Number Sense Tricks

Total Page:16

File Type:pdf, Size:1020Kb

Number Sense Tricks Number Sense Tricks Bryant Heath 18 October 2007∗ ∗Revised and Edited : 12 April 2018 1 Contents 1 Numerical Tricks 6 1.1 Introduction: FOILing/LIOFing When Multiplying . 6 1.2 Multiplying: The Basics . 8 1.2.1 Multiplying by 11 Trick . 8 1.2.2 Multiplying by 101 Trick . 10 1.2.3 Multiplying by 25 Trick . 11 1.2.4 Multiplying by 75 trick . 12 1.2.5 Multiplying by Any Fraction of 100, 1000, etc... 13 1.2.6 Double and Half Trick . 15 1.2.7 Multiplying Two Numbers Near 100 . 16 1.2.8 Squares Ending in 5 Trick . 19 1.2.9 Squares from 41-59 . 19 1.2.10 Multiplying Two Numbers Equidistant from a Third Number . 20 1.2.11 Multiplying Reverses . 22 1.3 Standard Multiplication Tricks . 22 1.3.1 Extending Foiling . 22 1.3.2 Factoring of Numerical Problems . 24 1.3.3 Sum of Consecutive Squares . 27 1.3.4 Sum of Squares: Factoring Method . 27 1.3.5 Sum of Squares: Special Case . 28 1.3.6 Difference of Squares . 29 1.3.7 Multiplying Two Numbers Ending in 5 . 30 1.3.8 Multiplying Mixed Numbers . 31 a 1.3.9 a × Trick.......................................... 33 b 1.3.10 Combination of Tricks . 34 1.4 Dividing Tricks . 35 1.4.1 Finding a Remainder when Dividing by 4, 8, etc... 36 1.4.2 Finding a Remainder when Dividing by 3, 9, etc... 36 1.4.3 Finding a Remainder when Dividing by 11 . 37 1.4.4 Finding Remainders of Other Integers . 37 1.4.5 Remainders of Expressions . 38 1.4.6 Dividing by 9 Trick . 40 a b 1.4.7 Converting 40 and 80 , etc... to Decimals . 41 1.5 Adding and Subtracting Tricks . 42 1.5.1 Subtracting Reverses . 42 1.5.2 Switching Numbers and Negating on Subtraction . 43 a a 1.5.3 + + ··· ............................. 44 b · (b + 1) (b + 1) · (b + 2) a b 1.5.4 + Trick.......................................... 44 b a a na − 1 1.5.5 − .......................................... 45 b nb + 1 2 Memorizations 47 2.1 Important Numbers . 47 2.1.1 Squares . 47 2.1.2 Cubes . 49 2.1.3 Powers of 2; 3; 5........................................ 51 2.1.4 Important Fractions . 53 2.1.5 Special Integers . 56 2.1.6 Roman Numerals . 59 2.1.7 Platonic Solids and Euler's Formula . 60 2.1.8 π and e Approximations . 61 2 2.1.9 Distance and Velocity Conversions . 62 2.1.10 Conversion between Distance ! Area, Volume . 63 2.1.11 Fluid and Weight Conversions . 64 2.1.12 Celsius to Fahrenheit Conversions . 65 2.2 Formulas . 65 2.2.1 Sum of Series . 65 2.2.2 Fibonacci Numbers . 69 2.2.3 Integral Divisors . 72 2.2.4 Number of Diagonals of a Polygon . 75 2.2.5 Exterior/Interior Angles . 75 2.2.6 Triangular, Pentagonal, etc... Numbers . 76 2.2.7 Finding Sides of a Triangle . 77 2.2.8 Equilateral Triangle Formulas . 80 2.2.9 Formulas of Solids . 80 2.2.10 Combinations and Permutations . 81 2.2.11 Trigonometric Values . 83 2.2.12 Trigonometric Formulas . 86 2.2.13 Graphs of Sines/Cosines . 87 2.2.14 Vertex of a Parabola . 88 2.2.15 Discriminant and Roots . 89 3 Miscellaneous Topics 90 3.1 Random Assortment of Problems . 90 3.1.1 GCD and LCM . 90 3.1.2 Perfect, Abundant, and Deficient Numbers . 92 3.1.3 Sum and Product of Coefficients in Binomial Expansion . 92 3.1.4 Sum/Product of the Roots . 94 3.1.5 Finding Units Digit of xn .................................. 95 3.1.6 Exponent Rules . 97 3.1.7 Log Rules . 98 3.1.8 Square Root Problems . 101 3.1.9 Finding Approximations of Square Roots . 101 3.1.10 Complex Numbers . 103 3.1.11 Function Inverses . 105 3.1.12 Patterns . 106 3.1.13 Probability and Odds . 107 3.1.14 Sets . 108 3.2 Changing Bases . 109 3.2.1 Converting Integers . 109 3.2.2 Converting Decimals . 112 3.2.3 Performing Operations . 113 3.2.4 Changing Between Bases: Special Case . 115 3.2.5 Changing Bases: Sum of Powers . 117 3.2.6 Changing Bases: Miscellaneous Topics . 117 3.3 Repeating Decimals . 117 3.3.1 In the form: :aaaaa : : : ....................................118 3.3.2 In the form: :ababa : : : ....................................118 3.3.3 In the form: :abbbb : : : ....................................119 3.3.4 In the form: :abcbcbc : : : ...................................119 3.4 Modular Arithmetic . 120 3.5 Fun with Factorials! . 121 3.5.1 1 · 1! + 2 · 2! + ··· + n · n! ..................................121 a! ± b! 3.5.2 .............................................122 c! 3.5.3 Wilson's Theorem . 122 3 3.6 Basic Calculus . ..
Recommended publications
  • Special Kinds of Numbers
    Chapel Hill Math Circle: Special Kinds of Numbers 11/4/2017 1 Introduction This worksheet is concerned with three classes of special numbers: the polyg- onal numbers, the Catalan numbers, and the Lucas numbers. Polygonal numbers are a nice geometric generalization of perfect square integers, Cata- lan numbers are important numbers that (one way or another) show up in a wide variety of combinatorial and non-combinatorial situations, and Lucas numbers are a slight twist on our familiar Fibonacci numbers. The purpose of this worksheet is not to give an exhaustive treatment of any of these numbers, since that is just not possible. The goal is to, instead, introduce these interesting classes of numbers and give some motivation to explore on your own. 2 Polygonal Numbers The first class of numbers we'll consider are called polygonal numbers. We'll start with some simpler cases, and then derive a general formula. Take 3 points and arrange them as an equilateral triangle with side lengths of 2. Here, I use the term \side-length" to mean \how many points are in a side." The total number of points in this triangle (3) is the second triangular number, denoted P (3; 2). To get the third triangular number P (3; 3), we take the last configuration and adjoin points so that the outermost shape is an equilateral triangle with a side-length of 3. To do this, we can add 3 points along any one of the edges. Since there are 3 points in the original 1 triangle, and we added 3 points to get the next triangle, the total number of points in this step is P (3; 3) = 3 + 3 = 6.
    [Show full text]
  • Integer Partitions
    12 PETER KOROTEEV Remark. Note that out n! fixed points of T acting on Xn only for single point q we 12 PETER KOROTEEV get a polynomial out of Vq.Othercoefficient functions Vp remain infinite series which we 12shall further ignore. PETER One KOROTEEV can verify by examining (2.25) that in the n limit these Remark. Note that out n! fixed points of T acting on Xn only for single point q we coefficient functions will be suppressed. A choice of fixed point q following!1 the large-n limits get a polynomial out of Vq.Othercoefficient functions Vp remain infinite series which we Remark. Note thatcorresponds out n! fixed to zooming points of intoT aacting certain on asymptoticXn only region for single in which pointa q we a shall further ignore. One can verify by examining (2.25) that in the n | Slimit(1)| these| S(2)| ··· get a polynomial out ofaVSq(n.Othercoe) ,whereS fficientSn is functionsa permutationVp remain corresponding infinite to series the choice!1 which of we fixed point q. shall furthercoe ignore.fficient functions One| can| will verify be suppressed. by2 examining A choice (2.25 of) that fixed in point theqnfollowinglimit the large- thesen limits corresponds to zooming into a certain asymptotic region in which a!1 a coefficient functions will be suppressed. A choice of fixed point q following| theS(1) large-| | nSlimits(2)| ··· aS(n) ,whereS Sn is a permutation corresponding to the choice of fixed point q. q<latexit sha1_base64="gqhkYh7MBm9GaiVNDBxVo5M1bBY=">AAAB8HicbVBNS8NAEN3Ur1q/qh69LBbBU0lEUG9FLx4rWFtsQ9lsJ+3SzSbuTsQS+i+8eFDx6s/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFpeWV1rbhe2tjc2t4p7+7dmTjVHBo8lrFuBcyAFAoaKFBCK9HAokBCMxheTfzmI2gjYnWLowT8iPWVCAVnaKX7DsITBmH2MO6WK27VnYIuEi8nFZKj3i1/dXoxTyNQyCUzpu25CfoZ0yi4hHGpkxpIGB+yPrQtVSwC42fTi8f0yCo9GsbalkI6VX9PZCwyZhQFtjNiODDz3kT8z2unGJ77mVBJiqD4bFGYSooxnbxPe0IDRzmyhHEt7K2UD5hmHG1IJRuCN//yImmcVC+q3s1ppXaZp1EkB+SQHBOPnJEauSZ10iCcKPJMXsmbY5wX5935mLUWnHxmn/yB8/kDhq2RBA==</latexit>
    [Show full text]
  • Input for Carnival of Math: Number 115, October 2014
    Input for Carnival of Math: Number 115, October 2014 I visited Singapore in 1996 and the people were very kind to me. So I though this might be a little payback for their kindness. Good Luck. David Brooks The “Mathematical Association of America” (http://maanumberaday.blogspot.com/2009/11/115.html ) notes that: 115 = 5 x 23. 115 = 23 x (2 + 3). 115 has a unique representation as a sum of three squares: 3 2 + 5 2 + 9 2 = 115. 115 is the smallest three-digit integer, abc , such that ( abc )/( a*b*c) is prime : 115/5 = 23. STS-115 was a space shuttle mission to the International Space Station flown by the space shuttle Atlantis on Sept. 9, 2006. The “Online Encyclopedia of Integer Sequences” (http://www.oeis.org) notes that 115 is a tridecagonal (or 13-gonal) number. Also, 115 is the number of rooted trees with 8 vertices (or nodes). If you do a search for 115 on the OEIS website you will find out that there are 7,041 integer sequences that contain the number 115. The website “Positive Integers” (http://www.positiveintegers.org/115) notes that 115 is a palindromic and repdigit number when written in base 22 (5522). The website “Number Gossip” (http://www.numbergossip.com) notes that: 115 is the smallest three-digit integer, abc, such that (abc)/(a*b*c) is prime. It also notes that 115 is a composite, deficient, lucky, odd odious and square-free number. The website “Numbers Aplenty” (http://www.numbersaplenty.com/115) notes that: It has 4 divisors, whose sum is σ = 144.
    [Show full text]
  • Mathematics 2016.Pdf
    UNIVERSITY INTERSCHOLASTIC LEAGUE Making a World of Diference Mathematics Invitational A • 2016 DO NOT TURN THIS PAGE UNTIL YOU ARE INSTRUCTED TO DO SO! 1. Evaluate: 1 qq 8‚ƒ 1 6 (1 ‚ 30) 1 6 (A) qq 35 (B) 11.8 (C) qqq 11.2 (D) 8 (E) 5.0333... 2. Max Spender had $40.00 to buy school supplies. He bought six notebooks at $2.75 each, three reams of paper at $1.20 each, two 4-packs of highlighter pens at $3.10 per pack, twelve pencils at 8¢ each, and six 3-color pens at 79¢ each. How much money did he have left? (A) $4.17 (B) $5.00 (C) $6.57 (D) $7.12 (E) $8.00 3. 45 miles per hour is the same speed as _________________ inches per second. (A) 792 (B) 3,240 (C) 47,520 (D) 880 (E) 66 4. If P = {p,l,a,t,o}, O = {p,t,o,l,e,m,y}, and E = {e,u,c,l,i,d} then (P O) E = ? (A) { g } (B) {p,o,e} (C) {e, l } (D) {p,o,e,m} (E) {p,l,o,t} 5. An equation for the line shown is: (A) 3x qq 2y = 1 (B) 2x 3y = 2 (C) x y = q 1 (D) 3x 2y = qq 2 (E) x y = 1.5 6. Which of the following relations describes a function? (A) { (2,3), (3,3) (4,3) (5,3) } (B) { (qq 2,0), (0, 2) (0,2) (2,0) } (C) { (0,0), (2, q2) (2,2) (3,3) } (D) { (3,3), (3,4) (3,5) (3,6) } (E) none of these are a function 7.
    [Show full text]
  • Impartial Games
    Combinatorial Games MSRI Publications Volume 29, 1995 Impartial Games RICHARD K. GUY In memory of Jack Kenyon, 1935-08-26 to 1994-09-19 Abstract. We give examples and some general results about impartial games, those in which both players are allowed the same moves at any given time. 1. Introduction We continue our introduction to combinatorial games with a survey of im- partial games. Most of this material can also be found in WW [Berlekamp et al. 1982], particularly pp. 81{116, and in ONAG [Conway 1976], particu- larly pp. 112{130. An elementary introduction is given in [Guy 1989]; see also [Fraenkel 1996], pp. ??{?? in this volume. An impartial game is one in which the set of Left options is the same as the set of Right options. We've noticed in the preceding article the impartial games = 0=0; 0 0 = 1= and 0; 0; = 2: {|} ∗ { | } ∗ ∗ { ∗| ∗} ∗ that were born on days 0, 1, and 2, respectively, so it should come as no surprise that on day n the game n = 0; 1; 2;:::; (n 1) 0; 1; 2;:::; (n 1) ∗ {∗ ∗ ∗ ∗ − |∗ ∗ ∗ ∗ − } is born. In fact any game of the type a; b; c;::: a; b; c;::: {∗ ∗ ∗ |∗ ∗ ∗ } has value m,wherem =mex a;b;c;::: , the least nonnegative integer not in ∗ { } the set a;b;c;::: . To see this, notice that any option, a say, for which a>m, { } ∗ This is a slightly revised reprint of the article of the same name that appeared in Combi- natorial Games, Proceedings of Symposia in Applied Mathematics, Vol. 43, 1991. Permission for use courtesy of the American Mathematical Society.
    [Show full text]
  • 1 + 4 + 7 + 10 = 22;... the Nth Pentagonal Number Is Therefore
    CHAPTER 6 1. The pentagonal numbers are 1; 1 + 4 = 5; 1 + 4 + 7 = 12; 1 + 4 + 7 + 10 = 22;... The nth pentagonal number is therefore n 1 2 − n(n 1) 3n n (3i +1) = n + 3 − = − . i 2 ! 2 X=0 Similarly, since the hexagonal numbers are 1; 1+5 = 6; 1+5+9 = 15; 1+5+9+13 = 28;... it follows that the nth hexagonal number is n 1 − n(n 1) (4i +1) = n + 4 − = 2n2 n. i 2 ! − X=0 2. The pyramidal numbers with triangular base are 1; 1+3 = 4; 1+3+6 = 10; 1+3+6+10 = 20; ... Therefore the nth pyramidal number with triangular base is n n k(k + 1) 1 1 n(n + 1)(2n + 1) n(n + 1) = (k2 + k)= + k 2 2 k 2 " 6 2 # X=1 X=1 . n(n + 1) 2n + 1 1 n(n + 1)(n + 2) = + = 2 6 2 6 The pyramidal numbers with square base are 1; 1+4 = 5; 1+4+9 = 14; 1+4+9+16= 30;... Thus the nth pyramidal number with square base is given by the sum of the squares from 1 to n, namely, n(n + 1)(2n + 1) . 6 3. In a harmonic proportion, c : a =(c b):(b a). It follows that ac ab = bc ac or that b(a + c) = 2ac. Thus the sum of− the extremes− multiplied by the mean− equals− twice the product of the extremes. 4. Since 6:3=(5 3) : (6 5), the numbers 3, 5, 6 are in subcontrary proportion.
    [Show full text]
  • Newsletter 91
    Newsletter 9 1: December 2010 Introduction This is the final nzmaths newsletter for 2010. It is also the 91 st we have produced for the website. You can have a look at some of the old newsletters on this page: http://nzmaths.co.nz/newsletter As you are no doubt aware, 91 is a very interesting and important number. A quick search on Wikipedia (http://en.wikipedia.org/wiki/91_%28number%29) will very quickly tell you that 91 is: • The atomic number of protactinium, an actinide. • The code for international direct dial phone calls to India • In cents of a U.S. dollar, the amount of money one has if one has one each of the coins of denominations less than a dollar (penny, nickel, dime, quarter and half dollar) • The ISBN Group Identifier for books published in Sweden. In more mathematically related trivia, 91 is: • the twenty-seventh distinct semiprime. • a triangular number and a hexagonal number, one of the few such numbers to also be a centered hexagonal number, and it is also a centered nonagonal number and a centered cube number. It is a square pyramidal number, being the sum of the squares of the first six integers. • the smallest positive integer expressible as a sum of two cubes in two different ways if negative roots are allowed (alternatively the sum of two cubes and the difference of two cubes): 91 = 6 3+(-5) 3 = 43+33. • the smallest positive integer expressible as a sum of six distinct squares: 91 = 1 2+2 2+3 2+4 2+5 2+6 2.
    [Show full text]
  • PENTAGONAL NUMBERS in the PELL SEQUENCE and DIOPHANTINE EQUATIONS 2X2 = Y2(3Y -1) 2 ± 2 Ve Siva Rama Prasad and B
    PENTAGONAL NUMBERS IN THE PELL SEQUENCE AND DIOPHANTINE EQUATIONS 2x2 = y2(3y -1) 2 ± 2 Ve Siva Rama Prasad and B. Srlnivasa Rao Department of Mathematics, Osmania University, Hyderabad - 500 007 A.P., India (Submitted March 2000-Final Revision August 2000) 1. INTRODUCTION It is well known that a positive integer N is called a pentagonal (generalized pentagonal) number if N = m(3m ~ 1) 12 for some integer m > 0 (for any integer m). Ming Leo [1] has proved that 1 and 5 are the only pentagonal numbers in the Fibonacci sequence {Fn}. Later, he showed (in [2]) that 2, 1, and 7 are the only generalized pentagonal numbers in the Lucas sequence {Ln}. In [3] we have proved that 1 and 7 are the only generalized pentagonal numbers in the associated Pell sequence {Qn} delned by Q0 = Qx = 1 and Qn+2 = 2Qn+l + Q„ for n > 0. (1) In this paper, we consider the Pell sequence {PJ defined by P 0 =0,P 1 = 1, and Pn+2=2Pn+l+Pn for«>0 (2) and prove that P±l, P^, P4, and P6 are the only pentagonal numbers. Also we show that P0, P±1, P2, P^, P4, and P6 are the only generalized pentagonal numbers. Further, we use this to solve the Diophantine equations of the title. 2. PRELIMINARY RESULTS We have the following well-known properties of {Pn} and {Qn}: for all integers m and n, a a + pn = "-P" a n d Q = " P" w herea = 1 + V2 and p = 1-V2, (3) l P_„ = {-\r Pn and Q_„ = (-l)"Qn, (4) a2 = 2P„2+(-iy, (5) 2 2 e3„=a(e„ +6P„ ), (6> ^ + n = 2PmG„-(-l)"Pm_„.
    [Show full text]
  • Single Digits
    ...................................single digits ...................................single digits In Praise of Small Numbers MARC CHAMBERLAND Princeton University Press Princeton & Oxford Copyright c 2015 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW press.princeton.edu All Rights Reserved The second epigraph by Paul McCartney on page 111 is taken from The Beatles and is reproduced with permission of Curtis Brown Group Ltd., London on behalf of The Beneficiaries of the Estate of Hunter Davies. Copyright c Hunter Davies 2009. The epigraph on page 170 is taken from Harry Potter and the Half Blood Prince:Copyrightc J.K. Rowling 2005 The epigraphs on page 205 are reprinted wiht the permission of the Free Press, a Division of Simon & Schuster, Inc., from Born on a Blue Day: Inside the Extraordinary Mind of an Austistic Savant by Daniel Tammet. Copyright c 2006 by Daniel Tammet. Originally published in Great Britain in 2006 by Hodder & Stoughton. All rights reserved. Library of Congress Cataloging-in-Publication Data Chamberland, Marc, 1964– Single digits : in praise of small numbers / Marc Chamberland. pages cm Includes bibliographical references and index. ISBN 978-0-691-16114-3 (hardcover : alk. paper) 1. Mathematical analysis. 2. Sequences (Mathematics) 3. Combinatorial analysis. 4. Mathematics–Miscellanea. I. Title. QA300.C4412 2015 510—dc23 2014047680 British Library
    [Show full text]
  • A Study of .Perfect Numbers and Unitary Perfect
    CORE Metadata, citation and similar papers at core.ac.uk Provided by SHAREOK repository A STUDY OF .PERFECT NUMBERS AND UNITARY PERFECT NUMBERS By EDWARD LEE DUBOWSKY /I Bachelor of Science Northwest Missouri State College Maryville, Missouri: 1951 Master of Science Kansas State University Manhattan, Kansas 1954 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of .the requirements fqr the Degree of DOCTOR OF EDUCATION May, 1972 ,r . I \_J.(,e, .u,,1,; /q7Q D 0 &'ISs ~::>-~ OKLAHOMA STATE UNIVERSITY LIBRARY AUG 10 1973 A STUDY OF PERFECT NUMBERS ·AND UNITARY PERFECT NUMBERS Thesis Approved: OQ LL . ACKNOWLEDGEMENTS I wish to express my sincere gratitude to .Dr. Gerald K. Goff, .who suggested. this topic, for his guidance and invaluable assistance in the preparation of this dissertation. Special thanks.go to the members of. my advisory committee: 0 Dr. John Jewett, Dr. Craig Wood, Dr. Robert Alciatore, and Dr. Vernon Troxel. I wish to thank. Dr. Jeanne Agnew for the excellent training in number theory. that -made possible this .study. I wish tc;, thank Cynthia Wise for her excellent _job in typing this dissertation •. Finally, I wish to express gratitude to my wife, Juanita, .and my children, Sondra and David, for their encouragement and sacrifice made during this study. TABLE OF CONTENTS Chapter Page I. HISTORY AND INTRODUCTION. 1 II. EVEN PERFECT NUMBERS 4 Basic Theorems • • • • • • • • . 8 Some Congruence Relations ••• , , 12 Geometric Numbers ••.••• , , , , • , • . 16 Harmonic ,Mean of the Divisors •. ~ ••• , ••• I: 19 Other Properties •••• 21 Binary Notation. • •••• , ••• , •• , 23 III, ODD PERFECT NUMBERS . " . 27 Basic Structure • , , •• , , , .
    [Show full text]
  • Std XII Computer Science
    J.H. TARAPORE SCHOOL WORKSHEET NO- 5 STD XII :A/B/C COMPUTER SCIENCE (2020-2021) Topic : Java Practical Programs General Instructions: • Give the program name as “yournameQ1” eg : “SamikshaQ1,Samiksha Q2” • Execute the programs in your laptop. • Save the program and output together in a Microsoft Word File. • Submit the pendrive on the first day of the school reopening. Question 1. Write a program to check whether the given number is a Prime Adam Number or Not. Prime Number:A number which has only two factors,i.e 1 and the number itself. Adam Number : The square of a number and the square of its reverse are reverse to each other.Example,if n=31 and reverse of n=13,then 312=961 and 132= 169,which is reverse of 961.Thus ,31 is an Adam Number. So, 31 is a Prime Adam Number. Question 2. Write a program to check whether the given number is a Evil Number or Not. An Evil number is a positive whole number which has even number of 1’s in its binary equivalent. Example: Binary equivalent of 9 is 1001, which contains even number of 1’s. Thus, 9 is an Evil Number. A few Evil numbers are 3, 5, 6, 9.... Question 3. Write a program to check whether the given number is a Smith Number or Not. A Smith Number is a composite number,the sum of the digits of a number is equal to the sum of the digits of its prime factors (excluding 1). Example: 666 Prime factors of 666 : 2,3,3 and 37.
    [Show full text]
  • Complete Padovan Sequences in Finite Fields Juan B. Gil
    COMPLETE PADOVAN SEQUENCES IN FINITE FIELDS JUAN B. GIL Penn State Altoona, 3000 Ivyside Park, Altoona, PA 16601 MICHAEL D. WEINER Penn State Altoona, 3000 Ivyside Park, Altoona, PA 16601 CATALIN ZARA Penn State Altoona, 3000 Ivyside Park, Altoona, PA 16601 Abstract Given a prime p ≥ 5, and given 1 <κ<p − 1, we call a sequence (an)n in Fp a Φκ-sequence if it is periodic with period p − 1, and if it satisfies the linear recurrence an + an+1 = an+κ with a0 = 1. Such a sequence is said to be a complete Φκ-sequence if in addition {a0, a1,...,ap−2} = {1,...,p − 1}. For instance, every primitive root b mod p generates a complete Φκ-sequence n an = b for some (unique) κ. A natural question is whether every complete Φκ-sequence is necessarily defined by a primitive root. For κ = 2 the answer is known to be positive. In this paper we reexamine that case and investigate the case κ = 3 together with the associated cases κ = p − 2 and κ = p − 3. 1. Introduction For a prime number p ≥ 5 and a number κ ∈ {2,...,p − 2}, a sequence (an)n∈Z of elements of Fp is said to be a Φκ-sequence if a0 =1 and an+κ = an + an+1 for all n ∈ Z, (1) where “=” means (throughout this paper) equality in Fp. AΦκ-sequence is called complete if (an)n is periodic, with period p − 1, and (2) {a1,...,ap−2} = {2,...,p − 1}. (3) The case κ = 2 has been studied by Brison [1].
    [Show full text]