Lecture 1: Basic Set Theory 1.1 What Is a Set? 1.2 Operations on Sets
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												  On Properties of Families of Sets Lecture 2On properties of families of sets Lecture 2 Lajos Soukup Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences http://www.renyi.hu/∼soukup 7th Young Set Theory Workshop Recapitulation Recapitulation Definition: A family A⊂P(X) has property B iff χ(A)= 2, where the chromatic number of A is defined as follows: χ(A)=min{λ | ∃f : X → λ ∀A ∈ A |f [A]|≥ 2}. Recapitulation Definition: A family A⊂P(X) has property B iff χ(A)= 2, where the chromatic number of A is defined as follows: χ(A)=min{λ | ∃f : X → λ ∀A ∈ A |f [A]|≥ 2}. Theorem (E. W. Miller, 1937) ω There is an almost disjoint A⊂ ω with χ(A)= ω. Recapitulation Definition: A family A⊂P(X) has property B iff χ(A)= 2, where the chromatic number of A is defined as follows: χ(A)=min{λ | ∃f : X → λ ∀A ∈ A |f [A]|≥ 2}. Theorem (E. W. Miller, 1937) ω There is an almost disjoint A⊂ ω with χ(A)= ω. Theorem (Gy. Elekes, Gy Hoffman, 1973) ω For all infinite cardinal κ there is an almost disjoint A⊂ X with χ(A) ≥ κ. Recapitulation Definition: A family A⊂P(X) has property B iff χ(A)= 2, where the chromatic number of A is defined as follows: χ(A)=min{λ | ∃f : X → λ ∀A ∈ A |f [A]|≥ 2}. Theorem (E. W. Miller, 1937) ω There is an almost disjoint A⊂ ω with χ(A)= ω. Theorem (Gy. Elekes, Gy Hoffman, 1973) ω For all infinite cardinal κ there is an almost disjoint A⊂ X with χ(A) ≥ κ.
- 
												  Some Intersection Theorems for Ordered Sets and GraphsIOURNAL OF COMBINATORIAL THEORY, Series A 43, 23-37 (1986) Some Intersection Theorems for Ordered Sets and Graphs F. R. K. CHUNG* AND R. L. GRAHAM AT&T Bell Laboratories, Murray Hill, New Jersey 07974 and *Bell Communications Research, Morristown, New Jersey P. FRANKL C.N.R.S., Paris, France AND J. B. SHEARER' Universify of California, Berkeley, California Communicated by the Managing Editors Received May 22, 1984 A classical topic in combinatorics is the study of problems of the following type: What are the maximum families F of subsets of a finite set with the property that the intersection of any two sets in the family satisfies some specified condition? Typical restrictions on the intersections F n F of any F and F’ in F are: (i) FnF’# 0, where all FEF have k elements (Erdos, Ko, and Rado (1961)). (ii) IFn F’I > j (Katona (1964)). In this paper, we consider the following general question: For a given family B of subsets of [n] = { 1, 2,..., n}, what is the largest family F of subsets of [n] satsifying F,F’EF-FnFzB for some BE B. Of particular interest are those B for which the maximum families consist of so- called “kernel systems,” i.e., the family of all supersets of some fixed set in B. For example, we show that the set of all (cyclic) translates of a block of consecutive integers in [n] is such a family. It turns out rather unexpectedly that many of the results we obtain here depend strongly on properties of the well-known entropy function (from information theory).
- 
												  TOPOLOGY and ITS APPLICATIONS the Number of Complements in TheTOPOLOGY AND ITS APPLICATIONS ELSEVIER Topology and its Applications 55 (1994) 101-125 The number of complements in the lattice of topologies on a fixed set Stephen Watson Department of Mathematics, York Uniuersity, 4700 Keele Street, North York, Ont., Canada M3J IP3 (Received 3 May 1989) (Revised 14 November 1989 and 2 June 1992) Abstract In 1936, Birkhoff ordered the family of all topologies on a set by inclusion and obtained a lattice with 1 and 0. The study of this lattice ought to be a basic pursuit both in combinatorial set theory and in general topology. In this paper, we study the nature of complementation in this lattice. We say that topologies 7 and (T are complementary if and only if 7 A c = 0 and 7 V (T = 1. For simplicity, we call any topology other than the discrete and the indiscrete a proper topology. Hartmanis showed in 1958 that any proper topology on a finite set of size at least 3 has at least two complements. Gaifman showed in 1961 that any proper topology on a countable set has at least two complements. In 1965, Steiner showed that any topology has a complement. The question of the number of distinct complements a topology on a set must possess was first raised by Berri in 1964 who asked if every proper topology on an infinite set must have at least two complements. In 1969, Schnare showed that any proper topology on a set of infinite cardinality K has at least K distinct complements and at most 2” many distinct complements.
- 
												  Determinacy in Linear Rational Expectations ModelsJournal of Mathematical Economics 40 (2004) 815–830 Determinacy in linear rational expectations models Stéphane Gauthier∗ CREST, Laboratoire de Macroéconomie (Timbre J-360), 15 bd Gabriel Péri, 92245 Malakoff Cedex, France Received 15 February 2002; received in revised form 5 June 2003; accepted 17 July 2003 Available online 21 January 2004 Abstract The purpose of this paper is to assess the relevance of rational expectations solutions to the class of linear univariate models where both the number of leads in expectations and the number of lags in predetermined variables are arbitrary. It recommends to rule out all the solutions that would fail to be locally unique, or equivalently, locally determinate. So far, this determinacy criterion has been applied to particular solutions, in general some steady state or periodic cycle. However solutions to linear models with rational expectations typically do not conform to such simple dynamic patterns but express instead the current state of the economic system as a linear difference equation of lagged states. The innovation of this paper is to apply the determinacy criterion to the sets of coefficients of these linear difference equations. Its main result shows that only one set of such coefficients, or the corresponding solution, is locally determinate. This solution is commonly referred to as the fundamental one in the literature. In particular, in the saddle point configuration, it coincides with the saddle stable (pure forward) equilibrium trajectory. © 2004 Published by Elsevier B.V. JEL classification: C32; E32 Keywords: Rational expectations; Selection; Determinacy; Saddle point property 1. Introduction The rational expectations hypothesis is commonly justified by the fact that individual forecasts are based on the relevant theory of the economic system.
- 
												  180: Counting Techniques180: Counting Techniques In the following exercise we demonstrate the use of a few fundamental counting principles, namely the addition, multiplication, complementary, and inclusion-exclusion principles. While none of the principles are particular complicated in their own right, it does take some practice to become familiar with them, and recognise when they are applicable. I have attempted to indicate where alternate approaches are possible (and reasonable). Problem: Assume n ≥ 2 and m ≥ 1. Count the number of functions f :[n] ! [m] (i) in total. (ii) such that f(1) = 1 or f(2) = 1. (iii) with minx2[n] f(x) ≤ 5. (iv) such that f(1) ≥ f(2). (v) that are strictly increasing; that is, whenever x < y, f(x) < f(y). (vi) that are one-to-one (injective). (vii) that are onto (surjective). (viii) that are bijections. (ix) such that f(x) + f(y) is even for every x; y 2 [n]. (x) with maxx2[n] f(x) = minx2[n] f(x) + 1. Solution: (i) A function f :[n] ! [m] assigns for every integer 1 ≤ x ≤ n an integer 1 ≤ f(x) ≤ m. For each integer x, we have m options. As we make n such choices (independently), the total number of functions is m × m × : : : m = mn. (ii) (We assume n ≥ 2.) Let A1 be the set of functions with f(1) = 1, and A2 the set of functions with f(2) = 1. Then A1 [ A2 represents those functions with f(1) = 1 or f(2) = 1, which is precisely what we need to count. We have jA1 [ A2j = jA1j + jA2j − jA1 \ A2j.
- 
												  Families of Sets and Extended Operations Families of SetsFamilies of Sets and Extended Operations Families of Sets When dealing with sets whose elements are themselves sets it is fairly common practice to refer to them as families of sets, however this is not a definition. In fact, technically, a family of sets need not be a set, because we allow repeated elements, so a family is a multiset. However, we do require that when repeated elements appear they are distinguishable. F = {A , A , A , A } with A = {a,b,c}, A ={a}, A = {a,d} and 1 2 3 4 1 2 3 A = {a} is a family of sets. 4 Extended Union and Intersection Let F be a family of sets. Then we define: The union over F by: ∪ A={x :∃ A∈F x∈A}= {x :∃ A A∈F∧x∈A} A∈F and the intersection over F by: ∩ A = {x :∀ A∈F x∈A}= {x :∀ A A∈F ⇒ x∈A}. A∈F For example, with F = {A , A , A , A } where A = {a,b,c}, 1 2 3 4 1 A ={a}, A = {a,d} and A = {a} we have: 2 3 4 ∪ A = {a ,b , c , d } and ∩ A = {a}. A∈F A∈F Theorem 2.8 For each set B in a family F of sets, a) ∩ A ⊆ B A∈F b) B ⊆ ∪ A. A∈F Pf: a) Suppose x ∈ ∩ A, then ∀A ∈ F, x ∈ A. Since B ∈ F, we have x ∈ B. Thus, ∩ A ⊆ B. b) Now suppose y ∈ B. Since B ∈ F, y ∈ ∪ A. Thus, B ⊆ ∪ A. Caveat Care must be taken with the empty family F, i.e., the family containing no sets.
- 
												  Set Difference and Symmetric Difference of Fuzzy SetsPreliminaries Symmetric Dierence Set Dierence and Symmetric Dierence of Fuzzy Sets N.R. Vemuri A.S. Hareesh M.S. Srinath Department of Mathematics Indian Institute of Technology, Hyderabad and Department of Mathematics and Computer Science Sri Sathya Sai Institute of Higher Learning, India Fuzzy Sets Theory and Applications 2014, Liptovský Ján, Slovak Republic Vemuri, Sai Hareesh & Srinath Symmetric Dierence Preliminaries Introduction Symmetric Dierence Earlier work Outline 1 Preliminaries Introduction Earlier work 2 Symmetric Dierence Denition Examples Properties Applications Future Work References Vemuri, Sai Hareesh & Srinath Symmetric Dierence Preliminaries Introduction Symmetric Dierence Earlier work Classical set theory Set operations Union- [ Intersection - \ Complement - c Dierence -n Symmetric dierence - ∆ .... Vemuri, Sai Hareesh & Srinath Symmetric Dierence Preliminaries Introduction Symmetric Dierence Earlier work Classical set theory Set operations Union- [ Intersection - \ Complement - c Dierence -n Symmetric dierence - ∆ .... Vemuri, Sai Hareesh & Srinath Symmetric Dierence Preliminaries Introduction Symmetric Dierence Earlier work Classical set theory Set operations Union- [ Intersection - \ Complement - c Dierence -n Symmetric dierence - ∆ .... Vemuri, Sai Hareesh & Srinath Symmetric Dierence Preliminaries Introduction Symmetric Dierence Earlier work Classical set theory Set operations Union- [ Intersection - \ Complement - c Dierence -n Symmetric dierence - ∆ .... Vemuri, Sai Hareesh & Srinath Symmetric Dierence Preliminaries
- 
												  Families of SetsFORMALIZED MATHEMATICS Number 1, January 1990 Universit´eCatholique de Louvain Families of Sets Beata Padlewska1 Warsaw University Bia lystok Summary. The article contains definitions of the following concepts: family of sets, family of subsets of a set, the intersection of a family of sets. Functors ∪, ∩, and \ are redefined for families of subsets of a set. Some properties of these notions are presented. The terminology and notation used in this paper are introduced in the following papers: [1], [3], and [2]. For simplicity we adopt the following convention: X, Y , Z, Z1, D will denote objects of the type set; x, y will denote objects of the type Any. Let us consider X. The functor \ X, with values of the type set, is defined by for x holds x ∈ it iff for Y holds Y ∈ X implies x ∈ Y, if X 6= ∅, it = ∅, otherwise. The following propositions are true: (1) X 6= ∅ implies for x holds x ∈ \ X iff for Y st Y ∈ X holds x ∈ Y, (2) \ ∅ = ∅, (3) \ X ⊆ [ X, (4) Z ∈ X implies \ X ⊆ Z, (5) ∅∈ X implies \ X = ∅, (6) X 6= ∅ &(for Z1 st Z1 ∈ X holds Z ⊆ Z1) implies Z ⊆ \ X, 1Supported by RPBP.III-24.C1. cf 1990 Fondation Philippe le Hodey 147 ISSN 0777-4028 148 Beata Padlewska (7) X 6= ∅ & X ⊆ Y implies \ Y ⊆ \ X, (8) X ∈ Y & X ⊆ Z implies \ Y ⊆ Z, (9) X ∈ Y & X ∩ Z = ∅ implies \ Y ∩ Z = ∅, (10) X 6= ∅ & Y 6= ∅ implies \(X ∪ Y )= \ X ∩ \ Y, (11) \{x} = x, (12) \{X,Y } = X ∩ Y. Set-Family stands for set .
- 
												  E. A. Emerson and C. S. Jutla, Tree Automata, Mu-Calculus, AndTree Automata MuCalculus and Determinacy Extended Abstract EA Emerson and CS Jutla The University of Texas at Austin IBM TJ Watson Research Center Abstract that tree automata are closed under disjunction pro jection and complementation While the rst two We show that the prop ositional MuCalculus is eq are rather easy the pro of of Rabins Complemen uivalent in expressivepower to nite automata on in tation Lemma is extraordinarily complex and di nite trees Since complementation is trivial in the Mu cult Because of the imp ortance of the Complemen Calculus our equivalence provides a radically sim tation Lemma a numb er of authors have endeavored plied alternative pro of of Rabins complementation and continue to endeavor to simplify the argument lemma for tree automata which is the heart of one HR GH MS Mu Perhaps the b est of the deep est decidability results We also showhow known of these is the imp ortant work of Gurevich MuCalculus can b e used to establish determinacy of and Harrington GH which attacks the problem innite games used in earlier pro ofs of complementa from the standp oint of determinacy of innite games tion lemma and certain games used in the theory of While the presentation is brief the argument is still online algorithms extremely dicult and is probably b est appreciated Intro duction y the page supplementofMonk when accompanied b Mon We prop ose the prop ositional Mucalculus as a uniform framework for understanding and simplify In this pap er we present a new enormously sim ing the imp ortant and technically challenging
- 
												  Lecture 7 1 Overview 2 Sequences and Cartesian ProductsCOMPSCI 230: Discrete Mathematics for Computer Science February 4, 2019 Lecture 7 Lecturer: Debmalya Panigrahi Scribe: Erin Taylor 1 Overview In this lecture, we introduce sequences and Cartesian products. We also define relations and study their properties. 2 Sequences and Cartesian Products Recall that two fundamental properties of sets are the following: 1. A set does not contain multiple copies of the same element. 2. The order of elements in a set does not matter. For example, if S = f1, 4, 3g then S is also equal to f4, 1, 3g and f1, 1, 3, 4, 3g. If we remove these two properties from a set, the result is known as a sequence. Definition 1. A sequence is an ordered collection of elements where an element may repeat multiple times. An example of a sequence with three elements is (1, 4, 3). This sequence, unlike the statement above for sets, is not equal to (4, 1, 3), nor is it equal to (1, 1, 3, 4, 3). Often the following shorthand notation is used to define a sequence: 1 s = 8i 2 N i 2i Here the sequence (s1, s2, ... ) is formed by plugging i = 1, 2, ... into the expression to find s1, s2, and so on. This sequence is (1/2, 1/4, 1/8, ... ). We now define a new set operator; the result of this operator is a set whose elements are two-element sequences. Definition 2. The Cartesian product of sets A and B, denoted by A × B, is a set defined as follows: A × B = f(a, b) : a 2 A, b 2 Bg.
- 
												  Cartesian PowersCartesian Powers sequences subsets functions exponential growth +, -, x, … Analogies between number and set operations Numbers Sets Addition Disjoint union Subtraction Complement Multiplication Cartesian product Exponents ? Cartesian Powers of a Set Cartesian product of a set with itself is a Cartesian power A2 = A x A Cartesian square An ≝ A x A x … x A n’th Cartesian power n X |An| = | A x A x … x A | = |A| x |A| x … x |A| = |A|n Practical and theoretical applications Applications California License Plates California Till 1904 no registration 1905-1912 various registration formats one-time $2 fee 1913 ≤6 digits 106 = 1 million If all OK Sam? 1956 263 x 103 ≈ 17.6 m 1969 263 x 104 ≈ 176 m Binary Strings {0,1}n = { length-n binary strings } n-bit strings 0 1 1 n Set Strings Size {0,1} 0 {0,1}0 Λ 1 00 01 1 {0,1}1 0, 1 2 {0,1}2 2 {0,1}2 00, 01, 10, 11 4 000, 001, 011, 010, 10 11 3 {0,1}3 8 100, 110, 101, 111 001 011 … … … … 010 {0,1}3 n {0,1}n 0…0, …, 1…1 2n 000 111 101 | {0,1}n | =|{0,1}|n = 2n 100 110 Subsets The power set of S, denoted ℙ(S), is the collection of all subsets of S ℙ( {a,b} ) = { {}, {a}, {b}, {a,b} } ℙ({a,b}) and {0,1}2 ℙ({a,b}) a b {0,1}2 Subsets Binary strings {} 00 |ℙ(S)| = ? of S of length |S| ❌ ❌ {b} ❌ ✅ 01 {a} ✅ ❌ 10 |S| 1-1 correspondence between ℙ(S) and {0,1} {a,b} ✅ ✅ 11 |ℙ(S)| = | {0,1}|S| | = 2|S| The size of the power set is the power of the set size Functions A function from A to B maps every element a ∈ A to an element f(a) ∈ B Define a function f: specify f(a) for every a ∈ A f from {1,2,3} to {p, u} specify
- 
												  Course 221: Michaelmas Term 2006 Section 1: Sets, Functions and CountabilityCourse 221: Michaelmas Term 2006 Section 1: Sets, Functions and Countability David R. Wilkins Copyright c David R. Wilkins 2006 Contents 1 Sets, Functions and Countability 2 1.1 Sets . 2 1.2 Cartesian Products of Sets . 5 1.3 Relations . 6 1.4 Equivalence Relations . 6 1.5 Functions . 8 1.6 The Graph of a Function . 9 1.7 Functions and the Empty Set . 10 1.8 Injective, Surjective and Bijective Functions . 11 1.9 Inverse Functions . 13 1.10 Preimages . 14 1.11 Finite and Infinite Sets . 16 1.12 Countability . 17 1.13 Cartesian Products and Unions of Countable Sets . 18 1.14 Uncountable Sets . 21 1.15 Power Sets . 21 1.16 The Cantor Set . 22 1 1 Sets, Functions and Countability 1.1 Sets A set is a collection of objects; these objects are known as elements of the set. If an element x belongs to a set X then we denote this fact by writing x ∈ X. Sets with small numbers of elements can be specified by listing the elements of the set enclosed within braces. For example {a, b, c, d} is the set consisting of the elements a, b, c and d. Two sets are equal if and only if they have the same elements. The empty set ∅ is the set with no elements. Standard notations N, Z, Q, R and C are adopted for the following sets: • the set N of positive integers; • the set Z of integers; • the set Q of rational numbers; • the set R of real numbers; • the set C of complex numbers.