photo: Alexandra Pye) ISSN 1652-6880 ISBN 978-91-86195-34-2 © 2008 Alexandra Pye, Uppsala Tryck: SLU Service/Repro, Uppsala 2008 Ecological Studies of Rumex crispus L. Propagation, Competition and Demography Abstract The perennial weed species Rumex crispus L., or curled dock, is a major problem in agriculture in Sweden as well as in many other parts of the world. Its ability to establish quickly from seed, its persistent taproot system, high capacity of regrowth after cutting, and massive production of seed that remain viable in the seed bank for decades all contribute to the success of the weed. It is particularly problematic on dairy farms and in organic agriculture and difficult to control effectively, especially without the use of chemical herbicides. R. crispus and other weedy dock species have been well studied since the early 1900’s. However, the constant changes in agricultural practices and policies, affecting both the abundance and performance of the weed and the conditions for its control, call for a continuous renewal of the knowledge of the species. This thesis work was based upon a set of experimental studies dealing with several different processes in the life cycle of R. crispus. I have investigated time and pattern of seedling emergence, the effects of competition on the performance of juvenile plants, vegetative regeneration from underground parts, and population dynamics in an agricultural field.
    [Show full text]
  • Notes on Two Alien Taxa of Rumex L. (Polygonaceae) Naturalized in the Hawaiian Islands1
    39 Notes on Two Alien Taxa of Rumex L. (Polygonaceae) Naturalized in the Hawaiian Islands1 SERGEI L. MOSYAKIN (M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, 2 Tereshchenkivska Str., Kiev, 252601, Ukraine) & WARREN L. WAGNER2 (Department of Botany, MRC-166, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, USA) During his stay at the National Museum of Natural History, Smithsonian Institution, Washington DC (US), in October 1995, the senior author studied specimens of alien taxa of the genus Rumex L. (Polygonaceae) collected in the Hawaiian Islands. As a result of these studies, 2 taxa new for the archipelago were discovered in the US collections, and among the BISH specimens sent on loan, one of which (Rumex conglomeratus Murray) was briefly reported in last year’s HBS Records (Wagner et al., 1997). Here we report an additional subspecies of R. crispus naturalized in the archipelago, give descriptions of both species, and provide a revised key to all of the species of Rumex in the Hawaiian Islands. Abbreviations in the key follow Wagner et al. (1990). Rumex conglomeratus Murray, Prodr. Stirp. Goetting: 52. 1770. Vernacular names: clustered dock, clustered green dock. Erect perennial herbs, normally glabrous (or occasionally lower surface of leaves indistinctly papillose along veins); stems 3–8(-12) dm long, branched in the upper 2/3 (sometimes branched with several stems from the base). Basal and lower cauline leaves oblong-lanceolate, obovate-lanceolate, or lanceolate, normally (5-)10–30 long, 2.0–6.0 cm wide; base broadly cuneate, rounded or truncate (rarely subcordate); apex subacute (occasionally obtuse); margin entire to weakly undulate.
    [Show full text]
  • Japanese Knotweed (PDF)
    Japanese Knotweed It is listed by the World Conservation Union as one of the world's worst invasive species.[15] The invasive root system and strong growth can damage concrete foundations, buildings, flood fences, roads, paving, retaining walls and architectural sites. It can also reduce the capacity of channels in flood to carry water.[16] It is a frequent colonizer of temperate riparian ecosystems, roadsides and waste places. It forms thick, dense colonies that completely crowd out any other herbaceous species and is now considered one of the worst invasive exotics in parts of the eastern United States. The success of the species has been partially attributed to its tolerance of a very wide range of soil types, pH and salinity. Its rhizomes can survive temperatures of −35 °C (−31 °F) and can extend 7 metres (23 ft) horizontally and 3 metres (9.8 ft) deep, making removal by excavation extremely difficult. The plant is also resilient to cutting, vigorously resprouting from the roots. Identification Identification of Japanese knotweed is not always easy. Many other plants are suspected of being knotweed, due often to the similar appearance of leaves and stems. Dogwood, lilac, Houttuynia (Houttuynia cordata), ornamental Bistorts such as Red Bistort (Persicaria amplexicaulis), lesser knotweed (Persicaria campanulata), Himalayan Balsam (Impatiens glandulifera), Broadleaved Dock (Rumex obtusifolius), Bindweed (Convolvulus arvensis), bamboo, Himalayan Honeysuckle (Leycesteria formosa), and Russian Vine (Fallopia baldschuanica) have been suspected of being Fallopia japonica.[17 Japanese knotweed has a large underground network of roots (rhizomes). To eradicate the plant the roots need to be killed. All above-ground portions of the plant need to be controlled repeatedly for several years in order to weaken and kill the entire patch.
    [Show full text]
  • Weed Risk Assessment for Rumex Confertus Willd. (Polygonaceae)
    Weed Risk Assessment for Rumex United States confertus Willd. (Polygonaceae) – Department of Russian dock Agriculture Animal and Plant Health Inspection Service August 16, 2016 Version 1 Left: Rumex confertus in Poland (Barbara Tokarska-Guzik, University of Silesia, Bugwood.org). Right: Rumex confertus in Latvia (AfroBrazilian, Creative Commons). Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology Plant Protection and Quarantine Animal and Plant Health Inspection Service United States Department of Agriculture 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Weed Risk Assessment for Rumex confertus Introduction Plant Protection and Quarantine (PPQ) regulates noxious weeds under the authority of the Plant Protection Act (7 U.S.C. § 7701-7786, 2000) and the Federal Seed Act (7 U.S.C. § 1581-1610, 1939). A noxious weed is defined as “any plant or plant product that can directly or indirectly injure or cause damage to crops (including nursery stock or plant products), livestock, poultry, or other interests of agriculture, irrigation, navigation, the natural resources of the United States, the public health, or the environment” (7 U.S.C. § 7701-7786, 2000). We use the PPQ weed risk assessment (WRA) process (PPQ, 2015) to evaluate the risk potential of plants, including those newly detected in the United States, those proposed for import, and those emerging as weeds elsewhere in the world. The PPQ WRA process includes three analytical components that together describe the risk profile of a plant species (risk potential, uncertainty, and geographic potential; PPQ, 2015). At the core of the process is the predictive risk model that evaluates the baseline invasive/weed potential of a plant species using information related to its ability to establish, spread, and cause harm in natural, anthropogenic, and production systems (Koop et al., 2012).
    [Show full text]
  • Control of Docks (Rumex Spp.) in Organic Fodder Production – a True Bottleneck in Organic Farmed Branded Dairy and Meat Products
    Control of docks (Rumex spp.) in organic fodder production – a true bottleneck in organic farmed branded dairy and meat products Project description PART 1: The KMB project Summary Control of dock species are a true bottleneck in the development of grassland based organic production in Norway. Rumex obtusifolius, Rumex crispus and Rumex longifolius are among the most important perennial weeds in grassland areas throughout the world. These docks are undesirable in grasslands because they decrease yields and reduce forage feeding value. Numerous farmers feel powerlessness regarding how to manage the Rumex problem. Some farmers continue conventionally farming instead of organic, although they generally are motivated for transferring to organic production, due to the dock problem. The main goal of the project is a high quality and stable production of regional branded dairy and meat products based on fodder from grassland with non-chemical control of docks. This is to be achieved through knowledge on important factors that influence severity of dock infestation, studies on weak growth stages of docks, evaluation of biological control of docks and a synthesis of various measures to control these weeds. The return of the efforts of the project is increased organic production of meat and dairy products. 1. Objectives Main objective High quality and stable production of regional branded dairy and meat products based on fodder from grassland with non-chemical control of dock Sub objective 1 Reduce infestation of Rumex spp through knowledge on relationship between severity of dock infestation and grassland management, soil physical and chemical factors and site specific genetic variation. Sub objective 2 Improve dock control measures through a description of a life table of Rumex longifolius and evaluation of weak growth stages with emphasize on germination and early growth of seedlings.
    [Show full text]
  • Guidance Note on the Methods That Can Be Used to Control
    Guidance note on the methods that PB7190 can be used to control harmful 2002 weeds Crown Copyright - This document is subject to Crown copyright protection & has been reproduced under licence from the controller of HMSO. The user may not supply copies to third parties nor publish / sell this material to others with out written consent of the Controller. The ADLib Version - This document has been reproduced in full & the technical content is the same as the original. Presentation may vary from the original. Contents • Introduction 2 • Control methods 3 • Use of herbicides 4 • Non-selective herbicide treatment 5 • Selective herbicide treatment 6 • Ragwort control 7 • Ragwort control methods 11 • Spear thistle control methods 12 • Creeping or field thistle control methods 13 • Broad-leaved dock and curled dock control methods 14 DEFRA Primary responsibility for weeds control rests with the occupier of the land on which the weeds are growing. However, under the Weeds Act 1959 Defra can take action where there is a risk of injurious weeds spreading from neighbouring land. 1 Introduction This note provides guidance on the methods which can be used to control the five injurious (harmful) weeds specified in the Weeds Act 1959. The five weeds covered by the Weeds Act are: • Spear thistle (Cirsium vulgare) • Creeping or field thistle (Cirsium arvense) • Curled dock (Rumex crispus) • Broad leaved dock (Rumex obtusifolius) • Common ragwort (Senecio jacobaea) Further guidance on the identification of these weeds is available in a colour leaflet (PB4192) published by DEFRA This is available from DEFRA Publications. Primary responsibility for weeds control rests with the occupier of the land on which the weeds are growing.
    [Show full text]
  • Floron Risk Assessment of Four Asian Knotweeds in Europe
    Risk assessment of four Asian knotweeds in Europe R. Beringen, R.S.E.W. Leuven, B. Odé, M. Verhofstad & J.L.C.H. van Valkenburg FLORON report 2018.049.e1 Publication details Publication status: Final Report number: FL2018.049.e1 Date of publication: November 2019 Title: Risk assessment of four Asian knotweeds in Europe Citation method: R. Beringen, R.S.E.W. Leuven, B. Odé, M. Verhofstad & J.L.C.H. van Valkenburg (2019). Risk assessment of four Asian knotweeds in Europe FLORON report: 2018.049.e1 Cover photograph: Overgrowth of Bohemian knotweed (Reynoutria × bohemica) near Oosterbeek (Photo: Ruud Beringen). Project number: FL2018.049 Project leader: Baudewijn Odé Implementation: FLORON and Radboud University Nijmegen Project team: Ruud Beringen, Rob Leuven, Baudewijn Odé, Michiel Verhofstad and Johan van Valkenburg Commissioned by: Ministry of Agriculture, Nature and Food Quality Netherlands Food and Consumer Product Safety Authority (NVWA) J. Leferink Postbus 43006 3540 AA Utrecht Publication approval: B. Odé (FLORON project leader) Initials: © 2019 FLORON, Nijmegen. FLORON studies and protects wild plants. FLORON is a brand name of the RAVON Foundation. FLORON report no. 2018.049.e1 Contents Summary 7 Samenvatting 9 1 Introduction 11 1.1 Background 11 1.2 Research request 12 1.3 Document structure 12 2 Materials and method 13 2.1 Literature review 13 2.2 Taxonomy and nomenclature of the species being assessed 13 2.3 Delineation of species being assessed 13 2.4 Distribution in the Netherlands 14 2.5 Distribution in Europe 14 2.6 Risk assessment and classification using Harmonia+ 15 2.7 Comparison with other risk assessments 17 3 Reynoutria japonica – Japanese knotweed 18 3.1 Species description 18 3.1.1 Taxonomy 18 3.1.2 Nomenclature 18 3.1.3 Range 19 3.1.4 Characteristics 19 3.1.5 Reproduction and dispersal 20 3.1.6 Habitat and ecology 22 3.2.
    [Show full text]