Do the Paradoxes Pose a Special Problem for Deflationism?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Kripke's Theory of Truth
Kripke’s Theory of Truth (for the strong Kleene scheme) Presented by Christopher Gauker Version: July 26, 2006 Contemporary discussions of truth often make reference to Kripke’s theory of truth (presented by Kripke only his 1975 Journal of Philosophy paper). What Kripke did was show how to interpret a language in such a way that it contains its own truth predicate. The fact that the language he describes contains its own truth predicate is proved by means of something called a fixed-point theorem. I have written this document and posted it on the web because it is hard to find a presentation of Kripke’s theory that will be understandable even to readers who have had only a first course in logic. It is my intention that this presentation will be understandable to all readers who have been exposed to at least the following: The languages of ordinary predicate logic. Recursive definitions of truth in a structure for such languages. (Structures are also called models or interpretations.) The basic concepts and notation of set theory, such as curly brackets, membership (“∈”), inclusion (“⊆”), ordered n-tuples, relations and functions. Kripke’s theory of truth builds on a three-valued interpretation of a language. (So sentences may be neither true nor false (N) as well as (T) or false (F).) Various three- valued valuation schemes may be used. Here we will consider only the strong Kleene scheme, which is the only one most people care about. I can take no credit for this presentation. It is nothing more than a distillation from the more general presentation in Anil Gupta and Nuel Belnap’s book, The Revision Theory of Truth (MIT Press, 1993) (who in turn acknowledge debts to Fitting and Visser). -
A Simple Logic for Comparisons and Vagueness
THEODORE J. EVERETT A SIMPLE LOGIC FOR COMPARISONS AND VAGUENESS ABSTRACT. I provide an intuitive, semantic account of a new logic for comparisons (CL), in which atomic statements are assigned both a classical truth-value and a “how much” value or extension in the range [0, 1]. The truth-value of each comparison is determined by the extensions of its component sentences; the truth-value of each atomic depends on whether its extension matches a separate standard for its predicate; everything else is computed classically. CL is less radical than Casari’s comparative logics, in that it does not allow for the formation of comparative statements out of truth-functional molecules. I argue that CL provides a better analysis of comparisons and predicate vagueness than classical logic, fuzzy logic or supervaluation theory. CL provides a model for descriptions of the world in terms of comparisons only. The sorites paradox can be solved by the elimination of atomic sentences. In his recent book on vagueness, Timothy Williamson (1994) attacks accounts of vagueness arising from either fuzzy logic or supervaluation theory, both of which have well-known problems, stemming in part from their denial of classical bivalence. He then gives his own, epistemic ac- count of vagueness, according to which the vagueness of a predicate is fundamentally a matter of our not knowing whether or not it applies in every case. My main purpose in this paper is not to criticize William- son’s positive view, but to provide an alternative, non-epistemic account of predicate vagueness, based on a very simple logic for comparisons (CL), which preserves bivalence. -
Does Informal Logic Have Anything to Learn from Fuzzy Logic?
University of Windsor Scholarship at UWindsor OSSA Conference Archive OSSA 3 May 15th, 9:00 AM - May 17th, 5:00 PM Does informal logic have anything to learn from fuzzy logic? John Woods University of British Columbia Follow this and additional works at: https://scholar.uwindsor.ca/ossaarchive Part of the Philosophy Commons Woods, John, "Does informal logic have anything to learn from fuzzy logic?" (1999). OSSA Conference Archive. 62. https://scholar.uwindsor.ca/ossaarchive/OSSA3/papersandcommentaries/62 This Paper is brought to you for free and open access by the Conferences and Conference Proceedings at Scholarship at UWindsor. It has been accepted for inclusion in OSSA Conference Archive by an authorized conference organizer of Scholarship at UWindsor. For more information, please contact [email protected]. Title: Does informal logic have anything to learn from fuzzy logic? Author: John Woods Response to this paper by: Rolf George (c)2000 John Woods 1. Motivation Since antiquity, philosophers have been challenged by the apparent vagueness of everyday thought and experience. How, these philosophers have wanted to know, are the things we say and think compatible with logical laws such as Excluded Middle?1 A kindred attraction has been the question of how truth presents itself — relatively and in degrees? in approximations? in resemblances, or in bits and pieces? F.H. Bradley is a celebrated (or as the case may be, excoriated) champion of the degrees view of truth. There are, one may say, two main views of error, the absolute and relative. According to the former view there are perfect truths, and on the other side there are sheer errors.. -
A Note on Extension, Intension, and Truth Author(S): Anil Gupta and Nuel Belnap Source: the Journal of Philosophy, Vol
Journal of Philosophy, Inc. A Note on Extension, Intension, and Truth Author(s): Anil Gupta and Nuel Belnap Source: The Journal of Philosophy, Vol. 84, No. 3 (Mar., 1987), pp. 168-174 Published by: Journal of Philosophy, Inc. Stable URL: http://www.jstor.org/stable/2026597 Accessed: 28/05/2009 11:06 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=jphil. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact [email protected]. Journal of Philosophy, Inc. is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Philosophy. http://www.jstor.org 168 THE JOURNAL OF PHILOSOPHY A NOTE ON EXTENSION, INTENSION, AND TRUTH* I T is common knowledge that two predicates may coincide in extension but differ in intension and that, for any predicate, one can construct an infinity of coextensional predicates that differ in intension. -
Intransitivity and Vagueness
Intransitivity and Vagueness Joseph Y. Halpern∗ Cornell University Computer Science Department Ithaca, NY 14853 [email protected] http://www.cs.cornell.edu/home/halpern Abstract preferences. Moreover, it is this intuition that forms the ba- sis of the partitional model for knowledge used in game the- There are many examples in the literature that suggest that indistinguishability is intransitive, despite the fact that the in- ory (see, e.g., [Aumann 1976]) and in the distributed sys- distinguishability relation is typically taken to be an equiv- tems community [Fagin, Halpern, Moses, and Vardi 1995]. alence relation (and thus transitive). It is shown that if the On the other hand, besides the obvious experimental obser- uncertainty perception and the question of when an agent vations, there have been arguments going back to at least reports that two things are indistinguishable are both care- Poincare´ [1902] that the physical world is not transitive in fully modeled, the problems disappear, and indistinguishabil- this sense. In this paper, I try to reconcile our intuitions ity can indeed be taken to be an equivalence relation. More- about indistinguishability with the experimental observa- over, this model also suggests a logic of vagueness that seems tions, in a way that seems (at least to me) both intuitively to solve many of the problems related to vagueness discussed appealing and psychologically plausible. I then go on to ap- in the philosophical literature. In particular, it is shown here ply the ideas developed to the problem of vagueness. how the logic can handle the Sorites Paradox. To understand the vagueness problem, consider the well- n+1 1 Introduction known Sorites Paradox: If grains of sand make a heap, then so do n. -
On the Relationship Between Fuzzy Autoepistemic Logic and Fuzzy Modal Logics of Belief
JID:FSS AID:6759 /FLA [m3SC+; v1.204; Prn:31/03/2015; 9:42] P.1(1-26) Available online at www.sciencedirect.com ScienceDirect Fuzzy Sets and Systems ••• (••••) •••–••• www.elsevier.com/locate/fss On the relationship between fuzzy autoepistemic logic and fuzzy modal logics of belief ∗ Marjon Blondeel d, ,1, Tommaso Flaminio a,2, Steven Schockaert b, Lluís Godo c,3, Martine De Cock d,e a Università dell’Insubria, Department of Theorical and Applied Science, Via Mazzini 5, 21100 Varese, Italy b Cardiff University, School of Computer Science and Informatics, 5The Parade, Cardiff, CF24 3AA, UK c Artficial Intelligence Research Institute (IIIA) – CSIC, Campus UAB, 08193 Bellaterra, Spain d Ghent University, Department of Applied Mathematics, Computer Science and Statistics, Krijgslaan 281 (S9), 9000 Gent, Belgium e University of Washington Tacoma – Center for Web and Data Science, 1900 Commerce Street, Tacoma, WA 98402-3100, USA Received 12 February 2014; received in revised form 30 September 2014; accepted 26 February 2015 Abstract Autoepistemic logic is an important formalism for nonmonotonic reasoning originally intended to model an ideal rational agent reflecting upon his own beliefs. Fuzzy autoepistemic logic is a generalization of autoepistemic logic that allows to represent an agent’s rational beliefs on gradable propositions. It has recently been shown that, in the same way as autoepistemic logic generalizes answer set programming, fuzzy autoepistemic logic generalizes fuzzy answer set programming as well. Besides being related to answer set programming, autoepistemic logic is also closely related to several modal logics. To investigate whether a similar relationship holds in a fuzzy logical setting, we firstly generalize the main modal logics for belief to the setting of finitely-valued c Łukasiewicz logic with truth constants Łk, and secondly we relate them with fuzzy autoepistemic logics. -
Consequence and Degrees of Truth in Many-Valued Logic
Consequence and degrees of truth in many-valued logic Josep Maria Font Published as Chapter 6 (pp. 117–142) of: Peter Hájek on Mathematical Fuzzy Logic (F. Montagna, ed.) vol. 6 of Outstanding Contributions to Logic, Springer-Verlag, 2015 Abstract I argue that the definition of a logic by preservation of all degrees of truth is a better rendering of Bolzano’s idea of consequence as truth- preserving when “truth comes in degrees”, as is often said in many-valued contexts, than the usual scheme that preserves only one truth value. I review some results recently obtained in the investigation of this proposal by applying techniques of abstract algebraic logic in the framework of Łukasiewicz logics and in the broader framework of substructural logics, that is, logics defined by varieties of (commutative and integral) residuated lattices. I also review some scattered, early results, which have appeared since the 1970’s, and make some proposals for further research. Keywords: many-valued logic, mathematical fuzzy logic, truth val- ues, truth degrees, logics preserving degrees of truth, residuated lattices, substructural logics, abstract algebraic logic, Leibniz hierarchy, Frege hierarchy. Contents 6.1 Introduction .............................2 6.2 Some motivation and some history ...............3 6.3 The Łukasiewicz case ........................8 6.4 Widening the scope: fuzzy and substructural logics ....9 6.5 Abstract algebraic logic classification ............. 12 6.6 The Deduction Theorem ..................... 16 6.7 Axiomatizations ........................... 18 6.7.1 In the Gentzen style . 18 6.7.2 In the Hilbert style . 19 6.8 Conclusions .............................. 21 References .................................. 23 1 6.1 Introduction Let me begin by calling your attention to one of the main points made by Petr Hájek in the introductory, vindicating section of his influential book [34] (the italics are his): «Logic studies the notion(s) of consequence. -
A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability and Statistics
FLORENTIN SMARANDACHE A UNIFYING FIELD IN LOGICS: NEUTROSOPHIC LOGIC. NEUTROSOPHY, NEUTROSOPHIC SET, NEUTROSOPHIC PROBABILITY AND STATISTICS (fourth edition) NL(A1 A2) = ( T1 ({1}T2) T2 ({1}T1) T1T2 ({1}T1) ({1}T2), I1 ({1}I2) I2 ({1}I1) I1 I2 ({1}I1) ({1} I2), F1 ({1}F2) F2 ({1} F1) F1 F2 ({1}F1) ({1}F2) ). NL(A1 A2) = ( {1}T1T1T2, {1}I1I1I2, {1}F1F1F2 ). NL(A1 A2) = ( ({1}T1T1T2) ({1}T2T1T2), ({1} I1 I1 I2) ({1}I2 I1 I2), ({1}F1F1 F2) ({1}F2F1 F2) ). ISBN 978-1-59973-080-6 American Research Press Rehoboth 1998, 2000, 2003, 2005 FLORENTIN SMARANDACHE A UNIFYING FIELD IN LOGICS: NEUTROSOPHIC LOGIC. NEUTROSOPHY, NEUTROSOPHIC SET, NEUTROSOPHIC PROBABILITY AND STATISTICS (fourth edition) NL(A1 A2) = ( T1 ({1}T2) T2 ({1}T1) T1T2 ({1}T1) ({1}T2), I1 ({1}I2) I2 ({1}I1) I1 I2 ({1}I1) ({1} I2), F1 ({1}F2) F2 ({1} F1) F1 F2 ({1}F1) ({1}F2) ). NL(A1 A2) = ( {1}T1T1T2, {1}I1I1I2, {1}F1F1F2 ). NL(A1 A2) = ( ({1}T1T1T2) ({1}T2T1T2), ({1} I1 I1 I2) ({1}I2 I1 I2), ({1}F1F1 F2) ({1}F2F1 F2) ). ISBN 978-1-59973-080-6 American Research Press Rehoboth 1998, 2000, 2003, 2005 1 Contents: Preface by C. Le: 3 0. Introduction: 9 1. Neutrosophy - a new branch of philosophy: 15 2. Neutrosophic Logic - a unifying field in logics: 90 3. Neutrosophic Set - a unifying field in sets: 125 4. Neutrosophic Probability - a generalization of classical and imprecise probabilities - and Neutrosophic Statistics: 129 5. Addenda: Definitions derived from Neutrosophics: 133 2 Preface to Neutrosophy and Neutrosophic Logic by C. -
Reading T. S. Eliot Reading Spinoza
READING T. S. ELIOT READING SPINOZA A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Yoshiaki Mihara January 2013 © 2013 Yoshiaki Mihara READING T. S. ELIOT READING SPINOZA Yoshiaki Mihara, Ph. D. Cornell University 2013 “[The ordinary man] falls in love, or reads Spinoza, and these two experiences have nothing to do with each other” – a good reader of T. S. Eliot’s criticism probably knows this famous passage; a good researcher on Eliot’s apprenticeship in philosophy perhaps knows that he did actually read Spinoza; and yet, in the current Eliot studies, reading Eliot and reading Spinoza seem to have nothing to do with each other. In this dissertation, I attempt to reconstruct Eliot’s reading of Spinoza as faithfully and comprehensively as possible, by closely analyzing the marginalia in Eliot’s copy of Spinoza’s Opera, housed in the Archive Centre of King’s College, Cambridge. At the same time, the Spinozist context for Eliot’s apprenticeship at Harvard and Oxford (with the intermission of “a romantic year” in Paris) is also to be presented, which is, in fact, a glaring absence in the philosophical branch of Eliot studies. In addition to these positivistic contributions, I also take a theoretical approach so as to demonstrate how illuminative Eliot’s reading of Spinoza can be for understanding the characteristic style (or “ethology”) of Eliot’s reading in general (i.e., Theory), by way of extensively analyzing the unpublished as well as published materials of Eliot’s “academic philosophizing” that culminated in his doctoral dissertation on F. -
Modality and Factivity: One Perspective on the Meaning of the English Modal Auxiliaries
MODALITY AND FACTIVITY: ONE PERSPECTIVE ON THE MEANING OF THE ENGLISH MODAL AUXILIARIES by NICOLA M,BREWER Submitted in accordance with the requirements for the degree of PhD The University of Leeds Department of Linguistics and Phonetics December 1987 ii ABSTRACT This study concentrates on modality as expressed by the set of modal auxiliaries and seeks to establish that these verbs share semantic as well as syntactic properties by identifying a single core meaning which they share. The relationship between modality and factivity is examined with the aim of gaining an insight into the former, more complex concept. When viewed from this perspective, the defining characteristic of all the modal auxiliary verbs in almost all of their uses is found to be nonfactivity. The meanings expressed by this set of verbs are classified according to a framework derived from modal logic consisting of three basic types of modality each of which relates to a different set of laws or principles; the relative factivity associated with the modal auxiliaries is seen to vary with the nature of modality as defined and classified by this framework. Within each of the three types of modality, a semantic scale is identified and modality is described as a gradable concept for which scalar analysis is appropriate, both within and beyond these three scales. Relative factivity is also shown to vary according to the degree of modality expressed by each of the modal verbs. The nature and degree of modality expressed interact with features of the linguistic (and pragmatic) context to determine the particular factive or a contrafactive interpretation conveyed by a given modal auxiliary token. -
Gupta Comment
Discussion of Anil Gupta's “Outline of an Account of Experience” The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Byrne, Alex et al. "Discussion of Anil Gupta's “Outline of an Account of Experience”." Analytic Philosophy 59, 1 (March 2018): 75-88 © 1999-2020 John Wiley & Sons, Inc. As Published http://dx.doi.org/10.1111/phib.12121 Publisher Wiley Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/123434 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ Comments on Gupta Alex Byrne 1. Transitions Fundamental to Gupta’s picture is the idea of a “rational transition”. The role of experience, he thinks, “is not to provide the subject knowledge of anything or to bestow a rational or justificatory status on…beliefs or judgments”, but to “render rational certain transitions, including transitions from views to judgments”. His central non-perceptual example of a rational transition involves modus-ponens reasoning from the two premises, B and if B then C, to the conclusion C. And that does indeed seem to be rational or reasonable, in some sense of these elastic terms. Something is going right if someone reasons in this way—at least it’s better than affirming the consequent. Since valid reasoning, as Gupta emphasizes, implies nothing about whether the premises are true, or justifiably believed, or known, this example might seem to suggest that the rationality of transitions and the rationality of beliefs are quite different matters. -
M.A. Philosophy Programme Is a Two Year Course Divided Into Four-Semester
UNIVERSITY OF DELHI MASTER OF ARTS (Acronym for the Course) (Effective from Academic year 2018-19) PROGRAMME BROCHURE (M.A.) Department of Philosophy Faculty of Arts University of Delhi Delhi-110007 2 University of Delhi Examination Branch Date: 18 June 2018 Courses: M. A. in Philosophy Check List of new Course evaluation for AC Consideration S.No. Parameters Status 1. About the Department 2 Introduction to CBCS 3. Programme Structure 4. Codification of Papers 5. Scheme of Examinations 6. Pass Percentage 7. Promotion Criteria 8. Division Criteria 9. Qualifying Papers 10. Span Period 11. Attendance Requirements 12. Course content for each Paper 13. List of Readings 2 3 I ABOUT THE DEPARTMENT Faculty of Arts, North Campus, Delhi University The History and Profile of the Department of Philosophy, University of Delhi. Located in the heart of the main Humanities Block of the Arts Faculty, North Cam- pus, facing an inner quadrangle garden, the Department of Philosophy is one of the oldest in the University of Delhi. This building constructed in the early part of the twentieth century is well known for its red brick colonial structure. This Department began as a combined Department of Philosophy and Psychology in the year 1953. The Department of Psychology became independent in 1962. Since then the Department of Philosophy is an Autonomous Department. Various distinguished scholars who have either taught or been associated with the Department of Philosophy, Delhi University include N.V. Banerjee, S.S Barlingay, R. C. Pandeya, Margaret Chatterjee, S.K. Saxena, Ram Chandra Gandhi and Mrinal Miri. A large number of eminent philosophers from India and abroad have lectured in the De- partment.