Geometry and Complexity in Architecture

Total Page:16

File Type:pdf, Size:1020Kb

Geometry and Complexity in Architecture Ana-Maria RUSU GEOMETRY AND COMPLEXITY IN ARCHITECTURE Abstract: As Constantin Brancuși (1876-1956) said „Simplicity is complexity itself“, simplicity and regularity through the use of basic geometric forms has always played a central role in architectural design, during the 20th century. A diachronic perspective, shows as the use of geometry and mathematics to describe built form provided a common basis for communication between the processes of design, fabrication and stability. Classic ways of representing geometry, based on descriptive methods, favor precise language of bidimensionality easy to represent in a rectangular coordinate system. In recent years, the importance of geometry has been re-emphasized by significant advances in the digital age, where computers are increasingly used in design, fabrication and construction to explore the art of the possible. Contemporary architecture transcend the limitations of Euclidean geometry and create new forms that are emerging through the convergence of complex systems, computational design and robotic fabrication devices, but which can also achieve higher levels of performance. Freeform architectural shapes and structures play an increasingly important role in 21st century architectural design. Through a series of examples, the paper relates to contemporary architectural explorations of complex, curvilinear surfaces in the digital age and discusses how it has required rethinking the mode in which we traditionally operate as architects. The analysis creates the possibility of comparisons between original and current design. Key words: Geometry; Free-form; Architecture; Design process. INTRODUCTION The first category of thin covers can in its own turn be divided and classified based on geometrical form; the As it is well-known, descriptive geometry is a branch resulting categories are: of applied mathematics whose goal is to represent objects • Surfaces of revolution; bidimensionally, on one or more planes, allowing for a • Surfaces of translation; graphical solution to many problems that are connected • Ruled surfaces. to tridimensionality. Nowadays, in the digital era, when A second classification can be made based on the computers play an ever increasing role in the projection Gauss curve: and materialization of architectural designs, there have • Singly curved shells. These shells have a zero been profound changes in the evolution of the whole Gaussian curvature; creation process which have led to the question whether • Doubly-curved shells of positive Gaussian geometry has not become solely a means of perception, curvature; of building explanations, understanding, and representing • Doubly curved shells of negative Gaussian space; or does it still allow for the creation of new curvature. [1] shapes? Although geometry has been the language of Classification based on geometrical developability: choice between different design processes, production, • Developable surfaces and materialization of architecture, it receives new • Non-developable surfaces valences in the combination with digital technology. This The free forms cannot be defined analytically, only in new technology transcends the limitations of the a more subtle way, through a network of coordinates, by Euclidean geometry, generating free-form architectural employing functional calculations that are specific to the volumes, a more organic aesthetics with an increased structurally conditioned optimization procedures. level of structural performance and this makes the Up until now, when looking to create curved answer to our previous question become more and more architectural shapes, one had to take into account: confusing and distant. • First of all must be possible to formulate The complex architectural forms, which demonstrate mathematically; a very free shape, have their beginnings set in the 1920’s, • The second, easy to build; when thin concrete shells started to be used as roof • Thirdly, structure should have expressivity. structures. Being able to make these structures in which Thus, thin continuous covers are known for their curved architecture had to possess an adequate structural structural efficiency resulting from geometry, also called strength, and an equally powerful elegance, represented a self-supporting structures, and for their reduced width huge challenge given that knowledge, as well as compared to the openness. Besides being structurally instruments, at that time was extremely limited. The efficient, these structures are also extremely simple and classification of the thin covers presents two distinct elegant. As these architectural forms evolved, the categories of shapes: analytical shapes and free shapes. structural analysis had a long and difficult history. As they were developed and perfected sometime between 1950 and 1960, at a time when architects were using JOURNAL OF INDUSTRIAL DESIGN AND ENGINEERING GRAPHICS 59 Geometry and complexity in architecture them as a means of artistic expression, long before the computer ever entered the architectural scene a considerable amount of effort was required to check the designs. 2. SHELL STRUCTURES One of the best known architects who designed and built a great number of thin covers from concrete shells is Felix Candela. Although an architect by formation, Candela remains known as one of the most important builders and structure engineers. Almost all his works, Fig. 2 The hyperbolic paraboloid. created between 1950-1960 around Ciudad de Mexico, are still in great shape, after years of usage and after the devastating consequences of some strong earthquakes in the area. He used the hyperbolic paraboloid for a number of these structures, whose shape allowed for a remarkably small width in relation to their aperture. Candela posited that „of all the shapes we can give to the shell, the easiest and most practical to build is the hyperbolic paraboloid.“ In order to better understand the creation of a thin structure in the shape of a hyperbolic paraboloid, we must first understand the geometrical characteristics of this geometrical surface. 2.1 THE HYPERBOLIC PARABOLOID The hyperbolic paraboloid is a quadric ruled surface Fig. 3 The hyperbolic paraboloid. generated by a straight line that lies on two straight directrices and is at all times parallel to a director plane. A hyperbolic paraboloid can be also defined by It is built by tracing one generator at a time, as a distinct means of a skew quadrilateral ABCD, Fig.3. variation of the general hyperboloid. The third straight A skew quadrilateral determines one hyperbolic directrix opens upward to the infinite and is replaced by a paraboloid and only one. The axis of the hyperbolic director plane parallel to the surface’s generators. paraboloid is the straight line parallel to the intersection The hyperbolic paraboloid is a doubly ruled skew line of the two director planes; it may be determined by surface. It contains two families of mutually skew lines joining the middle sections of the skew quadrilateral’s that can generate the same hyperbolic paraboloid. The diagonals ABCD. The tip of the hyperbolic paraboloid is first generator family is made of generators parallel to the the point on its surface where the tangent plane in that first director plane, Fig.1. The second family is made of particular point is perpendicular on the axis of the generators parallel to the second director plane. hyperbolic paraboloid. The two generators that pass through the tip of the hyperbolic paraboloid are called main generators. The main generators are the diagonals of a parallelogram that can be obtained by joining the middle of the skew quadrilateral’s sides AbCd. [3] The surface of the hyperbolic paraboloid contains two series of straight generators Fig.4. Fig. 1 The hyperbolic paraboloid. The second director plane is parallel to the two straight directrices Γ1 Γ2, which support the generators in the first family, Fig.2. [2] Thus the generators in the first family may become directrices for those in the second family and the other way round. The hyperbolic paraboloid is the only ruled surface with two director planes. Fig. 4 The hyperbolic paraboloid. 60 VOLUME 10 SPECIAL ISSUE ICEGD JUNE 2015 Geometry and complexity in architecture and the Y-axis divides the structure into two symmetrical They allow the delineation of skew quadrilateral parts. To reduce the tension in the concrete shell at the sections of equal measure. Or, in other words: any skew basis of the surface the foundation has been set and two quadrilateral may be adjacent to a section of a surface of pairs of buttresses, in the front and in the back, sustain a hyperbolic paraboloid. If two straight opposite sides are the charge. After almost 60 years since it was built, the equally subdivided and the subdivision points are united chapel is still in exceptional condition. by straight lines, they become generators of the doubly curved surface by the hyperbolic paraboloid. The paraboloid, as a translation surface, may be also generated by a parabola which is moving parallel to its axis, along with another parabola, having parallel axes and pointed in different directions. There are many examples of hyperbolic paraboloid in constructions and architecture where it can be encountered in the manufacturing of roof systems or in other projects which require a large number of surfaces. From a structural point of view, the double curvature of opposite direction deals very well with the changing game of the internal forces of tension and compression, maintaining
Recommended publications
  • Quadratic Approximation at a Stationary Point Let F(X, Y) Be a Given
    Multivariable Calculus Grinshpan Quadratic approximation at a stationary point Let f(x; y) be a given function and let (x0; y0) be a point in its domain. Under proper differentiability conditions one has f(x; y) = f(x0; y0) + fx(x0; y0)(x − x0) + fy(x0; y0)(y − y0) 1 2 1 2 + 2 fxx(x0; y0)(x − x0) + fxy(x0; y0)(x − x0)(y − y0) + 2 fyy(x0; y0)(y − y0) + higher−order terms: Let (x0; y0) be a stationary (critical) point of f: fx(x0; y0) = fy(x0; y0) = 0. Then 2 2 f(x; y) = f(x0; y0) + A(x − x0) + 2B(x − x0)(y − y0) + C(y − y0) + higher−order terms, 1 1 1 1 where A = 2 fxx(x0; y0);B = 2 fxy(x0; y0) = 2 fyx(x0; y0), and C = 2 fyy(x0; y0). Assume for simplicity that (x0; y0) = (0; 0) and f(0; 0) = 0. [ This can always be achieved by translation: f~(x; y) = f(x0 + x; y0 + y) − f(x0; y0). ] Then f(x; y) = Ax2 + 2Bxy + Cy2 + higher−order terms. Thus, provided A, B, C are not all zero, the graph of f near (0; 0) resembles the quadric surface z = Ax2 + 2Bxy + Cy2: Generically, this quadric surface is either an elliptic or a hyperbolic paraboloid. We distinguish three scenarios: * Elliptic paraboloid opening up, (0; 0) is a point of local minimum. * Elliptic paraboloid opening down, (0; 0) is a point of local maximum. * Hyperbolic paraboloid, (0; 0) is a saddle point. It should certainly be possible to tell which case we are dealing with by looking at the coefficients A, B, and C, and this is the idea behind the Second Partials Test.
    [Show full text]
  • Chapter 11. Three Dimensional Analytic Geometry and Vectors
    Chapter 11. Three dimensional analytic geometry and vectors. Section 11.5 Quadric surfaces. Curves in R2 : x2 y2 ellipse + =1 a2 b2 x2 y2 hyperbola − =1 a2 b2 parabola y = ax2 or x = by2 A quadric surface is the graph of a second degree equation in three variables. The most general such equation is Ax2 + By2 + Cz2 + Dxy + Exz + F yz + Gx + Hy + Iz + J =0, where A, B, C, ..., J are constants. By translation and rotation the equation can be brought into one of two standard forms Ax2 + By2 + Cz2 + J =0 or Ax2 + By2 + Iz =0 In order to sketch the graph of a quadric surface, it is useful to determine the curves of intersection of the surface with planes parallel to the coordinate planes. These curves are called traces of the surface. Ellipsoids The quadric surface with equation x2 y2 z2 + + =1 a2 b2 c2 is called an ellipsoid because all of its traces are ellipses. 2 1 x y 3 2 1 z ±1 ±2 ±3 ±1 ±2 The six intercepts of the ellipsoid are (±a, 0, 0), (0, ±b, 0), and (0, 0, ±c) and the ellipsoid lies in the box |x| ≤ a, |y| ≤ b, |z| ≤ c Since the ellipsoid involves only even powers of x, y, and z, the ellipsoid is symmetric with respect to each coordinate plane. Example 1. Find the traces of the surface 4x2 +9y2 + 36z2 = 36 1 in the planes x = k, y = k, and z = k. Identify the surface and sketch it. Hyperboloids Hyperboloid of one sheet. The quadric surface with equations x2 y2 z2 1.
    [Show full text]
  • Calculus & Analytic Geometry
    TQS 126 Spring 2008 Quinn Calculus & Analytic Geometry III Quadratic Equations in 3-D Match each function to its graph 1. 9x2 + 36y2 +4z2 = 36 2. 4x2 +9y2 4z2 =0 − 3. 36x2 +9y2 4z2 = 36 − 4. 4x2 9y2 4z2 = 36 − − 5. 9x2 +4y2 6z =0 − 6. 9x2 4y2 6z =0 − − 7. 4x2 + y2 +4z2 4y 4z +36=0 − − 8. 4x2 + y2 +4z2 4y 4z 36=0 − − − cone • ellipsoid • elliptic paraboloid • hyperbolic paraboloid • hyperboloid of one sheet • hyperboloid of two sheets 24 TQS 126 Spring 2008 Quinn Calculus & Analytic Geometry III Parametric Equations (§10.1) and Vector Functions (§13.1) Definition. If x and y are given as continuous function x = f(t) y = g(t) over an interval of t-values, then the set of points (x, y)=(f(t),g(t)) defined by these equation is a parametric curve (sometimes called aplane curve). The equations are parametric equations for the curve. Often we think of parametric curves as describing the movement of a particle in a plane over time. Examples. x = 2cos t x = et 0 t π 1 t e y = 3sin t ≤ ≤ y = ln t ≤ ≤ Can we find parameterizations of known curves? the line segment circle x2 + y2 =1 from (1, 3) to (5, 1) Why restrict ourselves to only moving through planes? Why not space? And why not use our nifty vector notation? 25 Definition. If x, y, and z are given as continuous functions x = f(t) y = g(t) z = h(t) over an interval of t-values, then the set of points (x,y,z)= (f(t),g(t), h(t)) defined by these equation is a parametric curve (sometimes called a space curve).
    [Show full text]
  • Chapter 3 Quadratic Curves, Quadric Surfaces
    Chapter 3 Quadratic curves, quadric surfaces In this chapter we begin our study of curved surfaces. We focus on the quadric surfaces. To do this, we also need to look at quadratic curves, such as ellipses. We discuss: Equations and parametric descriptions of the plane quadratic curves: circles, ellipses, ² hyperbolas and parabolas. Equations and parametric descriptions of quadric surfaces, the 2{dimensional ana- ² logues of quadratic curves. We also discuss aspects of matrices, since they are relevant for our discussion. 3.1 Plane quadratic curves 3.1.1 From linear to quadratic equations Lines in the plane R2 are represented by linear equations and linear parametric descriptions. Degree 2 equations also correspond to curves you undoubtedly have come across before: circles, ellipses, hyperbolas and parabolas. This section is devoted to these curves. They will reoccur when we consider quadric surfaces, a class of fascinating shapes, since the intersection of a quadric surface with a plane consists of a quadratic curve. Lines di®er from quadratic curves in various respects, one of which is that all lines look the same (only their position in the plane may di®er), but that quadratic curves may truely di®er in shape. 3.1.2 The general equation of a quadratic curve The general equation of a line in R2 is ax + by = c. When we also allow terms of degree 2 in the variables x and y, i.e., x2, xy and y2, we obtain quadratic equations like x2 + y2 = 1, a circle. ² x2 + 2x + y = 3, a parabola; probably you recognize it as such if it is rewritten in the ² form y = 3 x2 2x or y = (x + 1)2 + 4.
    [Show full text]
  • Lesson 9: Volume and Cavalieri's Principle
    NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 9 M3 PRECALCULUS AND ADVANCED TOPICS Lesson 9: Volume and Cavalieri’s Principle Student Outcomes . Students will be able to give an informal argument using Cavalieri’s principle for the formula for the volume of a sphere and other solid figures (G-GMD.A.2). Lesson Notes The opening uses the idea of cross sections to establish a connection between the current lesson and the previous lessons. In particular, ellipses and hyperbolas are seen as cross sections of a cone, and Cavalieri’s volume principle is based on cross-sectional areas. This principle is used to explore the volume of pyramids, cones, and spheres. Classwork Opening (2 minutes) Scaffolding: . A cutout of a cone is available in Geometry, Module 3, Lesson 7 to make picturing this exercise easier. Use the cutout to model determining that a circle is a possible cross section of a cone. “Conic Sections” by Magister Mathematicae is licensed under CC BY-SA 3.0 http://creativecommons.org/licenses/by-sa/3.0/deed.en In the previous lesson, we saw how the ellipse, parabola, and hyperbola can come together in the context of a satellite orbiting a body such as a planet; we learned that the velocity of the satellite determines the shape of its orbit. Another context in which these curves and a circle arise is in slicing a cone. The intersection of a plane with a solid is called a cross section of the solid. Lesson 9: Volume and Cavalieri’s Principle Date: 2/9/15 144 This work is licensed under a © 2015 Common Core, Inc.
    [Show full text]
  • Math 16C: Multivariate Calculus
    MATH 16C: MULTIVARIATE CALCULUS Jes´us De Loera, UC Davis April 12, 2010 Jes´us De Loera, UC Davis MATH 16C: MULTIVARIATE CALCULUS 7.1: The 3-dimensional coordinate system Jes´us De Loera, UC Davis MATH 16C: MULTIVARIATE CALCULUS 2 2 2 Thus, d = (x2 x1) + (y2 y1) + (z2 z1) . EXAMPLE: − − − Find the distancep between ( 3, 2, 5) and (4, 1, 2). − − d = (( 3) 4)2 + (2 ( 1))2 + (5 2)2 = √49+9+9= √67. q − − − − − Jes´us De Loera, UC Davis MATH 16C: MULTIVARIATE CALCULUS Mid-point between two points What is the mid-point between two points (x1, y1, z1) and (x2, y2, z2)? Let (xm, ym, zm) be the mid-point. Then xm must be half-way x1+x1 bewteen x1 and x2, so xm = 2 . y1+y2 Also, ym must be half-way between y1 and y2, so ym = 2 Similarly, zm must be half-way between z1 and z2, so z1+z2 zm = 2 . Thus, x1 + x1 y1 + y2 z1 + z2 (xm, ym, zm)= , , . 2 2 2 E.g. What is the midpoint bewteen ( 3, 2, 5) and (4, 1, 2)? − ( 3) + 4 2 + 1 5 + 2 1 3 1 (xm, ym, zm)= − , , = , , . 2 2 2 2 2 2 Jes´us De Loera, UC Davis MATH 16C: MULTIVARIATE CALCULUS Question: If we fix a point (a, b, c), what is the set of all points at a distance r from (a, b, c) called? Answer: A SPHERE centered at (a, b, c). (x a)2 + (y b)2 + (z c)2 = r (x a)2+(y b)2+(z c)2 = r 2.
    [Show full text]
  • Calculus III -- Fall 2008
    Section 12.2: Quadric Surfaces Goals : 1. To recognize and write equations of quadric surfaces 2. To graph quadric surfaces by hand Definitions: 1. A quadric surface is the three-dimensional graph of an equation that can (through appropriate transformations, if necessary), be written in either of the following forms: Ax 2 + By 2 + Cz 2 + J = 0 or Ax 2 + By 2 + Iz = 0 . 2. The intersection of a surface with a plane is called a trace of the surface in the plane. Notes : 1. There are 6 kinds of quadric surfaces. Scroll down to get an idea of what they look like. Keep in mind that each graph shown illustrates just one of many possible orientations of the surface. 2. The traces of quadric surfaces are conic sections (i.e. a parabola, ellipse, or hyperbola). 3. The key to graphing quadric surfaces is making use of traces in planes parallel to the xy , xz , and yz planes. 4. The following pages are from the lecture notes of Professor Eitan Angel, University of Colorado. Keep scrolling down (or press the Page Down key) to advance the slide show. Calculus III { Fall 2008 Lecture{QuadricSurfaces Eitan Angel University of Colorado Monday, September 8, 2008 E. Angel (CU) Calculus III 8 Sep 1 / 11 Now we will discuss second-degree equations (called quadric surfaces). These are the three dimensional analogues of conic sections. To sketch the graph of a quadric surface (or any surface), it is useful to determine curves of intersection of the surface with planes parallel to the coordinate planes.
    [Show full text]
  • Tilted Planes and Curvature in Three-Dimensional Space: Explorations of Partial Derivatives
    Tilted Planes and Curvature in Three-Dimensional Space: Explorations of Partial Derivatives By Andrew Grossfield, Ph. D., P. E. Abstract Many engineering students encounter and algebraically manipulate partial derivatives in their fluids, thermodynamics or electromagnetic wave theory courses. However it is possible that unless these students were properly introduced to these symbols, they may lack the insight that could be obtained from a geometric or visual approach to the equations that contain these symbols. We accept the approach that just as the direction of a curve at a point in two-dimensional space is described by the slope of the straight line tangent to the curve at that point, the orientation of a surface at a point in 3-dimensional space is determined by the orientation of the plane tangent to the surface at that point. A straight line has only one direction described by the same slope everywhere along its length; a tilted plane has the same orientation everywhere but has many slopes at each point. In fact the slope in almost every direction leading away from a point is different. How do we conceive of these differing slopes and how can they be evaluated? We are led to conclude that the derivative of a multivariable function is the gradient vector, and that it is wrong and misleading to define the gradient in terms of some kind of limiting process. This approach circumvents the need for all the unnecessary delta-epsilon arguments about obvious results, while providing visual insight into properties of multi-variable derivatives and differentials. This paper provides the visual connection displaying the remarkably simple and beautiful relationships between the gradient, the directional derivatives and the partial derivatives.
    [Show full text]
  • Multivariable Calculus Math 21A
    Multivariable Calculus Math 21a Harvard University Spring 2004 Oliver Knill These are some class notes distributed in a multivariable calculus course tought in Spring 2004. This was a physics flavored section. Some of the pages were developed as complements to the text and lectures in the years 2000-2004. While some of the pages are proofread pretty well over the years, others were written just the night before class. The last lecture was "calculus beyond calculus". Glued with it after that are some notes from "last hours" from previous semesters. Oliver Knill. 5/7/2004 Lecture 1: VECTORS DOT PRODUCT O. Knill, Math21a VECTOR OPERATIONS: The ad- ~u + ~v = ~v + ~u commutativity dition and scalar multiplication of ~u + (~v + w~) = (~u + ~v) + w~ additive associativity HOMEWORK: Section 10.1: 42,60: Section 10.2: 4,16 vectors satisfy "obvious" properties. ~u + ~0 = ~0 + ~u = ~0 null vector There is no need to memorize them. r (s ~v) = (r s) ~v scalar associativity ∗ ∗ ∗ ∗ VECTORS. Two points P1 = (x1; y1), Q = P2 = (x2; y2) in the plane determine a vector ~v = x2 x1; y2 y1 . We write here for multiplication (r + s)~v = ~v(r + s) distributivity in scalar h − − i ∗ It points from P1 to P2 and we can write P1 + ~v = P2. with a scalar but usually, the multi- r(~v + w~) = r~v + rw~ distributivity in vector COORDINATES. Points P in space are in one to one correspondence to vectors pointing from 0 to P . The plication sign is left out. 1 ~v = ~v the one element numbers ~vi in a vector ~v = (v1; v2) are also called components or of the vector.
    [Show full text]
  • Quadric Surfaces the University of Kansas 1 / 23 2 2 2 X  Y  Ellipse of Semi-Major, Semi-Minor Axes A, B: a + B = 1
    1 circle of radius r: x 2 + y 2 = r 2 2 2 2 x y ellipse of semi-major, semi-minor axes a; b: a + b = 1 2 2 3 x y hyperbola of semi-major, semi-minor axes a; b: a − b = 1 4 parabola: y = ax 2 Considering these conic sections as three-dimensional objects by letting z vary, we obtain the family of cylinders. Conic Sections Recall the usual conic sections from the Cartesian plane. MATH 127 (Section 12.6) Quadric Surfaces The University of Kansas 1 / 23 2 2 2 x y ellipse of semi-major, semi-minor axes a; b: a + b = 1 2 2 3 x y hyperbola of semi-major, semi-minor axes a; b: a − b = 1 4 parabola: y = ax 2 Considering these conic sections as three-dimensional objects by letting z vary, we obtain the family of cylinders. Conic Sections Recall the usual conic sections from the Cartesian plane. 1 circle of radius r: x 2 + y 2 = r 2 MATH 127 (Section 12.6) Quadric Surfaces The University of Kansas 1 / 23 2 2 3 x y hyperbola of semi-major, semi-minor axes a; b: a − b = 1 4 parabola: y = ax 2 Considering these conic sections as three-dimensional objects by letting z vary, we obtain the family of cylinders. Conic Sections Recall the usual conic sections from the Cartesian plane. 1 circle of radius r: x 2 + y 2 = r 2 2 2 2 x y ellipse of semi-major, semi-minor axes a; b: a + b = 1 MATH 127 (Section 12.6) Quadric Surfaces The University of Kansas 1 / 23 4 parabola: y = ax 2 Considering these conic sections as three-dimensional objects by letting z vary, we obtain the family of cylinders.
    [Show full text]
  • Sect. 13.6 (Cylinders & Quadric Surfaces)
    Sect. 13.6 (Cylinders & Quadric Surfaces) —MATH 2421 Kawai Sect. 13.6 (Cylinders & Quadric Surfaces) 1. Cylindrical surfaces. If we have the circle in the xy-plane: x2 + y2 = 4, then what happens if we use this equation in 3D? Answer: We say that z can do anything. Thus, we obtain a surface, and the only constraint is that the projection down onto the xy-plane must be that circle. We get the infinte tennis ball can. We say that the generating curve is in the xy-plane. Thus, the equation will only have x and y in it, and z is allowed to take on any real value. We say that this is a “right”circular cylinder because the generating curve is copied at right angles to the plane that contains the generating curve. This copying process is called extrusion, and we say that the right cylinder is extruded from the xy-plane. We create rigatoni pasta this way. In this course, we only care about cylindrical surfaces that are orthogonal to simple planes. Thus, we have two more possible orientations: x2 + z2 = 4 AND y2 + z2 = 4. [You try it!] 2. Cylindrical surfaces can come in a variety of shapes. (a) Parabolic cylinders: y = x2, x = y2, etc. There are 6 possible orientations. (b) Sinusoidal cylinders: y = sin (x) , etc. (c) Planes can be regarded as cylindrical surfaces (walls). The line y = x is in the xy-plane, but the plane y = x is a vertical plane, orthogonal to the xy-plane. In theory, this could be classified as a right cylindrical wall.
    [Show full text]
  • Second Partials Test Let F(X, Y) Be a Smooth Function and Let (X0,Y0)
    Multivariate Calculus Grinshpan Second Partials Test Let f(x; y) be a smooth function and let (x0; y0) be a point in its domain. It is possible to write f(x; y) = f(x0; y0) + fx(x0; y0)(x − x0) + fy(x0; y0)(y − y0) 1 2 1 2 + 2 fxx(x0; y0)(x−x0) +fxy(x0; y0)(x−x0)(y−y0)+ 2 fyy(x0; y0)(y−y0) + higher order terms: If (x0; y0) is a stationary point of f then df = 0 there and we have 1 2 1 2 f(x; y) = f(x0; y0) + 2 fxx(x0; y0)(x−x0) +fxy(x0; y0)(x−x0)(y−y0)+ 2 fyy(x0; y0)(y−y0) + higher order terms: Assume for simplicity that (x0; y0) = (0; 0) and f(0; 0) = 0. 0 0 0 0 (This can always be done by translating variables: f~(x ; y ) = f(x0 + x ; y0 + y ) − f(x0; y0).) Then letting 1 1 1 1 A = 2 fxx(0; 0);B = 2 fxy(0; 0) = 2 fyx(0; 0);C = 2 fyy(0; 0); we see that f(x; y) = Ax2 + 2Bxy + Cy2 + higher order terms: Thus the graph of f near (0; 0) resembles the quadric surface z = Ax2 + 2Bxy + Cy2: This quadric surface can either be an elliptic or a hyperbolic paraboloid. If it is an elliptic paraboloid opening up, (0; 0) is a point of local minimum. If it is an elliptic paraboloid opening down, (0; 0) is a point of local maximum. If it is a hyperbolic paraboloid, (0; 0) is a saddle point.
    [Show full text]