THWAITES WILD CARD This Unstable Glacier—With Its Potentially Disastrous Effect on Sea Levels—Is Starting to Show Its Hand
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fast Radio Bursts May Be Firing Off Every Second 21 September 2017
Fast radio bursts may be firing off every second 21 September 2017 see with our eyes, these flashes come in radio waves." To make their estimate, Fialkov and co-author Avi Loeb assumed that FRB 121102, a fast radio burst located in a galaxy about 3 billion light years away, is representative of all FRBs. Because this FRB has produced repeated bursts since its discovery in 2002, astronomers have been able to study it in much more detail than other FRBs. Using that information, they projected how many FRBs would exist across the entire sky. "In the time it takes you to drink a cup of coffee, hundreds of FRBs may have gone off somewhere This artist's impression shows part of the cosmic web, a in the Universe," said Avi Loeb. "If we can study filamentary structure of galaxies that extends across the even a fraction of those well enough, we should be entire sky. The bright blue, point sources shown here are able to unravel their origin." the signals from Fast Radio Bursts (FRBs) that may accumulate in a radio exposure lasting for a few minutes. The radio signal from an FRB lasts for only a While their exact nature is still unknown, most few thousandths of a second, but they should occur at scientists think FRBs originate in galaxies billions of high rates. Credit: M. Weiss/CfA light years away. One leading idea is that FRBs are the byproducts of young, rapidly spinning neutron stars with extraordinarily strong magnetic fields. When fast radio bursts, or FRBs, were first Fialkov and Loeb point out that FRBs can be used detected in 2001, astronomers had never seen to study the structure and evolution of the Universe anything like them before. -
Region 19 Antarctica Pg.781
Appendix B – Region 19 Country and regional profiles of volcanic hazard and risk: Antarctica S.K. Brown1, R.S.J. Sparks1, K. Mee2, C. Vye-Brown2, E.Ilyinskaya2, S.F. Jenkins1, S.C. Loughlin2* 1University of Bristol, UK; 2British Geological Survey, UK, * Full contributor list available in Appendix B Full Download This download comprises the profiles for Region 19: Antarctica only. For the full report and all regions see Appendix B Full Download. Page numbers reflect position in the full report. The following countries are profiled here: Region 19 Antarctica Pg.781 Brown, S.K., Sparks, R.S.J., Mee, K., Vye-Brown, C., Ilyinskaya, E., Jenkins, S.F., and Loughlin, S.C. (2015) Country and regional profiles of volcanic hazard and risk. In: S.C. Loughlin, R.S.J. Sparks, S.K. Brown, S.F. Jenkins & C. Vye-Brown (eds) Global Volcanic Hazards and Risk, Cambridge: Cambridge University Press. This profile and the data therein should not be used in place of focussed assessments and information provided by local monitoring and research institutions. Region 19: Antarctica Description Figure 19.1 The distribution of Holocene volcanoes through the Antarctica region. A zone extending 200 km beyond the region’s borders shows other volcanoes whose eruptions may directly affect Antarctica. Thirty-two Holocene volcanoes are located in Antarctica. Half of these volcanoes have no confirmed eruptions recorded during the Holocene, and therefore the activity state is uncertain. A further volcano, Mount Rittmann, is not included in this count as the most recent activity here was dated in the Pleistocene, however this is geothermally active as discussed in Herbold et al. -
University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY of the SCOTT GLACIER and WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA
This dissertation has been /»OOAOO m icrofilm ed exactly as received MINSHEW, Jr., Velon Haywood, 1939- GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA. The Ohio State University, Ph.D., 1967 Geology University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University by Velon Haywood Minshew, Jr. B.S., M.S, The Ohio State University 1967 Approved by -Adviser Department of Geology ACKNOWLEDGMENTS This report covers two field seasons in the central Trans- antarctic Mountains, During this time, the Mt, Weaver field party consisted of: George Doumani, leader and paleontologist; Larry Lackey, field assistant; Courtney Skinner, field assistant. The Wisconsin Range party was composed of: Gunter Faure, leader and geochronologist; John Mercer, glacial geologist; John Murtaugh, igneous petrclogist; James Teller, field assistant; Courtney Skinner, field assistant; Harry Gair, visiting strati- grapher. The author served as a stratigrapher with both expedi tions . Various members of the staff of the Department of Geology, The Ohio State University, as well as some specialists from the outside were consulted in the laboratory studies for the pre paration of this report. Dr. George E. Moore supervised the petrographic work and critically reviewed the manuscript. Dr. J. M. Schopf examined the coal and plant fossils, and provided information concerning their age and environmental significance. Drs. Richard P. Goldthwait and Colin B. B. Bull spent time with the author discussing the late Paleozoic glacial deposits, and reviewed portions of the manuscript. -
Surface Exposure Dating Using Cosmogenic
Surface exposure dating using cosmogenic isotopes: a field campaign in Marie Byrd Land and the Hudson Mountains Joanne S Johnson1, Karsten Gohl2, Terry L O’Donovan1, Mike J Bentley3,1 1British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, UK 2Alfred Wegener Institute, Postfach 120161, D-27515, Bremerhaven, Germany 3Durham University, South Road, Durham, DH1 3LE, UK INTRODUCTION SUMMARY 2. HUNT BLUFF Here we present preliminary findings from fieldwork undertaken in Marie • We collected 7 erratic and 2 bedrock surface samples, which are Byrd Land and western Ellsworth Land (Fig.1) in March 2006, during This site is a granite outcrop along currently being processed for 10Be, 26Al and 3He dating. We will visit which we obtained samples for surface exposure dating. This work was the western side of Bear the Hudson Mountains again in 2007/8 for further sampling and supported by helicopters from RV Polarstern, on an expedition to Pine Peninsula, adjacent to the Dotson collection of geomorphological data. Island Bay. Ice Shelf. Lopatin et al. (1974) report an age of 301 Ma for the • Samples from Turtle Rock, Mt Manthe and the un-named island are Surface exposure dating provides an estimate of the time when ice granite. granite/granitoids; from Hunt Bluff we collected a meta-sandstone and retreated from a rock surface, leaving it exposed. Nucleii in rocks are basalt, in addition to granite bedrock. split apart by neutrons produced when secondary cosmic rays enter the In half a day, we found only a few • Erratic boulders at Mt Manthe and Hunt Bluff are scarce; at Turtle atmosphere. -
Weather and Climate in the Amundsen Sea Embayment
WEATHER AND CLIMATE IN THE AMUNDSEN SEA EMBAYMENT,WEST ANTARCTICA:OBSERVATIONS, REANALYSES AND HIGH RESOLUTION MODELLING A thesis submitted to the School of Environmental Sciences of the University of East Anglia in partial fulfilment of the requirements for the degree of Doctor of Philosophy RICHARD JONES JANUARY 2018 © This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. © Copyright 2018 Richard Jones iii ABSTRACT Glaciers within the Amundsen Sea Embayment (ASE) are rapidly retreating and so contributing 10% of current global sea level rise, primarily through basal melting. » Here the focus is atmospheric features that influence the mass balance of these glaciers and their representation in atmospheric models. New radiosondes and surface-based observations show that global reanalysis products contain relatively large biases in the vicinity of Pine Island Glacier (PIG), e.g. near-surface temperatures 1.8 ±C (ERA-I) to 6.8 ±C (MERRA) lower than observed. The reanalyses all underestimate wind speed during orographically-forced strong wind events and struggle to reproduce low-level jets. These biases would contribute to errors in surface heat fluxes and thus the simulated supply of ocean heat leading to PIG melting. Ten new ice cores show that there is no significant trend in accumulation on PIG between 1979 and 2013. RACMO2.3 and four global reanalysis products broadly reproduce the observed time series and the lack of any significant trend. -
Jörg M. Schäfer
JÖRG M. SCHÄFER LAMONT-DOHERTY EARTH OBSERVATORY • THE EARTH INSTITUTE AT COLUMBIA UNIVERSITY ROUTE 9W • PALISADES, NY 10964 • USA PHONE: 1 845 365 8756 • FAX: 1 845 365 8155 • EMAIL: [email protected] Personal Born 1968 in Stuttgart, Germany Citizenship: German Language: german, english, french 90 Morningside Drive • Apt. 2G New York • NY-10027 Education Lamont Research Professor Lamont-Doherty Earth Observatory of Columbia University Adjunct Professor Dept. of Earth and Environmental Sciences, Columbia University Doherty Associate Research Scientist (September 2003-November 2008) Lamont-Doherty Earth Observatory of Columbia University Postdoctoral Research Fellow (January 2001-August 2003) Lamont-Doherty Earth Observatory of Columbia University Postdoctoral Researcher (February 2000-October 2000) Dept. of Earth Sciences, Swiss Federal Institute of Technology (ETH) Zürich Ph.D. (March 1996-June 2000) Swiss Federal Institute of Technology (ETH) Zürich. Dissertation: Reconstruction of landscape evolution and continental paleoglaciations using in-situ cosmogenic nuclides. Jointly supervised by Profs. R. Wieler, C. Schlüchter, A.N. Halliday at the Department of Earth Sciences, ETH Zürich Masters Degree (“Diplom”) in Physics (1995) Institute of Environmental Physics, University of Heidelberg, Germany. Reconstruction of bio-geochemical trace substance cycles from an alpine ice- core. Supervisors: Dr. D. Wagenbach, Prof. U. Platt. Exchange student • ERASMUS program (1991-92) Department of Physics, University of Aix- Marseille III, -
Heterogenous Thinning and Subglacial Lake Activity on Thwaites Glacier, West Antarctica Andrew O
https://doi.org/10.5194/tc-2020-80 Preprint. Discussion started: 9 April 2020 c Author(s) 2020. CC BY 4.0 License. Brief Communication: Heterogenous thinning and subglacial lake activity on Thwaites Glacier, West Antarctica Andrew O. Hoffman1, Knut Christianson1, Daniel Shapero2, Benjamin E. Smith2, Ian Joughin2 1Department of Earth and Space Sciences, University of Washington, Seattle, 98115, United States of America 5 2Applied Physics Laboratory, University of Washington, 98115, United States of America Correspondence to: Andrew O. Hoffman ([email protected]) Abstract. A system of subglacial laKes drained on Thwaites Glacier from 2012-2014. To improve coverage for subsequent drainage events, we extended the elevation and ice velocity time series on Thwaites Glacier through austral winter 2019. These new observations document a second drainage cycle and identified two new laKe systems located in the western tributaries of 10 Thwaites and Haynes Glaciers. In situ and satellite velocity observations show temporary < 3% speed fluctuations associated with laKe drainages. In agreement with previous studies, these observations suggest that active subglacial hydrology has little influence on Thwaites Glacier thinning and retreat on decadal to centennial timescales. 1 Introduction Although subglacial laKes beneath the Antarctic Ice Sheet were first discovered more than 50 years ago (Robin et al., 1969; 15 Oswald and Robin, 1973), they remain one of the most enigmatic components of the subglacial hydrology system. Initially identified in ice-penetrating radar data as flat, bright specular reflectors (Oswald and Robin, 1973; Carter et al., 2007) subglacial laKes were thought to be relatively steady-state features of the basal hydrology system with little impact on the dynamics of the overlying ice on multi-year timescales. -
Southern Hemisphere Mid- and High-Latitudinal AOD, CO, NO2, And
Ahn et al. Progress in Earth and Planetary Science (2019) 6:34 Progress in Earth and https://doi.org/10.1186/s40645-019-0277-y Planetary Science RESEARCH ARTICLE Open Access Southern Hemisphere mid- and high- latitudinal AOD, CO, NO2, and HCHO: spatiotemporal patterns revealed by satellite observations Dha Hyun Ahn1, Taejin Choi2, Jhoon Kim1, Sang Seo Park3, Yun Gon Lee4, Seong-Joong Kim2 and Ja-Ho Koo1* Abstract To assess air pollution emitted in Southern Hemisphere mid-latitudes and transported to Antarctica, we investigate the climatological mean and temporal trends in aerosol optical depth (AOD), carbon monoxide (CO), nitrogen dioxide (NO2), and formaldehyde (HCHO) columns using satellite observations. Generally, all these measurements exhibit sharp peaks over and near the three nearby inhabited continents: South America, Africa, and Australia. This pattern indicates the large emission effect of anthropogenic activities and biomass burning processes. High AOD is also found over the Southern Atlantic Ocean, probably because of the sea salt production driven by strong winds. Since the pristine Antarctic atmosphere can be polluted by transport of air pollutants from the mid-latitudes, we analyze the 10-day back trajectories that arrive at Antarctic ground stations in consideration of the spatial distribution of mid-latitudinal AOD, CO, NO2, and HCHO. We find that the influence of mid-latitudinal emission differs across Antarctic regions: western Antarctic regions show relatively more back trajectories from the mid-latitudes, while the eastern Antarctic regions do not show large intrusions of mid-latitudinal air masses. Finally, we estimate the long-term trends in AOD, CO, NO2, and HCHO during the past decade (2005–2016). -
Planning a Mission to the Lunar South Pole
Lunar Reconnaissance Orbiter: (Diviner) Audience Planning a Mission to Grades 9-10 the Lunar South Pole Time Recommended 1-2 hours AAAS STANDARDS Learning Objectives: • 12A/H1: Exhibit traits such as curiosity, honesty, open- • Learn about recent discoveries in lunar science. ness, and skepticism when making investigations, and value those traits in others. • Deduce information from various sources of scientific data. • 12E/H4: Insist that the key assumptions and reasoning in • Use critical thinking to compare and evaluate different datasets. any argument—whether one’s own or that of others—be • Participate in team-based decision-making. made explicit; analyze the arguments for flawed assump- • Use logical arguments and supporting information to justify decisions. tions, flawed reasoning, or both; and be critical of the claims if any flaws in the argument are found. • 4A/H3: Increasingly sophisticated technology is used Preparation: to learn about the universe. Visual, radio, and X-ray See teacher procedure for any details. telescopes collect information from across the entire spectrum of electromagnetic waves; computers handle Background Information: data and complicated computations to interpret them; space probes send back data and materials from The Moon’s surface thermal environment is among the most extreme of any remote parts of the solar system; and accelerators give planetary body in the solar system. With no atmosphere to store heat or filter subatomic particles energies that simulate conditions in the Sun’s radiation, midday temperatures on the Moon’s surface can reach the stars and in the early history of the universe before 127°C (hotter than boiling water) whereas at night they can fall as low as stars formed. -
Extreme Weather Events
Extreme weather events Introduction The further a particular weather event lies from the typical range of that type of event, the more it is likely to be described as an extreme event, irrespective of whether it concerns a violent storm, unusual temperatures, heavy precipitation, drought or flood. 2012 seems to have been a year of extreme weather events (‘superstorm’ Sandy in the USA, high rainfall and floods in the UK, etc.). Other years in the last decade have also contained droughts and wildfires (in the USA and Australia), hurricane Katrina (USA), floods (Pakistan) and heat waves (Russia and France). At the same time it is becoming increasingly accepted that human activity, principally the burning of fossil fuels, is changing the global climate and causing the atmosphere to warm. The average global temperature of the lowermost atmosphere has increased markedly since about 1980. Are the two observations, which operate on different timescales1, connected? Are extreme weather events really becoming more common and/or more severe, or are they perhaps part of the climate’s natural variability? The aim of this document is to investigate these two questions. Some basic physics of a warmer atmosphere As air warms its humidity is able to rise and so the atmosphere carries more water vapour. For example, the water content of the atmosphere increases by 7% for each degree Centigrade rise in temperature, although globally precipitation is expected to rise by only about 2%/°C because relative humidity is typically not expected to change on the global scale.8 1 climate change is defined as changes occurring at least over a few decades whereas extreme weather typically lasts from days to months. -
Preliminary Science Report
7. Photographic Summary of Apollo 77 Mission James H. Sasser The geographical exploration of new frontiers mil Estar polyester base. Ektachrome EF S016S has usually occurred many years before scien- color film on a 2.5-mil Estar polyester base was tists visited and studied the areas in detail. For exposed on the lunar surface. Thc higher speed example, the existence of Antarctica as a conti- of this color film was expected to be more suit- nent was known from the time Charles Wilkes able for lunar surface photography because of explored 1500 miles of the coastline in 1840. tl~elow light levels anticipated and confirmed However, extensive Antarctic exploration did to exist on the lunar surface. Other color 70-mm not begin until the 20th century with the voy- exposures of the Earth and Moon were taken ages of Scott, Amundsen, Shackleton, and Byrd. on Ektachrome MS S036S color reversal film It was not until the International Geophysical on a 2.5-mil Estar polyester base. Year (July 1957 to December 1958) that scien- The 16-mm film taken during lunar module tists from 12 countries began conducting an (LM) descent provided the first accurate knowl- ambitious Antarctic research program. In this edge of the exact landing point on the lunar respect, the first manned lunar exploration was surface. The 70-mm photographs taken on the unique. The scientific experiments were care- lunar surface provided panoramic views of the fully planned, and the astronauts were trained surface near the landed LM and allowed de- as surrogates for scientists representing many tailed topographic mapping of the lunar surface disciplines. -
Bulletin Vol. 13 No. 4, December, 1993
AMQIKK Bulletin Vol. 13 No. 4, December, 1993. I raflE ^m T^!:,i"=:■ eta Ie&£2 i^r ->*r vonoaviNV Antarctic (successor to the "Antarctic News Bulletin") Vol. 13 No. 4 Contents Issue No. 147 December 1993 Polar New Zealand 138, 146 Australia 148, 171 ANTARCTIC is published Japan 149 quarterly by the New Zealand Antarctic Korea 156 Society Inc., 1979 United States 161 ISSN 0003-5327 Editor: Robin Ormerod Please address all editorial inquiries, Sub-antarctic contributions etc to the Tracking albatrosses 171 Editor, P.O. Box 2110, Wellington, General New Zealand ICAIR 142 Telephone: (04) 4791.226 NZAS and New Zealand pro International: +64 + 4+ 4791.226 Fax: (04) 4791.185 gramme 138 International: +64 + 4 + 4791.185 First Antarctica Lodge 173 All administrative inquiries should go to Vaughan expedition 176 the Secretary, P.O. Box 2110, Wellington New Zealand. Inquiries regarding back issues should go to P.O. Box 404, Christchurch, New Zealand. (Q No part of this publication may be Coven Detailed DEM for part of Hut reproduced in any way without the prior per Point Peninsula showing building lay mission of the publishers. out for McMurdo Station and Scott Base and roads between them. See ICAIR.. 137 ANTARCTIC December 1993 Vol.13 No. 4 On 2 November 1993, the New Zealand Antarctic Society turned 60. No other organisation in this country has a longer commitment to New Zealand's continued presence on the ice. In this article Bill Hopper, Chairman of the Wellington Branch, traces the origin of the Society. Society presses for New Zealand presence on ice "That a society be formed, and that it be called the New Zealand Antarctic Society.