<<

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ РОССИЙСКИЙ ФОНД ФУНДАМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ

Петрология магматических и метаморфических комплексов

Выпуск 10

Материалы X Всероссийской конференции с международным участием

27 ноября - 30 ноября 2018 года

ЛАБТЕСТ

BTESCAN А.

LABTEST

Томск 2018 ORIGIN OF THOLEIITIC INTERMEDIATE ROCKS IN THE EARLY CRETACEOUS COMEI LIP, SE TIBET

Ying Xia1’ 3, Di-Cheng Zhu1, R. E. Ernst2- 3

1 State Key Laboratory o f Geological Processes and Mineral Resources, and School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China 2 Department o f Earth Sciences, Carleton University, Ottawa K1S5B6, Canada 3 Department o f Geology and Geography, Tomsk State University, Tomsk, Russia

A newly found tholeiitic intrusive suite in Chigu Tso of the Comei LIP (large igneous province), S E Tibet, provides new insight into the petrogenesis of tholeiitic intermediate rocks in LIPs. Zircon U-Pb dating results suggest that Chigu Tso intrusive suite is coeval to the Comei LIP at c. 132 Ma. The compositions of Chigu Tso intrusive suite exhibit a compositional continuum from dolerite, diorite to tonalite (SiO2=51.2-62.6 wt %). M ass balance calculations suggest that high FeO^/MgO (> 3.4) tholeiitic intermediate rocks (diorites and tonalites) in Chigu Tso could be generated by large degrees (~60-85 wt %) of fractional crystallization from low FeO^/MgO (~0.7) primary magmas. The occurrence of significant amounts of halogen-rich in tholeiitic intermediate rocks indicates volatile-rich conditions in the late differentiation stage and requires a prolonged shallow crustal magma chamber provides room for cooling and differentiation (up to 75 wt % fractional crystallization). Extensional stress field in rift zones are not favorable to generate shallow crustal magma chamber which results in limited site for producing highly evolved tholeiitic intermediate rock. The paucity of intermediate rocks in LIPs suggest that most silicic rocks should derived from partial melting of rather than fractional crystallization of basaltic materials.

Key words; tholeiitic intermediate rocks; fractional crystallization; amphibole; Comei LIP; S E Tibet

A large igneous province (LIP) is the manifestation of exten­ remains enigmatic. LIPs are mainly tholeiitic basalts (Bryan, Er­ sive magmatism (> O.lMkm2 and > 0.1 Mkm3) in a short nst, 2008). If fractional crystallization of tholeiitic basalts could duration (< 5 Ma) pulse (or in some cases multiple pulses), and produce tholeiitic intermediate rocks, then the following question with intraplate characteristics (Coffin, Eldhoim, 1994; Bryan, is why tholeiitic intermediate rocks are so rare in LIPs? Ernst’ 2008; Ernst, 2014). LIPs are dominantly mafic composi­ Previous equilibrium crystallization experiments of anhy­ tions, but also show significant compositional variations form ul­ drous tholeiitic basalts provide little constraint on the generation tramafic to silicic. Both globally and regionally, the distribution of tholeiitic intermediate rocks (e.g. Grove, Bryan, 1983; Yang of SiO2 content in LIPs is bimodal with chemical groupings at et. al., 1996). Recently, fractional crystallization experiments of 45-56 wt % and 65-75 wt % (Bryan, Ernst, 2008; Bryan, Ferrari, low FeO'/MgO (~0.5) anhydrous tholeiitic basalts suggest that 2013). The paucity of intermediate compositions in LIPs, gener­ tholeiitic intermediate rocks are generated at very late fraction­ ally recognized as “Bunsen-Daly gap”, is frequently manifested ation stage (> 80 wt %) by crystallization of spinel and plagi- as bimodal suites in the field (e.g. Kirstein et. al., 2000; Ewart et. oclase at 1.0 GPa and ilmenite at 0.7 GPa, resulting in FeO'/ al., 2004; Pinto et. al., 2011). Generation of such a silica gap is a MgO >2.6 and >22, respectively (Villiger et. al., 2004, 2007). subject of much debate, with focus on the origin of silicic rocks However, fractional crystallization of primary magmas during derived from partial melting of basaltic precursors or lower crust magma ascent through the crust or storage in staging chambers is (e.g. Suneson, Lucchitta, 1983; Mahoney et. al., 2008; Colon et. a polybaric process (Putirka, Condit, 2003; Putirka et. al., 2009; al., 2018), fractional crystallization from basaltic melts (e.g. Ay- Putirka, 2017; Hole, 2018) which is difficult to simulate accu­ alew et. al., 2002; Shellnutt, Jahn, 2010; Hutchison et. al., 2016) rately by laboratory experiments. More investigations, in particu­ or silicate-liquid immiscibility (e.g. McBirney, Nakamura, 1974; lar integrated natural examples of tholeiitic intermediate rocks, Jakobsen et. al., 2005). However, the occurrence and petrogene­ are needed for better understanding the generation of tholeiitic sis of intermediate rocks has been ignored. intermediate rocks in LIPs. Here, we offer a case study from the Although intermediate rocks are volumetrically minor in Comei LIP. LIPs (Bryan, Ernst, 2008), previous studies provide important This study focus on a compositional diverse tholeiitic intru­ constraints on the petrogenesis of these rocks (e.g. Lightfoot et. sive suite including dolerite, diorite and tonalite dykes and sills in al., 1987; Turner et. al., 1999; Ewart et. al., 2004; Natali et. al., Chigu Tso, central Comei LIP, SE Tibet. Zircon U-Pb age dating 2013). Intermediate rocks in LIPs are mainly alkaline rocks (e.g. results suggest Chigu Tso intrusive suite is coeval to the Comei syenite, trachyte and trachyandesite) with subordinate tholeiitic LIP at c. 132 Ma. Mass balance calculations suggest that the high and calc-alkaline and trachyandesites (Fig. 1a). Based FeO‘/MgO tholeiitic intermediate rocks (diorites and tonalites) upon field and geochemical relations to the associated basalts, al­ in Chigu Tso are highly evolved magmas which could be gen­ kaline and tholeiitic intermediate rocks are commonly interpret­ erated at the late differentiation stage from low FeO‘/MgO pri­ ed as a consequence of fractional crystallization from basaltic mary magma by amphibole-dominated fractional crystallization magmas, possibly with the involvement of crustal contamination (Fig. 2). Large amounts of halogen-rich in tholeiitic (Holland, Brown, 1972; Turner et. al., 1999; Natali et. al., 2013; intermediate rocks indicate a volatile-rich condition in the late Owen-Smith et. al., 2013). Calc-alkaline intermediate rocks are differentiation stage which may result from progressing frac­ characterized by low FeO'/MgO ratios (Fig. 1b) which are likely tional crystallization (Fig. 3). Such large degrees of fractional to derive from metasomatized sub-continental lithosphere man­ crystallization of the tholeiitic intermediate rocks require magma tle (SCLM) (Cai et. al., 2010; Zhang et. al., 2013). Tholeiitic chamber in shallow crust (Putirka, 2009). intermediate rocks are characterized by higher FeO'/MgO ratios However, LIPs are generally associated with continental breakup than calc-alkaline intermediate rocks in continental arcs (Fig. and formation of new ocean basins, proving the critical role of rift­ lb). However, where and how tholeiitic intermediate rocks form ing (White, Mckenzie, 1989; CourtiUot et. al., 1999; Ernst, 2014).

32 Fig. 1. (a) Total alkalis vs silica diagram (Le Bas et. al., 1986) indicating intermediate rocks (56-65 wt %), such as , syenite, latite, trachyte and trachyandesite, are predominately alkaline in LIPs [e.g. Central Atlantic Magmatic Province (Eby et. al., 1992; Sundeen et. al., 1992; Kennedy, Stix, 2007), Deccan (Tiwari, 1971; Lightfoot et. al., 1987; Devey, Stephens, 1992; Owen-Smith et. al., 2013), Emeishan (Zhou et. al., 2008; Cai et. al., 2010), Ethiopian Plateau (Kieffer et. al., 2004; Natali et. al., 2013), North Atlantic (Deer 1976; Holland, Brown, 1972); Parana-Etendeka (Piccirillo et. al., 1989; Turner et. al., 1999; Kirstein et. al., 2000; Ewart et. al., 2004; Marsh, Milner, 2007; Hartmann et. al., 2012) and Tarim (Zhang et. al., 2013; Zou et. al., 2015)]. (b) FeOt/MgO vs SiO2 diagram (Miyashiro, 1974) indicates that tholeiitic intermediate rocks have higher FeOt/MgO ratios than calc-alkaline intermediate rocks in LIPs and Andean arc (Barragan et. al., 1998; Samaniego et. al., 2005). I, B = Irvine, Baragar (1971).

33 Fig. 2. Mass balance calculations showing fractionation o f different mineral assemblages controlled the variation o f major elments from primary magma to the most evolved Chigu Tso tonalite. The tholeiitic intermediate compositions could be generated by a three- step fractional crystallization from primary magma. Stage 1: fractional crystallization o f 34 wt % mineral assemblages o f 96% olivine and 4% Cr-spinel from primary magma result in a composition of FeOt/MgO~2.2, MgO~6.54 wt % and SiO2~51.4 wt %, which may be the parental magam o f Cona OIB-type mafic rocks, Sangxiu basalts and Chigu Tso intrusive sutie. Stage 2: fractional crystallization o f 35 wt % of mineral assemblages o f 59% clinopyroxene, 33% and 8% ilmenite from the end-product in stage 1 produce a composition o f FeOt/MgO~3.4, MgO~5.1 wt % andSiO2~53.0 wt %) which is similar to evolved Chigu Tso diorites. Stage 3: fractional crystallization o f 60 wt % o f mineral assemblages of 65% amphibole, 27% plagioclase and 8% ilmenite from the end-product in stage 2 generate a compositon o f FeOt/MgO~6.7, MgO~2.4 wt % and SiO2~63.5 wt %, which is similar to the most evolved tonalite in Chigu Tso. Data o f primary magma and Cona picrites (Xia et. al., 2014), Cona OIB-type mafic rocks (Zhu et. al., 2008) and Sangxiu basalts (Zhu et. al., 2007). Results of fractional crystallization experiments of anhydrous primary basalts at conditions o f 1 GPa (Villiger et. al., 2004) and 0.7 GPa (Villiger et. al., 2007) and mass balance calculations suggest that tholeitiic intermediate rocks are generated in the late differentiation stage.

The extensional regional stress field in rift zones is favorable (e.g. the Bushveld complex, Twist, Harmer, 1987; the Palisades to form elongated dyke swarms, rather than shallow magma sill in CAMP, Block et. al., 2015; the Red Hill dike in Ferrar chamber in the crust (Gudmundsson, 2011). Large intrusions LIP, McDougall, 1962). The intermediate compositions in these generally contain a significant portion of granophyre which is granophyres show similar high FeO'/MgO ratios to the tholeiitic considered as late-stage differentiates (Carmichael, 1964; Wager, intermediate rocks in Chigu Tso and other LIPs. Therefore, it is Brown, 1967). The granophyre in large intrusions, such as the reasonable for us to speculate that highly evolved tholeiitic in­ Palisades sill in CAMP, commonly hosts amphibole and is vol­ termediate rocks in LIPs may only be generated at large-sill-like atile-rich (Shirley, 1987; Block et. al., 2015). The compositions magma chambers in shallow crust and there is no intermediate of granophyres exhibit a continuum from intermediate to silicic compositional gap during the fractional crystallization of tholei-

34 itic basalts. The paucity of intermediate rocks in LIPs suggests Refrences most silicic rocks in LIPs are not generated by fractional crystal­ 1. Block, K. A., Steiner, J. C., Puffer, J. H., Jones, K. M., Gold­ lization of basaltic melts. However, partial melting of continental stein, S. L. (2015). Evolution of late stage differentiates in the crust could produce dacite and rhyolite melts which are similar Palisades Sill, New York and New Jersey. Lithos 230, 121-132. to the compositions of silicic rocks in LIPs (Thy et. al., 1990; 2. Ayalew, D., Barbey, P., Marty, B., Reisberg, L., Yirgu, G., Pik, Beard, Lofgren, 1991) and is prefer to be the origin of most si­ R. (2002). Source, genesis, and timing of giant ignimbrite licic rocks in LIPs (e.g. Suneson, Lucchitta, 1983; Harris et. al., deposits associated with Ethiopian continental flood basalts. 1990; Mahoney et. al., 2008; Colon et. al., 2018). Geochimica et Cosmochimica Acta 66, 1429-1448. 3. Barragan, R., Geist, D., Hall, M., Larson, P., Mark, K. (1998). controls on the compositions of from the Ecuadorian Andes. Earth and Planetary Science Letters 154, 153-166. 4. Beard, J. S., Lofgren, G. E. (1991). Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3, and 6. 9 kb. Journal of Petrology 32, 365-401. 5. Block, K. A., Steiner, J. C., Puffer, J. H., Jones, K. M., Gold­ stein, S. L. (2015). Evolution of late stage differentiates in the Palisades Sill, New York and New Jersey. Lithos 230, 121-132. 6. Bryan, S. E., Ernst, R. E. (2008). Revised definition of Large Igneous Provinces (LIPs). Earth-Science Reviews 86, 175-202. 7. Bryan, S. E., Ferrari, L. (2013). Large igneous provinces and silicic large igneous provinces: Progress in our under­ standing over the last 25 years. Geological Society of Amer­ ica Bulletin 125, 1053-1078. 8. Cai, H. M., Zhang, H. F., Xu, W. C., Shi, Z. L., Yuan, H. L. (2010). Petrogenesis of Indosinian volcanic rocks in Song- pan-Garze fold belt of the northeastern Tibetan Plateau: New evidence for lithospheric delamination. Science China Earth Sciences 53, 1316-1328. 9. Carmichael, I. S. E. (1964). The Petrology of Thingmuli, a Tertiary in Eastern Iceland. Journal of Petrology 5, 435-460. 10. Chiaradia, M., Muntener, O., Beate, B. (2011). Enriched Basaltic Andesites from Mid-crustal Fractional Crystalliza­ tion, Recharge, and Assimilation (Pilavo Volcano, Western Cordillera of Ecuador). Journal of Petrology 52, 1107-1141. 11. Chiaradia, M., Muntener, O., Beate, B. (2014). Quaternary Sanukitoid-like Andesites Generated by Intracrustal Pro­ cesses (Chacana Caldera Complex, Ecuador): Implications for Archean Sanukitoids. Journal of Petrology 55, 769-802. 12. Coffin, M. F., Eldholm, O. (1994). Large igneous provinces: Crustal structure, dimensions, and external consequences. Reviews of Geophysics 32, 1-36. 13. Colon, D. P., Bindeman, I. N., Wotzlaw, J.-F., Christiansen, E. H., Stern, R. A. (2018). Origins and evolution of rhyo­ litic magmas in the central Snake River Plain: insights from coupled high-precision geochronology, oxygen isotope, and hafnium isotope analyses of zircon. Contributions to Miner­ alogy and Petrology 173, 11. 14. Courtillot, V., Jaupart, C., Manighetti, I., Tapponnier, P., Fig. 3. (a) Amphibole Cl (wt %) and (b) F (wt %) vs Besse, J. (1999). On causal links between flood basalts and amphibole Mg# diagrams exhibiting amphiboles in Chigu Tso are continental breakup. Earth, Planetary Science Letters 166, characterized by lower Mg# and higher Cl content than Andean 177-195. arc. The data o f amphiboles in andesite and andesitic basalts of 15. Deer, W. (1976). Tertiary igneous rocks between Scoresby Andean arc come from Chiaradia et al. (2011, 2014). (c) Plot Sund and Kap Gustav Holm, East Greenland. Geology of o f H2O vs melt fraction showing progressing H2O enrichment Greenland: Geol. Surv. Greenland Copenhagen. in the residual melts with advancing fractional crystallization. 16. Devey, C. W., Stephens, W. E. (1992). Deccan-related mag- Calculations follow the method o f rayleigh fractionation for a matism west of the Seychelles-India rift. Geological Society given DH2O=0.01 (Kohn, Grant, 2006). Numbers are initialH2O London Special Publications 68, 271-291. content in primary magma. Data o f fractional crystallization 17. Eby, N., Krueger, H., Creasy, J. W. (1992). Geology, geo­ experiments (Villiger et. al., 2007). chronology, and geochemistry of the White Mountain ba- tholith, New Hampshire. 268, 379-397.

35 18. Ernst, E. R. (2014). Large Igneous Provinces. Cambridge, Petrogenesis of rhyolites and trachytes from the Deccan UK: Cambridge Univeserity Press. Trap: Sr, Nd and Pb isotope and trace element evidence. 19. Ewart, A., Marsh, J. S., Milner, S. C., Duncan, A. R., Kam- Contributions to Mineralogy and Petrology 95, 44-54. ber, B. S., Armstrong, R. A. (2004). Petrology and Geo­ 35. Mahoney, J. J., Saunders, A. D., Storey, M., Randriamanant- chemistry of Early Cretaceous Bimodal Continental Flood enasoa, A. (2008). Geochemistry of the Volcan de l’ Androy Volcanism of the NW Etendeka, Namibia. Part 1: Intro­ Basalt-Rhyolite Complex, Madagascar Cretaceous Igneous duction, Mafic Lavas and Re-evaluation of Mantle Source Province. Journal of Petrology 49, 1069-1096. Components. Journal of Petrology 45, 59-105. 36. Marsh, J. S., Milner, S. C. (2007). Stratigraphic correlation 20. Grove, T. L., Bryan, W. B. (1983). Fractionation of pyrox- of the Awahab and Tafelberg Formations, Etendeka Group, ene-phyric MORB at low pressure: An experimental study. Namibia, and location of an eruptive site for flood basalt Contributions to Mineralogy and Petrology 84, 293-309. volcanism. Journal of African Earth Sciences 48, 329-340. 21. Gudmundsson, A. (2011). Deflection of dykes into sills at 37. McBirney, A. R., Nakamura, Y (1974). Immiscibility in discontinuities and magma-chamber formation. Tectono- late-stage magmas of the Skaergaard intrusion. Carnegie physics 500, 50-64. Institution of Washington Yearbook 73, 348-352. 22. Gudmundsson, A. (2012). Magma chambers: Formation, 38. McDougall, I. (1962). Differentiation of the Tasmanian dol- local stresses, excess pressures, and compartments. Journal erites: Red Hill dolerite-granophyre association. Geological of Volcanology and Geothermal Research 237-238, 19-41. Society of America Bulletin 73, 279-316. 23. Hartmann, L. A., Arena, K. R., Duarte, S. K. (2012). Geo­ 39. Miyashiro, A. (1974). Volcanic rock series in island arcs and logical relationships of basalts, andesites and sand injectites active continental margins. American Journal of Science at the base of the Parana volcanic province, Torres, Brazil. 274, 321-355. Journal of Volcanology and Geothermal Research 237-238, 40. Natali, C., Beccaluva, L., Bianchini, G., Siena, F. (2013). 97-111. The Axum-Adwa basalt-trachyte complex: a late magmatic 24. Hole, M. J. (2018). Mineralogical and geochemical evi­ activity at the periphery of the Afar plume. Contributions to dence for polybaric fractional crystallization of continental Mineralogy and Petrology 166, 351-370. flood basalts and implications for identification of peridotite 41. Owen-Smith, T. M., Ashwal, L. D., Torsvik, T. H., Ganer0d, and pyroxenite source lithologies. Earth-Science Reviews M., Nebel, O., Webb, S. J., Werner, S. C. (2013). Seychelles 176, 51-67. alkaline suite records the culmination of Deccan Traps con­ 25. Holland, J. G., Brown, G. M. (1972). Hebridean tholei- tinental flood volcanism. Lithos 182-183, 33-47. itic magmas: A geochemical study of the Ardnamurchan 42. Piccirillo, E. M., Civetta, L., Petrini, R., Longinelli, A., Bel- cone sheets. Contributions to Mineralogy and Petrology lieni, G., Comin-Chiaramonti, P., Marques, L. S., Melfi, A. 37, 139-160. J. (1989). Regional variations within the Parana flood ba­ 26. Hutchison, W., Pyle, D. M., Mather, T. A., Yirgu, G., salts (southern Brazil): Evidence for subcontinental mantle Biggs, J., Cohen, B. E., Barfod, D. N., Lewi, E. (2016). heterogeneity and crustal contamination. Chemical Geology The eruptive history and magmatic evolution of Aluto vol­ 75, 103-122. cano: new insights into silicic peralkaline volcanism in the 43. Pinto, V M., Hartmann, L. A., Santos, J. O. S., McNaught- Ethiopian rift. Journal of Volcanology and Geothermal Re­ on, N. J., Wildner, W. (2011). Zircon U-Pb geochronology search 328, 9-33. from the Parana bimodal volcanic province support a brief 27. Irvine, T. N., Baragar, W. R. A. (1971). A Guide to the eruptive cycle at ~135Ma. Chemical Geology 281, 93-102. Chemical Classification of the Common Volcanic Rocks. 44. Putirka, K., Condit, C. D. (2003). Cross section of a magma Canadian Journal of Earth Sciences 8, 523-548. conduit system at the margin of the Colorado Plateau. Ge­ 28. Jakobsen, J. K., Veksler, I. V., Brooks, C. K., Tegner, C. ology 31, 701-704. (2005). Immiscible iron- and silica-rich melts in basalt 45. Putirka, K. D. (2017). Down the Crater: Where Magmas are petrogenesis documented in the Skaergaard intrusion. Ge­ Stored and Why They Erupt. Elements 13, 11. ology 33, pags. 885-888. 46. Putirka, K. D., Kuntz, M. A., Unruh, D. M., Vaid, N. (2009). 29. Kennedy, B., Stix, J. (2007). Magmatic processes associated Magma Evolution and Ascent at the Craters of the Moon with caldera collapse at Ossipee ring dyke, New Hampshire. and Neighboring Volcanic Fields, Southern Idaho, USA: Geological Society of America Bulletin 119, 3-17. Implications for the Evolution of Polygenetic and Monoge­ 30. Kieffer, B., Arndt, N., Lapierre, H., Bastien, F., Bosch, D., netic Volcanic Fields. Journal of Petrology 50, 1639-1665. Pecher, A., Yirgu, G., Ayalew, D., Weis, D., Jerram, D. A. 47. Samaniego, P., Martin, H., Monzier, M., Robin, C., Fornari, (2004). Flood and Shield Basalts from Ethiopia: Magmas M., Eissen, J.-P., Cotten, J. (2005). Temporal Evolution of from the African Superswell. Journal of Petrology 45, 793- Magmatism in the Northern Volcanic Zone of the Andes: 834(742). The Geology and Petrology of Cayambe Volcanic Complex 31. Kirstein, L. A., Peate, D. W., Hawkesworth, C. J., Turner, (Ecuador). Journal of Petrology 46, 2225-2252. S. P, Harris, C., Mantovani, M. S. M. (2000). Early Cre­ 48. Shellnutt, J. G., Jahn, B. M. (2010). Formation of the Late taceous Basaltic and Rhyolitic Magmatism in Southern Permian Panzhihua plutonic-hypabyssal-volcanic igneous Uruguay Associated with the Opening of the South Atlantic. complex: Implications for the genesis of Fe-Ti oxide depos­ Journal of Petrology 41, 1413-1438. its and A-type granites of SW China. Earth and Planetary 32. Kohn, S. C., Grant, K. J. (2006). The partitioning of water Science Letters 289, 509-519. between nominally anhydrous minerals and silicate melts. 49. Shirley, D. N. (1987). Differentiation and Compaction in Reviews in Mineralogy, Geochemistry 62, 231-241. the Palisades Sill, New Jersey. Journal of Petrology 28, 33. Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., Zanettin, 835-865. B., Rocks, I. S. o. t. S. o. I. (1986). A Chemical Classifi­ 50. Suneson, N. H., Lucchitta, I. (1983). Origin of bimodal cation of Volcanic Rocks Based on the Total Alkali-Silica volcanism, southern Basin and Range province, west-cen­ Diagram. Journal of Petrology 27, 745-750. tral Arizona. Geological Society of America Bulletin 94, 34. Lightfoot, P. C., Hawkesworth, C. J., Sethna, S. F. (1987). 1005-1019.

36 51. Thy, P., Beard, J. S., Lofgren, G. E. (1990). Experimental basalts from the remnant Comei Large Igneous Province in Constraints on the Origin of Icelandic Rhyolites. Journal of SE Tibet: records of mantleDplume activity. Terra Nova 26, Geology 98, 417-421. 487-494. 52. Tiwari, B. D. (1971). Magmatic differentiation of the vol- 60. Yang, H.-J., Kinzler, R. J., Grove, T. L. (1996). Experiments canics at Pavagarh, Gujarat, India. Bulletin Volcanologique and models of anhydrous, basaltic olivine-plagioclase-au- 35, 1129-1177. gite saturated melts from 0.001 to 10 kbar. Contributions to 53. Turner, S. P., Kirstein, L. A., Hawkesworth, C. J., Peate, D. Mineralogy and Petrology 124, 1-18. W., Hallinan, S., Mantovani, M. S. M. (1999). Petrogenesis 61. Zhang, C.-L., Zou, H.-b. (2013). Comparison between the of an 800 m sequence in eastern Uruguay: insights into Permian mafic dykes in Tarim and the western part of Cen­ magma chamber processes beneath the Parana flood basalt tral Asian Orogenic Belt (CAOB), NW China: Implications province. Journal of Geodynamics 28, 471-487. for two mantle domains of the Permian Tarim Large Igneous 54. Twist, D., Harmer, R. J. (1987). Geochemistry of contrast­ Province. Lithos 174, 15-27. ing siliceous magmatic suites in the Bushveld Complex: 62. Zhou, M.-F., Arndt, N. T., Malpas, J., Wang, C. Y., Kennedy, genetic aspects and implications for tectonic discrimination A. K. (2008). Two magma series and associated ore deposit diagrams. Journal of Volcanology and Geothermal Research types in the Permian Emeishan large igneous province, SW 32, 83-98. China. Lithos 103, 352-368. 55. Villiger, S., Ulmer, P., Muntener, O. (2007). Equilibrium 63. Zhu, D., Mo, X., Pan, G., Zhao, Z., Dong, G., Shi, Y, Liao, and Fractional Crystallization Experiments at 0 7 GPa; the Z., Wang, L., Zhou, C. (2008). Petrogenesis of the ear­ Effect of Pressure on Phase Relations and Liquid Composi­ liest Early Cretaceous mafic rocks from the Cona area of tions of Tholeiitic Magmas. Journal of Petrology 48, 159­ the eastern Tethyan Himalaya in south Tibet: Interaction 184. between the incubating Kerguelen plume and the eastern 56. Villiger, S., Ulmer, P, Muntener, O., Thompson, A. B. Greater India lithosphere? Lithos 100, 147-173. (2004). The Liquid Line of Descent of Anhydrous, Man­ 64. Zhu, D., Pan, G., Mo, X., Liao, Z., Jiang, X., Wang, L., tle-Derived, Tholeiitic Liquids by Fractional and Equilib­ Zhao, Z. (2007). Petrogenesis of volcanic rocks in the rium Crystallization—an Experimental Study at 10 GPa. Sangxiu Formation, central segment of Tethyan Himalaya: Journal of Petrology 45, 2369-2388(2320). A probable example of plume-lithosphere interaction. Jour­ 57. Wager, L. R., Brown, G. M. (1967). Layered Igneous Rocks. nal of Asian Earth Sciences 29, 320-335. Mineralogical Magazine 36, 1182-1183. 65. Zou, S.-Y, Li, Z.-L., Song, B., Ernst, R. E., Li, Y.-Q., Ren, 58. White, R., Mckenzie, D. (1989). Magmatism at Rift Zones: Z.-Y, Yang, S.-F., Chen, H.-L., Xu, Y-G., Song, X.-Y The Generation of Volcanic Continental Margins and Flood (2015). Zircon U-Pb dating, geochemistry and Sr-Nd-Pb- Basalts. Journal of Geophysical Research Solid Earth 94, Hf isotopes of the Wajilitag alkali mafic dikes, and associ­ 7685-7729. ated diorite and syenitic rocks: Implications for magmatic 59. Xia, Y, Zhu, D. C., Wang, Q., Zhao, Z. D., Liu, D., Wang, evolution of the Tarim large igneous province. Lithos 212­ L. Q., Mo, X. X. (2014). Picritic porphyrites and associated 215, 428-442.

37