3-Methoxybutyl Acetate) Final Designation

Total Page:16

File Type:pdf, Size:1020Kb

3-Methoxybutyl Acetate) Final Designation Supporting Information for Low-Priority Substance 1-Butanol, 3- Methoxy-, 1-Acetate (CASRN 4435-53-4) (3-Methoxybutyl Acetate) Final Designation February 20, 2020 Office of Pollution Prevention and Toxics U.S. Environmental Protection Agency 1200 Pennsylvania Avenue Washington, DC 20460 Contents 1. Introduction ................................................................................................................................................................ 1 2. Background on 3-Methoxybutyl Acetate .................................................................................................................. 3 3. Physical-Chemical Properties ................................................................................................................................... 4 3.1 References ...................................................................................................................................................... 6 4. Relevant Assessment History ................................................................................................................................... 7 5. Conditions of Use ....................................................................................................................................................... 8 6. Hazard Characterization .......................................................................................................................................... 11 6.1 Human Health Hazard .................................................................................................................................... 14 6.1.1 Absorption, Distribution, Metabolism, and Excretion .................................................................... 15 6.1.2 Acute Toxicity ................................................................................................................................ 16 6.1.3 Repeated Dose Toxicity ................................................................................................................ 16 6.1.4 Reproductive and Developmental Toxicity.................................................................................... 17 6.1.5 Genotoxicity .................................................................................................................................. 17 6.1.6 Carcinogenicity ............................................................................................................................. 17 6.1.7 Neurotoxicity ................................................................................................................................. 18 6.1.8 Skin Sensitization .......................................................................................................................... 19 6.1.9 Respiratory Sensitization .............................................................................................................. 19 6.1.10 Immunotoxicity .............................................................................................................................. 19 6.1.11 Skin Irritation ................................................................................................................................. 20 6.1.12 Eye Irritation .................................................................................................................................. 20 6.1.13 Hazards to Potentially Exposed or Susceptible Subpopulations .................................................. 20 6.2 Environmental Hazard ................................................................................................................................... 21 6.2.1 Acute Aquatic Toxicity ................................................................................................................... 21 6.2.2 Chronic Aquatic Toxicity ............................................................................................................... 21 6.3 Persistence and Bioaccumulation Potential ................................................................................................... 22 6.3.1 Persistence ................................................................................................................................... 22 6.3.2 Bioaccumulation Potential ............................................................................................................. 23 i 7. Exposure Characterization ...................................................................................................................................... 24 7.1 Production Volume Information ..................................................................................................................... 24 7.2 Exposures to the Environment ....................................................................................................................... 24 7.3 Exposures to the General Population ............................................................................................................ 25 7.4 Exposures to Potentially Exposed or Susceptible Subpopulations ................................................................ 25 7.4.1 Exposures to Workers .................................................................................................................... 25 7.4.2 Exposures to Consumers ............................................................................................................... 25 8. Summary of Findings ............................................................................................................................................... 27 8.1. Hazard and Exposure Potential of the Chemical Substance ......................................................................... 27 8.2. Persistence and Bioaccumulation .................................................................................................................. 29 8.3. Potentially Exposed or Susceptible Subpopulations ...................................................................................... 29 8.4. Storage near Significant Sources of Drinking Water ..................................................................................... 30 8.5. Conditions of Use or Significant Changes in Conditions of Use of the Chemical Substance ........................ 31 8.6. The Volume or Significant Changes in Volume of the Chemical Substance Manufactured or Processed .... 31 8.7. Other Considerations ..................................................................................................................................... 31 9. Final Designation .............................................................................................................................................................. 32 Appendix A: Conditions of Use Characterization ................................................................................................................. I A.1. CDR Manufacturers and Production Volume .................................................................................................... I A.2. Uses ................................................................................................................................................................. II A.2.1 Methods for Uses ............................................................................................................................. II A.2.2 Uses of 3-Methoxybutyl Acetate ...................................................................................................... IV A.3 References ..................................................................................................................................................... XI Appendix B: Hazard Characterization ............................................................................................................................... XIV B.1 References: ................................................................................................................................................ XXII Appendix C: Literature Search Outcomes ...................................................................................................................... XXIV C.1 Literature Search and Review ................................................................................................................... XXIV C.1.1 Search for Analog Data ............................................................................................................... XXV C.1.2 Search Terms and Results .......................................................................................................... XXV C.2 Excluded Studies and Rationale ............................................................................................................... XXVII C.2.1 Human Health Hazard Excluded References ........................................................................... XXVII C.2.2 Environmental Hazard ............................................................................................................... XXXII ii C.2.3 Fate........................................................................................................................................... XXXV iii Tables 3 Table 1: 3-Methoxybutyl Acetate at a Glance …………………………………………………………………………… Table 2: Physical-Chemical Properties for 3-Methoxybutyl Acetate ……………………………………………… 4 Table 3: Conditions of Use for 3-Methoxybutyl Acetate ……………………………………………………………… 9 Table 4: Low-Concern Criteria for Human Health and
Recommended publications
  • EPA's Dsstox Database: History of Development of a Curated Chemistry
    EPA Public Access Author manuscript Comput Toxicol. Author manuscript; available in PMC 2021 January 07. About author manuscripts | Submit a manuscript Published in final edited form as: EPA Author Manuscript Author EPA Manuscript Author EPA Comput Toxicol Manuscript Author . EPA 2019 November 1; 12: . doi:10.1016/j.comtox.2019.100096. EPA’s DSSTox database: History of development of a curated chemistry resource supporting computational toxicology research Christopher M. Grulkea, Antony J. Williamsa, Inthirany Thillanadarajahb, Ann M. Richarda,* aNational Center for Computational Toxicology, Office of Research & Development, US Environmental Protection Agency, Mail Drop D143-02, Research Triangle Park, NC 27711, USA bSenior Environmental Employment Program, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA Abstract The US Environmental Protection Agency’s (EPA) Distributed Structure-Searchable Toxicity (DSSTox) database, launched publicly in 2004, currently exceeds 875 K substances spanning hundreds of lists of interest to EPA and environmental researchers. From its inception, DSSTox has focused curation efforts on resolving chemical identifier errors and conflicts in the public domain towards the goal of assigning accurate chemical structures to data and lists of importance to the environmental research and regulatory community. Accurate structure-data associations, in turn, are necessary inputs to structure-based predictive models supporting hazard and risk assessments. In 2014, the legacy, manually curated DSSTox_V1 content was migrated to a MySQL data model, with modern cheminformatics tools supporting both manual and automated curation processes to increase efficiencies. This was followed by sequential auto-loads of filtered portions of three public datasets: EPA’s Substance Registry Services (SRS), the National Library of Medicine’s ChemID, and PubChem.
    [Show full text]
  • Effect of Enzymes on Strawberry Volatiles During Storage, at Different Ripeness
    Effect of Enzymes on Strawberry Volatiles During Storage, at Different Ripeness Level, in Different Cultivars and During Eating Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Gulsah Ozcan Graduate Program in Food Science and Technology The Ohio State University 2010 Thesis Committee: Sheryl Ann Barringer, Adviser W. James Harper John Litchfield 1 Copyright by Gülşah Özcan 2010 ii ABSTRACT Strawberry samples with enzyme activity and without enzyme activity (stannous chloride added) were measured for real time formation of lipoxygenase (LOX) derived aroma compounds after 5 min pureeing using selected ion flow tube mass spectrometry (SIFT-MS). The concentration of (Z)-3-hexenal and (E)-2-hexenal increased immediately after blending and gradually decreased over time while hexanal concentration increased for at least 5 min in ground strawberries. The formation of hexanal was slower than the formation of (Z)-3-hexenal and (E)-2-hexenal in the headspace of pureed strawberries. The concentration of LOX aldehydes and esters significantly increased during refrigerated storage. Damaging strawberries increased the concentration of LOX aldehydes but did not significantly affect the concentration of esters. The concentrations of many of the esters were strongly correlated to their corresponded acids and/or aldehydes. The concentration of LOX generated aldehydes decreased during ripening, while fruity esters increased. Different varieties had different aroma profiles and esters were the greatest percentage of the volatiles. The aroma release of some of the LOX derived aldehydes in the mouthspace in whole strawberries compared to chopped strawberries showed that these volatiles are formed in the mouth during chewing.
    [Show full text]
  • An Indexing and Classification System for Earth-Science Data Bases
    AN INDEXING AND CLASSIFICATION SYSTEM FOR EARTH-SCIENCE DATA BASES By James C. Schornick, Janet B. Pruitt, Helen E. Stranathan, and Albert C. Duncan U.S. GEOLOGICAL SURVEY Open-File Report 89 47 Reston, Virginia 1989 DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director For additional information Copies of this report can write to: be purchased from: Assistant Chief Hydrologist for U.S. Geological Survey Scientific Information Management Books and Open-File Reports Section U.S. Geological Survey Federal Center, Building 810 440 National Center Box 25425 Reston, Virginia 22092 Denver, Colorado 80225 CONTENTS Page Abstract ............................................................ 1 Introduction ........................................................ 1 Objective of the indexing and classification system .............. 2 Scope of the indexing and classification system .................. 2 The indexing and classification system .............................. 2 The sample medium component ...................................... 3 The general physical/chemical component .......................... 6 The specific physical/chemical component ......................... 6 Organic substances ............................................ 7 Biological taxa ............................................... 8 The indexing and classification code ............................. 9 Data base availability .............................................. 11 Summary ............................................................
    [Show full text]
  • Electrolytic Study of Basic Beryllium Acetate in Carbon Disulphide at 303K, 308K, 313K
    IARJSET ISSN (Online) 2393-8021 ISSN (Print) 2394-1588 International Advanced Research Journal in Science, Engineering and Technology Vol. 7, Issue 11, November 2020 DOI 10.17148/IARJSET.2020.71106 Electrolytic Study of Basic Beryllium Acetate in Carbon disulphide at 303K, 308K, 313K Rajeev Kumar Sharma1, Renu Singhal2 Assistant Professor, Department of Chemistry, D.S. College, Aligarh, U.P. (India)1 Associate Professor, Department of Chemistry, D.S. College, Aligarh, U.P. (India)2 Abstract: The electrolytic study of Basic Beryllium Acetate (B.B.A.) in carbon disulphide were reported at 303K, 308K, 313K, the solute solvent interaction have been carried out by computing various Physico-chemical Acoustic Parameters [Apparent Molal adiabatic compressibility (k), Isentropic compressibility (S), Intermolecular free length (Lf), Specific Acoustic Impedance (Z), Relative Association and Solvation Number (Sn)], these parameters have been evaluated by using ultrasonic velocity, density, viscosity data. The results of these parameters indicates the strength of molecular interaction. Keywords: Molecular Interaction, Electrolytic, viscous behavior of Basic Beryllium acetate. I. INTRODUCTION The Isentropic compressibility of dilute aqueous solution of electrolytes decreases with increasing conc. indicating a strong interaction of the dissolved ion with the alkanols1-7, the non-aqueous solution of electrolytes have drawn the attention of same workers.7-9 Now, we are reporting a study of Ultrasound velocity, density and viscosity measurement at 300C, 350C, 400C have 8 been used to calculate isentropic compressibility (s), Intermolecular Free Lenght (Lf) , Specific Acoustic Impedance 9 10 (Z) , Molar sound velocity (R), Relative association (RA) , Apparent molal adiabatic compressibility (k), Wada 11 0 0 constant (B), Shear’s relaxation time (s) and Solvation numbers (Sn) of B.B.A.
    [Show full text]
  • Isoamyl Acetate
    SUMMARY OF DATA FOR CHEMICAL SELECTION Isoamyl Acetate CAS No. 123-92-2 Prepared for NTP by Technical Resources International, Inc Prepared on 11/94 Under NCI Contract No. N01-CP-56019 Table of Contents I. Chemical Identification II. Exposure Information Table 1. Levels of isoamyl acetate reported in foods III. Evidence for Possible Carcinogenic Activity Appendix A: Structural Analogs of Isoamyl Acetate IV. References SUMMARY OF DATA FOR CHEMICAL SELECTION CHEMICAL IDENTIFICATION CAS Registry No.: 123-92-2 Chem. Abstr. Name: 1-Butanol, 3-methyl-, acetate Synonyms: Acetic acid 3-methylbutyl ester; acetic acid, isopentyl ester; AI3-00576; banana oil; isoamyl ethanoate; isopentyl acetate; isopentyl alcohol, acetate; pear oil; 3-methyl-1-butanol acetate; 3-methyl-1-butyl acetate; 3-methylbutyl acetate; 3-methylbutyl ethanoate; i-amyl acetate Structure: Molecular Formula and Molecular Weight: C7H14O2 Mol. Wt.: 130.18 Chemical and Physical Properties: Description: Colorless, flammable liquid with a banana-like odor (ACGIH, 1993). Boiling Point: 142°C (Lide, 1993) Melting Point: -78.5°C (Mark, et al, 1984; Lide, 1993) Solubility: Soluble in water (2000 mg/L at 25°C) (Howard, 1990); soluble in ethanol, diethyl ether, and acetone (Lide, 1993). Vapor 4.5 mm Hg at 20°C (Howard, 1990) Pressure: Refractive 1.4003 (Lide, 1993) Index: Flash Point: closed cup, 33°C; open cup, 38°:C (Budavari, 1989) Density: 0.876 (Lewis, 1993) Reactivity: Thermal decomposition of isoamyl acetate may produce acrid fumes. Contact with strong oxidizing agents, strong acids, and alkaline materials should be avoided (Haarmann & Reimer Corp., 1994). Hazardous decomposition products of isoamyl acetate include CO and CO2 (AESAR/Alfa, 1994) Log 2.13 (Howard, 1990) P(octanol/water partition coefficient): Technical Isoamyl acetate is commercially available as both a natural and synthetic product with a purity Products and range of 95-99+%.
    [Show full text]
  • Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc
    Metal-Metal (MM) Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc Richard H. Duncan Lyngdoh*,a, Henry F. Schaefer III*,b and R. Bruce King*,b a Department of Chemistry, North-Eastern Hill University, Shillong 793022, India B Centre for Computational Quantum Chemistry, University of Georgia, Athens GA 30602 ABSTRACT: This survey of metal-metal (MM) bond distances in binuclear complexes of the first row 3d-block elements reviews experimental and computational research on a wide range of such systems. The metals surveyed are titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, and zinc, representing the only comprehensive presentation of such results to date. Factors impacting MM bond lengths that are discussed here include (a) n+ the formal MM bond order, (b) size of the metal ion present in the bimetallic core (M2) , (c) the metal oxidation state, (d) effects of ligand basicity, coordination mode and number, and (e) steric effects of bulky ligands. Correlations between experimental and computational findings are examined wherever possible, often yielding good agreement for MM bond lengths. The formal bond order provides a key basis for assessing experimental and computationally derived MM bond lengths. The effects of change in the metal upon MM bond length ranges in binuclear complexes suggest trends for single, double, triple, and quadruple MM bonds which are related to the available information on metal atomic radii. It emerges that while specific factors for a limited range of complexes are found to have their expected impact in many cases, the assessment of the net effect of these factors is challenging.
    [Show full text]
  • Butyl Acetate Safety Data Sheet Sipchem Chemicals Company
    Butyl Acetate Safety Data Sheet Sipchem Chemicals Company SCC Sipchem Chemicals Company Safety Data Sheet According to Regulation (EC) No. 1272/2008, Regulation (EC) 1907/2006 1. Identification of the substance/mixture and of the responsible company 1.1. Product Identifier: Butyl Acetate (C6H12O2) BUTYL ACETATE; BUTYL ETHANOATE; 1-BUTYL ACETATE; ACETIC ACID N-BUTYL ESTER; ACETIC ACID, BUTYL ESTER; 1-ACETOXYBUTANE; UN 1123; C6H12O2 1.2. Relevant identified uses of the substance or mixture and uses advised against: Identified uses: Industrial solvent, solvent for coatings, films, perfumes and synthetic flavoring agents, extraction solvent for various products and laboratory procedures. 1.3. Details of the supplier of the safety data sheet: Sipchem Chemicals Company (SCC) PO Box 12021 Post Coe 31961 Jubail Industrial City Kingdom of Saudi Arabia Website: www.sipchem.com/en/affiliates.htm 1.4. Emergency telephone number: 00966-359 9985 (24 hours) 2. Hazards Identification Butyl Acetate CAS 123-86-4 Purity: >99.0% Trace Impurities: Butanol 2.1. Classification of the substance or mixture: Classification of Labeling in accordance with the CLP Regulations: Classification Labeling N International Hazard Class and Hazard statement Pictogram Hazard Suppl. Hazard Specific o Index No Chemical EC No CAS No Category Code(s) Code(s) Signal Statement statement Conc. Limits, t Identification Word Code(s) Code(s) M-factors e Code(s) s 607-025- R:10-66-67 GHS02 H225 123-86-4 Flam. Liq. 3 00-1 Butyl Acetate 204-658-1 GHS07 H319 #EUH066 100 STOT SE 3 H336 Classification according to Regulation 1272/2008/EC (CLP) Basis for Classification This substance is classified based on Directive 1272/2008/EC and its amendments (CLP Regulation,GHS) BUTYL ACETATE (123-86-4) SAFETY DATA SHEET according to Regulation (EC) No.
    [Show full text]
  • Dc349fr3501 A3 1/12
    DC349FR3501_A3 Safety Data Sheet DEVTHANE 349 LOW HAP ARMAG WHITE PTA Bulk Sales Reference No.: DC349FR3501 SDS Revision Date: 02/11/2019 SDS Revision Number: A3-7 1. Identification of the preparation and company 1.1. Product identifier Product Identity DEVTHANE 349 LOW HAP ARMAG WHITE PTA Bulk Sales Reference No. DC349FR3501 1.2. Relevant identified uses of the substance or mixture and uses advised against Intended Use See Technical Data Sheet. 1.3. Details of the supplier of the safety data sheet Company Name International Paint LLC Manufacturer: Akzo Nobel Coatings International Paint 6001 Antoine Drive Houston, Texas 77091 Emergency CHEMTREC (800) 424-9300 International Paint (713) 682-1711 Poison Control Center (800) 854-6813 Customer Service International Paint (800) 589-1267 Fax No. (800) 631-7481 2. Hazard identification of the product 2.1. Classification of the substance or mixture Flam. Liq. 3;H226 Flammable liquid and vapor. Skin Sens. 1;H317 May cause an allergic skin reaction. Aquatic Chronic 3;H412 Harmful to aquatic life with long lasting effects. 2.2. Label elements Using the Toxicity Data listed in section 11 & 12 the product is labelled as follows. Warning. H226 Flammable liquid and vapor. H317 May cause an allergic skin reaction. H412 Harmful to aquatic life with long lasting effects. P210 Keep away from heat / sparks / open flames / hot surfaces - No smoking. P235 Keep cool. P240 Ground / bond container and receiving equipment. 1/12 DC349FR3501_A3 P241 Use explosion-proof electrical / ventilating / light / equipment. P242 Use only non-sparking tools. P243 Take precautionary measures against static discharge. P261 Avoid breathing dust / fume / gas / mist / vapors / spray.
    [Show full text]
  • A New Take on the Aspirin Synthesis Lab: a Multi-Step Organic Synthesis Laboratory for High School Students
    A new take on the aspirin synthesis lab: A multi-step organic synthesis laboratory for high school students Michael P. Kowalski Rationale The use of the extracts of various plants for the treatment of pain and fever goes back several centuries. A tea made from the leaves or bark of Willow ( Saliaceae ) was found to be especially effective. By the late 19th Century, the active ingredient in these plant extracts, salicylic acid, had been identified. In 1874, the process for the commercial production of salicylic acid was perfected. The use of salicylic acid as an analgesic became widespread. However, side effects, such as gastric bleeding, made long term use of the drug impossible for many patients. In 1895, Felix Hoffman of the Fredrick Bayer Company found a method to acetylate salicylic acid, producing acetyl salicylic acid. This derivative was found to be as effective as salicylic acid as an analgesic but did not have the side effects associated with salicylic acid. The new drug was named “aspirin”, a name inspired by Saint Aspirinius, the patron saint of headaches. The introduction of aspirin marks the beginning of the modern pharmaceutical industry. The mechanism as to how aspirin alleviates pain was not elucidated until the 1970’s, when it was found that aspirin inhibits COX 1 and COX 2, enzymes that catalyze the formation of prostaglandins, substances that cause inflammation (1). The synthesis of aspirin, acetylsalicylic acid, is a standard first year organic chemistry laboratory activity at the college level. In most protocols, salicylic acid is reacted with acetic anhydride producing aspirin and acetic acid by acid catalysis: O OH O O OH O O H2SO4 O CH3 + H3C OH OH H C O CH + 3 3 O The reaction is refluxed for 30 minutes, and then cooled.
    [Show full text]
  • 1 Effects Ethinyl Estradiol Ethinyl Estradiol & Its Effects On
    1 Effects Ethinyl Estradiol Ethinyl Estradiol & Its Effects on Cardiovascular Health Mary Eilert Lourdes University Spring 2019 BIO 490 Section A Dr. Anjali Gray 2 Effects Ethinyl Estradiol ABSTRACT Combined hormonal birth control regulates the menstrual cycle in women by manipulating the hormonal level. Combined hormonal contraception utilizes progestin and Ethinyl estradiol, which are synthetics of progesterone and estrogen. These synthetic hormones help regulate ovulation in women and in turn menstruation. Venous thromboembolism (VTE), stroke, and myocardial infarction are all risk factors when taking combined hormonal contraception due to the chemical composition of Ethinyl estradiol. Ethinyl estradiol’s binding mechanism to an estrogen receptor causes clots and therefore a risk for cardiovascular disease. The dosage of Ethinyl estradiol is related to an increased risk for VTE, stroke, and myocardial infarction. Due to the increased threat to cardiovascular health, physicians should screen patient health history carefully when prescribing combined hormonal birth control. Analyzing the risk Ethinyl estradiol poses to cardiovascular health in women can be used to determine if combined hormonal birth control is the ideal choice for contraception. 3 Effects Ethinyl Estradiol INTRODUCTION Birth control, a contraceptive, is frequently prescribed to women of varying ages throughout the United States. Birth control can be used for its primary use as a contraceptive or prescribed as a means of lessening symptoms of reproductive diseases, such as endometriosis. Birth control comes in various forms and methods. Intrauterine devices (IUDs) and birth control implants are forms which are implanted into the women and rely on the release of hormones to regulate the menstrual cycle (Planned Parenthood).
    [Show full text]
  • Analysis of Strawberry Volatiles in Different Hydrocolloids and Different
    Analysis of strawberry volatiles in different hydrocolloids and different conditions using Selected Ion Flow Tube – Mass Spectrometry THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of the Ohio State University By Yachen Zhang Graduate Program in Food Science and Technology The Ohio State University 2016 Master's Examination Committee: Dr. Sheryl Barringer, Advisor Dr. Dennis Heldman Dr. Christopher Simons © Copyright by Yachen Zhang 2016 i ABSTRACT Hydrocolloids and additives in gummy candies bind flavors, thus it is important to know how these additives affect flavor release. Selected Ion Flow Tube- Mass Spectrometry (SIFT-MS) was used to perform static headspace and mouthspace tests. The release of strawberry flavor in different hydrocolloids (gelatin, pectin, and starch) and conditions were analyzed. The factors that were considered were the type of hydrocolloid (gelatin, pectin, and starch), the concentration of the pectin (0, 2, 3, 5 g), sugar content (0, 55, 64, 74g), and acidity (pH 3.86, 3.65, 3.55, 3.47). Volatile release into the headspace of the samples containing no hydrocolloids was significantly higher than samples that contained hydrocolloids. The type of hydrocolloid significantly affected volatile compound concentration released into the headspace. Volatile levels in pectin and starch were lower than when no hydrocolloid was present, but they were not significant different with each other. Gelatin had the lowest volatile concentrations released into the headspace for most compounds. Increasing pectin decreased volatiles release compared to no hydrocolloids present. When the pectin content was further increased from 2g to 5g, most of volatiles had no significant difference.
    [Show full text]
  • Aspirin. an Ab Initio Quantum-Mechanical Study of Conformational Preferences and of Neighboring Group Interactions
    J. Org. Chem. 2001, 66, 771-779 771 Aspirin. An ab Initio Quantum-Mechanical Study of Conformational Preferences and of Neighboring Group Interactions Rainer Glaser Department of Chemistry, University of MissourisColumbia, Columbia, Missouri 65211 [email protected] Received August 15, 2000 The potential energy surface of acetylsalicylic acid, aspirin, has been explored at the RHF/6-31G* and B3LYP/6-31G* levels, and single-point calculations were performed at levels up to B3LYP/ 6-311G**//B3LYP/6-31G*. All conformational isomers have been located, the thermochemical functions have been computed, and relative energies and free enthalpies were determined. The conformational space of aspirin is spanned by three internal coordinates, and these are the carboxylic acid C-O conformation (s-trans preferred by about 7 kcal/mol), the C-COOH conformation (Z preferred unless there are H-bonding opportunities), and the ester C-O conformation (s-trans preferred by about 4 kcal/mol). There are nine aspirin isomers since one of the conformers realizes hydrogen-bonding structure isomerism as well. Neighboring group interactions are discussed with reference to the intrinsic properties of benzoic acid and phenyl acetate. The intrinsic conformational preference energies for benzoic acid and phenyl acetate are not additive. The acid s-trans preference energies differ by as much as 9 kcal/mol depending on the Ph-COOH and ester conformations. Similarly, the E-preference energies about the Ph-COOH bond vary by as much as 6 kcal/mol depending on the ester conformation. The structural discussion suggests an overall ortho repulsion between the functional groups in all aspirin isomers including the intramolecularly hydrogen- bonded isomers.
    [Show full text]