Quelques Contributions À La Théorie De La Commande Optimale Déterministe Et Stochastique

Total Page:16

File Type:pdf, Size:1020Kb

Quelques Contributions À La Théorie De La Commande Optimale Déterministe Et Stochastique Université de Limoges Habilitation à diriger des recherches présentée par Francisco J. Silva Spécialité: Mathématiques Appliquées Quelques contributions à la théorie de la commande optimale déterministe et stochastique. Mémoire présenté le 15 novembre 2016 devant le jury composé de : Yves Achdou Rapporteur Guillaume Carlier Rapporteur Eduardo Casas Rapporteur Frédéric Bonnans Examinateur Pierre Cardaliaguet Examinateur Alejandro Jofré Examinateur Filippo Santambrogio Examinateur Lionel Thibault Examinateur Samir Adly Chargé de suivi ii A Fernanda. 1 Remerciements Je tiens tout d’abord à remercier Samir Adly pour avoir généreusement ac- cepté d’être le chargé de suivi de ce mémoire. Je voudrais remercier sincérement les rapporteurs de ce mémoire: Yves Achdou, dont les travaux sur l’approximation numérique des jeux à champ moyen sont une réference dans le domaine; Guillaume Carlier, pour l’intêret qu’il a témoigné pour mes travaux; et Eduardo Casas, dont les résultats sur les conditions d’optimalité en contrôle optimale des EDPs ont inspiré ma recherche dans ce domaine. J’adresse mes remerciements aussi aux autres membres du jury: Frédéric Bonnans, mon directeur de thèse qui a toujours suivi de près mes recherches et qui m’a soutenu depuis de longues années; Pierre Cardaliaguet, qui est une réference dans les domaines de jeux différentielles et de jeux à champ moyen; Alejandro Jofré, pour son accueil toujours chaleureux lors de plusieurs séjours de recherche au CMM, Université du Chili; Filippo Santambrogio, pour son intêret pour mes travaux en jeux à champs moyen et pour m’avoir proposé généreusement de travailler avec son ancien étudiant Alpar Richárd Mészáros sur un projet dont l’idée originale lui appartenait; et Lionel Thibault, pour me faire l’honneur d’être membre de mon jury. Je remercie tous mes collaborateurs et amis avec qui j’ai eu grand plaisir à travailler. Ils ont beaucoup contribué à la réussite de ma recherche ces dernières années. Je remercie notamment Jérôme Bolte pour son soutien tout au long de ma carrière et Julio Backhoff pour nos échanges toujours très intéressants et pour sa relecture de la troisième partie de ce mémoire. Un grand merci aux collègues du Departement de Mathématiques et Informatique (DMI) avec qui j’ai partagé mon quotidien au cours de ces dernières années. Je tiens à remercier tout particulièrment Anne Bellido, Joël Benoist, Paola Boito, Thomas Cluzeau, Odile Duval, François Laubie, Abdelkader Necer, Annie Nicolas, Olivier Prot, Olivier Ruatta, Marc Ry- bowicz, Alain Salinier, Débora Thomas, Stéphane Vinatier, Yolande Vieceli et Jacques Arthur Weil. Je remercie enfin Fernanda qui partage ma vie pour sa tendresse et sa patience lors de l’écriture de ce mémoire, et pour qui j’ai la plus grande pensée. 2 Abstract This thesis provides a summary of some selected research results obtained after my PhD thesis at the École Polytechnique in 2010. All of them concern optimal control problems. We have divided our contributions into three parts: I. Optimal control of partial differential equations. II. Mean field games. III. Stochastic optimal control. Inspired by the theory of Calculus of Variations, in the first part we con- sider strong local solutions of optimal control problems of partial differential equations. We introduce and characterize the notion of strong local solution satisfying a quadratic growth condition, first in the elliptic case, with pure control constraints, and then in the parabolic framework, where finitely many state constraints are also considered. In Part II, we first propose and study the main properties of a natural extension of classical semi-Lagrangian schemes to the case of Mean Field Games systems involving non-local couplings. Next, we present some results related to the variational formulation of some stationary Mean Field Games, with local couplings, where an additional density constraint is imposed in order to model some hard congestion effects. The aforementioned variational formulation is exploited also at the discrete level in order to propose, to implement and to compare several efficient first order algorithms for solving some Mean Field Games models. In Part III, we provide a first order sensitivity analysis for some parame- terized stochastic optimal control problems. For standard convex problems, this is done by means of a careful identification between the adjoint states appearing in a weak form of the stochastic Pontryagin’s principle and the Lagrange multipliers of the associated abstract optimization problem. We also consider the more delicate case of the utility maximization models in incomplete markets. Under a weak formulation, the optimization problem is reformulated in terms of a support function of a weakly compact set in a reflexive Banach space. This allows us to carry out a sensitivity analysis by means of classical tools. 3 Résumé Ce mémoire présente un résumé d’une sélection des travaux de recherche réalisés après ma thèse de doctorat soutenue à l’Ècole Polytechnique en 2010. Tous ces travaux portent sur le contrôle optimal et peuvent-être regroupés dans les trois thématiques suivantes: I. Contrôle optimal des équations aux dérivées partielles. II. Jeux à champ moyen. III. Contrôle optimal stochastique. Dans la première partie, inspirée par la théorie du Calcul des Variations, nous considérons des solutions locales dites fortes pour des problèmes de contrôle optimal des équations aux dérivées partielles. Nous introduisons et caractérisons la notion de solution locale forte satisfaisant une croissance quadratique, d’abord dans le cas elliptique et avec contraintes sur le contrôle, et puis dans le cas parabolique où, additionnellement, l’état est soumis à un nombre fini de contraintes finales. Dans la seconde partie, nous étudions d’abord les propriétés principales d’une extension naturelle des schémas semi-Lagrangians pour les jeux à champ moyen comportants des couplages non-locaux. Ensuite, nous présentons quelques résultats liés à la formulation variationnelle de certains jeux à champ moyen stationnaires, comportants des couplages locaux et contraintes sur la densité, afin de modéliser des effets de congestion forts. Enfin, cette formula- tion variationnelle est aussi utilisée pour implémenter et comparer plusieurs méthodes d’optimisation de premier ordre pour la résolution de systèmes de jeux à champ moyen discretisés. Dans la dernière partie du mémoire, nous réalisons une analyse de sensi- bilité de premier ordre pour des problèmes de contrôle optimal stochastique paramétrisés. Sous des hypothèses de convexité pour des problèmes stan- dards, nous dérivons les sensibilités de la fonction valeur en utilisant une identification entre les états adjoints d’une version faible du principe de Pon- tryagin stochastique et les multiplicateurs de Lagrange du problème abstrait associé. Nous considérons aussi le cas, plus difficile, des problèmes de max- imisation d’utilité dans des marchés incomplets. Sous une formulation faible, nous réécrivons le problème en termes d’une fonction d’appui d’un ensem- ble faiblement compact d’un espace de Banach réflexif, ce qui nous permet d’utiliser des techniques classiques pour obtenir des résultats d’analyse de sensibilité de la fonction valeur. 4 5 Contents 1 Introduction 7 1.1 Optimal control of PDEs . .7 1.1.1 Contributions . .9 1.2 Stochastic optimal control theory . 11 1.2.1 Contributions . 14 1.3 Mean Field Games . 15 1.3.1 Contributions . 17 2 Second order optimality conditions in the control of elliptic and parabolic PDEs 19 2.1 Optimal control of elliptic equations . 19 2.1.1 Preliminaries . 19 2.1.2 Optimal control problem and optimality conditions . 21 2.1.3 Characterization of strong solutions satisfying the quadratic growth condition . 24 2.1.4 Comments and perspectives . 27 2.2 Optimal control of parabolic equations . 27 2.2.1 Preliminaries . 27 2.2.2 Optimality conditions and strong solutions . 28 2.2.3 Comments and perspectives . 33 3 Some contributions in the theory of Mean Field Games 35 3.1 Semi-Lagrangian schemes for MFGs . 35 3.1.1 Introduction . 35 3.1.2 Notations and main asssumptions . 36 3.1.3 A Semi-Lagrangian scheme for the first order MFG sys- tem............................. 37 3.1.4 The SL scheme in the second order case . 42 3.1.5 Numerical tests . 45 3.1.6 Comments and perspectives . 46 3.2 On the variational formulation of some stationnary MFG . 48 6 3.2.1 Functional framework . 49 3.2.2 Main results . 50 3.2.3 Comments and perspectives . 53 3.3 Proximal methods to solve some stationary MFGs . 54 3.3.1 The discrete optimization problems . 55 3.3.2 The case without density constraint . 56 3.3.3 The density constrained case . 61 3.3.4 Comments and perspectives . 62 4 Sensitivity analysis of some stochastic optimal control prob- lems 65 4.1 Sensitivity analysis of standard stochastic control problems . 66 4.1.1 Functional framework and Lagrange multipliers . 67 4.1.2 Sensitivity Analysis . 71 4.1.2.1 Perturbation analysis for stochastic LQ prob- lems . 72 4.1.2.2 Perturbation analysis for Mean-Variance port- folio selection problems . 74 4.1.3 Comments and perspectives . 76 4.2 Utility maximization theory . 76 4.2.1 Preliminaries . 76 4.2.2 Sensitivity analysis for expected utility maximization in incomplete brownian market models . 81 4.2.3 Comments and perspectives . 84 A Review of some proximal point algorithms in convex opti- mization 87 7 Chapter 1 Introduction This thesis summarizes the published articles [54, 18, 67, 68, 150, 173, 20, 13] and the preprints [49, 12]. The contribution of these articles is divided into three related parts: optimal control of Partial Differential Equations (PDEs), Mean Field Games (MFG) and stochastic optimal control theory. The purpose of this introductory chapter is first to fix the notation that will be used through the thesis, and then to introduce and recall some well-known facts about the three subjects mentioned above and to briefly indicate the contributions of the works on which I have participated.
Recommended publications
  • Locally Convex Spaces for Which Λ(E) = Λ[E] and the Dvoretsky-Rogers Theorem Compositio Mathematica, Tome 35, No 2 (1977), P
    COMPOSITIO MATHEMATICA N. DE GRANDE-DE KIMPE Locally convex spaces for which L(E) = L[E] and the Dvoretsky-Rogers theorem Compositio Mathematica, tome 35, no 2 (1977), p. 139-145 <http://www.numdam.org/item?id=CM_1977__35_2_139_0> © Foundation Compositio Mathematica, 1977, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions géné- rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infrac- tion pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ COMPOSITIO MATHEMATICA, Vol. 35, Fasc. 2, 1977, pag. 139-145 Noordhoff International Publishing Printed in the Netherlands LOCALLY CONVEX SPACES FOR WHICH 039B(E) = 039B [E] AND THE DVORETSKY-ROGERS THEOREM N. De Grande-De Kimpe The classical Dvoretsky-Rogers theorem states that if E is a Banach space for which l1[E] = (l(E), then E is finite dimensional. This property still holds for any (P (1 p ~) (see [5]). Recently it has been shown (see [11]) that the result remains true when one replaces e’ by any non-nuclear perfect sequence space A, having the normal topology n(A, Ax). (This situation does not contain the (P (1 p -)-case). The question whether the Dvoretsky-Rogers theorem holds for any perfect Banach sequence space A is still open. (A partial, positive answer to this problem, generalizing the é’-case for any p is given in this paper.) It seemed however more convenient to us to tackle the problem from the "locally-convex view-point".
    [Show full text]
  • The Tensor Product Representation of Polynomials of Weak Type in a DF-Space
    Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2014, Article ID 795016, 7 pages http://dx.doi.org/10.1155/2014/795016 Research Article The Tensor Product Representation of Polynomials of Weak Type in a DF-Space Masaru Nishihara1 and Kwang Ho Shon2 1 Department of Computer Science and Engineering, Faculty of Information Engineering, Fukuoka Institute of Technology, Fukuoka 811-0295, Japan 2 Department of Mathematics, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea Correspondence should be addressed to Kwang Ho Shon; [email protected] Received 15 December 2013; Accepted 19 February 2014; Published 27 March 2014 Academic Editor: Zong-Xuan Chen Copyright © 2014 M. Nishihara and K. H. Shon. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Let and be locally convex spaces over C and let ( ; ) be the space of all continuous -homogeneous polynomials from to .Wedenoteby⨂,, the -fold symmetric tensor product space of endowed with the projective topology. Then, it is well known that each polynomial ∈(; ) is represented as an element in the space (⨂,,; ) of all continuous linear mappings from ⨂,, to . A polynomial ∈(; ) is said to be of weak type if, for every bounded set of , | is weakly continuous on .Wedenoteby( ; ) the space of all -homogeneous polynomials of weak type from to . In this paper, in case that is a DF space, we will give the tensor product representation of the space ( ; .) 1. Notations and Preliminaries by B() thefamilyofallboundedsubsetsof.
    [Show full text]
  • Document Downloaded From: This Paper Must Be Cited As: the Final Publication Is Available at Copyright
    Document downloaded from: http://hdl.handle.net/10251/43075 This paper must be cited as: Bonet Solves, JA.; Albanese, AA.; Ricker, WJ. (2013). Convergence of arithmetic means of operators in Fréchet spaces. Journal of Mathematical Analysis and Applications. 401(1):160-173. doi:10.1016/j.jmaa.2012.11.060. The final publication is available at http://dx.doi.org/10.1016/j.jmaa.2012.11.060 Copyright Elsevier CONVERGENCE OF ARITHMETIC MEANS OF OPERATORS IN FRÉCHET SPACES ANGELA A. ALBANESE, JOSÉ BONET* AND WERNER J. RICKER Authors' addresses: Angela A. Albanese: Dipartimento di Matematica e Fisica E. De Giorgi, Università del Salento- C.P.193, I-73100 Lecce, Italy email: [email protected] José Bonet (corresponding author): Instituto Universitario de Matemática Pura y Aplicada IUMPA, Universitat Politècnica de València, E-46071 Valencia, Spain email:[email protected] telephone number: +34963879497. fax number: +34963879494. Werner J. Ricker: Math.-Geogr. Fakultät, Katholische Universität Eichstätt- Ingolstadt, D-85072 Eichstätt, Germany email:[email protected] Abstract. Every Köthe echelon Fréchet space X that is Montel and not isomorphic to a countable product of copies of the scalar eld admits a power bounded continuous linear operator T such that I ¡ T does not have closed range, but the sequence of arithmetic means of the iterates of T converge to 0 uniformly on the bounded sets in X. On the other hand, if X is a Fréchet space which does not have a quotient isomorphic to a nuclear Köthe echelon space with a continuous norm, then the sequence of arithmetic means of the iterates of any continuous linear operator T (for which (1=n)T n converges to 0 on the bounded sets) converges uniformly on the bounded subsets of X, i.e., T is uniformly mean ergodic, if and only if the range of I ¡ T is closed.
    [Show full text]
  • Arxiv:1702.07867V1 [Math.FA]
    TOPOLOGICAL PROPERTIES OF STRICT (LF )-SPACES AND STRONG DUALS OF MONTEL STRICT (LF )-SPACES SAAK GABRIYELYAN Abstract. Following [2], a Tychonoff space X is Ascoli if every compact subset of Ck(X) is equicontinuous. By the classical Ascoli theorem every k- space is Ascoli. We show that a strict (LF )-space E is Ascoli iff E is a Fr´echet ′ space or E = ϕ. We prove that the strong dual Eβ of a Montel strict (LF )- space E is an Ascoli space iff one of the following assertions holds: (i) E is a ′ Fr´echet–Montel space, so Eβ is a sequential non-Fr´echet–Urysohn space, or (ii) ′ ω D E = ϕ, so Eβ = R . Consequently, the space (Ω) of test functions and the space of distributions D′(Ω) are not Ascoli that strengthens results of Shirai [20] and Dudley [5], respectively. 1. Introduction. The class of strict (LF )-spaces was intensively studied in the classic paper of Dieudonn´eand Schwartz [3]. It turns out that many of strict (LF )-spaces, in particular a lot of linear spaces considered in Schwartz’s theory of distributions [18], are not metrizable. Even the simplest ℵ0-dimensional strict (LF )-space ϕ, n the inductive limit of the sequence {R }n∈ω, is not metrizable. Nyikos [16] showed that ϕ is a sequential non-Fr´echet–Urysohn space (all relevant definitions are given in the next section). On the other hand, Shirai [20] proved the space D(Ω) of test functions over an open subset Ω of Rn, which is one of the most famous example of strict (LF )-spaces, is not sequential.
    [Show full text]
  • Functional Analysis and Optimization
    Functional Analysis and Optimization Kazufumi Ito∗ November 29, 2016 Abstract In this monograph we develop the function space method for optimization problems and operator equations in Banach spaces. Optimization is the one of key components for mathematical modeling of real world problems and the solution method provides an accurate and essential description and validation of the mathematical model. Op- timization problems are encountered frequently in engineering and sciences and have widespread practical applications.In general we optimize an appropriately chosen cost functional subject to constraints. For example, the constraints are in the form of equal- ity constraints and inequality constraints. The problem is casted in a function space and it is important to formulate the problem in a proper function space framework in order to develop the accurate theory and the effective algorithm. Many of the constraints for the optimization are governed by partial differential and functional equations. In order to discuss the existence of optimizers it is essential to develop a comprehensive treatment of the constraints equations. In general the necessary optimality condition is in the form of operator equations. Non-smooth optimization becomes a very basic modeling toll and enlarges and en- hances the applications of the optimization method in general. For example, in the classical variational formulation we analyze the non Newtonian energy functional and nonsmooth friction penalty. For the imaging/signal analysis the sparsity optimization is used by means of L1 and TV regularization. In order to develop an efficient solu- tion method for large scale optimizations it is essential to develop a set of necessary conditions in the equation form rather than the variational inequality.
    [Show full text]
  • Stability for Periodic Evolution Families of Bounded Linear Operators
    Surveys in Mathematics and its Applications ISSN 1842-6298 (electronic), 1843-7265 (print) Volume 10 (2015), 61 { 93 STABILITY FOR PERIODIC EVOLUTION FAMILIES OF BOUNDED LINEAR OPERATORS Olivia Saierli Abstract The long time behavior for solutions of evolution periodic equations are reviewed. 1 Introduction The study of differential autonomous systems, especially when the "coefficients" are unbounded (the case of infinitesimal generators, for example) is well represented in the contemporary mathematics literature. The study of asymptotic behavior of solutions of systems with time-varying coefficients is more difficult since, inthis context, the well known spectral criteria (such as those existing in the autonomous case) are no longer valid. In the following, we describe the history of the issue and also we state new results concerning asymptotic behavior of solutions of non- autonomous periodic systems. Let A be a bounded linear operator acting on a Banach space X, x an arbitrary vector in X and let µ be a real parameter. First consider the autonomous system y_(t) = Ay(t); t ≥ 0 (1.1) and the associated inhomogeneous Cauchy Problem { y_(t) = Ay(t) + eiµtx; t ≥ 0 (1.2) y(0) = 0: It is well-known, [30], [6], that the system (1.1) is uniformly exponentially stable (i.e. there exist two positive constants N and ν such that ketAk ≤ Ne−νt) if and 2010 Mathematics Subject Classification: 42A16; 45A05; 47A10; 47A35; 47D06; 47G10; 93D20. Keywords: Periodic evolution families; uniform exponential stability; boundedness; evolution semigroup; almost periodic functions. This work is based on the author's PhD thesis. ****************************************************************************** http://www.utgjiu.ro/math/sma 62 O.
    [Show full text]
  • NONARCHIMEDEAN COALGEBRAS and COADMISSIBLE MODULES 2 of Y
    NONARCHIMEDEAN COALGEBRAS AND COADMISSIBLE MODULES ANTON LYUBININ Abstract. We show that basic notions of locally analytic representation the- ory can be reformulated in the language of topological coalgebras (Hopf alge- bras) and comodules. We introduce the notion of admissible comodule and show that it corresponds to the notion of admissible representation in the case of compact p-adic group. Contents Introduction 1 1. Banach coalgebras 4 1.1. Banach -Coalgebras 5 ̂ 1.2. Constructions⊗ in the category of Banach -coalgebras 6 ̂ 1.3. Banach -bialgebras and Hopf -algebras⊗ 8 ̂ ̂ 1.4. Constructions⊗ in the category of⊗ Banach -bialgebras and Hopf ̂ -algebras. ⊗ 9 ̂ 2. Banach comodules⊗ 9 2.1. Basic definitions 9 2.2. Constructions in the category of Banach -comodules 10 ̂ 2.3. Induction ⊗ 11 2.4. Rational -modules 14 ̂ 2.5. Tensor identities⊗ 15 3. Locally convex -coalgebras 16 ̂ Preliminaries ⊗ 16 3.1. Topological Coalgebras 18 3.2. Topological Bialgebras and Hopf algebras. 20 4. modules and comodules 21 arXiv:1410.3731v2 [math.RA] 26 Jul 2017 4.1. Definitions 21 4.2. Rationality 22 4.3. Quotients, subobjects and simplicity 22 4.4. Cotensor product 23 5. Admissibility 24 Appendix 28 References 29 Introduction The study of p-adic locally analytic representation theory of p-adic groups seems to start in 1980s, with the first examples of such representations studied in the works 1 NONARCHIMEDEAN COALGEBRAS AND COADMISSIBLE MODULES 2 of Y. Morita [M1, M2, M3] (and A. Robert, around the same time), who considered locally analytic principal series representations for p-adic SL2.
    [Show full text]
  • Mackey Continuity of Characteristic Functionals
    Georgian Mathematical Journal Volume 9 (2002), Number 1, 83–112 MACKEY CONTINUITY OF CHARACTERISTIC FUNCTIONALS S. KWAPIEN´ AND V. TARIELADZE Dedicated to N. Vakhania on the occassion of his 70th birthday Abstract. Problems of the Mackey-continuity of characteristic functionals and the localization of linear kernels of Radon probability measures in locally convex spaces are investigated. First the class of spaces is described, for which the continuity takes place. Then it is shown that in a non-complete sigma- compact inner product space, as well as in a non-complete sigma-compact metizable nuclear space, there may exist a Radon probability measure having a non-continuous characteristic functional in the Mackey topology and a linear kernel not contained in the initial space. Similar problems for moment forms and higher order kernels are also touched upon. Finally, a new proof of the result due to Chr. Borell is given, which asserts that any Gaussian Radon measure on an arbitrary Hausdorff locally convex space has the Mackey- continuous characteristic functional. 2000 Mathematics Subject Classification: Primary: 60B11. Secondary: 28C20, 60B15. Key words and phrases: Radon probability measure, characteristic func- tional, kernel of a measure, weak topology, Mackey topology, presupport, Gaussian measure, covariance operator. 1. Introduction Recall that for a Hausdorff locally convex space X the Mackey topology ¿(X¤;X) is the topology in its topological dual X¤ of uniform convergence on all weakly compact absolutely convex subsets of X. The aim of this paper is to answer the following three equivalent questions: Question 1. Is the characteristic functional¹ ˆ of a Radon probability mea- sure ¹ in a Hausdorff locally convex space X continuous in the Mackey topology ¿(X¤;X)? Question 2.
    [Show full text]
  • Structure of Spaces of Germs of Holomorphic Functions
    Publicacions Matem`atiques, Vol 41 (1997), 467–480. STRUCTURE OF SPACES OF GERMS OF HOLOMORPHIC FUNCTIONS N. Van Khue and P. Thien Danh Abstract Let E be a Frechet (resp. Frechet-Hilbert) space. It is shown that E ∈ (Ω) (resp. E ∈ (DN)) if and only if [H(OE )] ∈ (Ω) (resp. [H(OE )] ∈ (DN)). Moreover it is also shown that E ∈ (DN) if and only if Hb(E ) ∈ (DN). In the nuclear case these results were proved by Meise and Vogt [2]. 1. Preliminaries 1.1. Let K be a compact set in a Frechet space E.ByH(K)we denote the space of germs of holomorphic functions on K. This space is equipped with the inductive topology H(K) = lim indH∞(U). U↓K Here for each neighborhood U of K,byH∞(U) we denote the Banach space of bounded holomorphic functions on U with the sup-norm fU = sup{|f(z):z ∈ U}. 1.2. Let E denote the strong dual space of a Frechet space E.A holomorphic function on E is said to be of bounded type if it is bounded on every bounded set in E .ByHb(E ) we denote the metric locally convex space of entire functions of bounded type on E equipped with the topology the convergence on bounded sets in E. For more details concerning holomorphic functions on locally convex spaces we refer to the book of Dineen [1]. 468 N. Van Khue, P. Thien Danh 1.3. Assume the topology of E is defined by an increasing fundamen- {· }∞ tal system of seminorms k k=1.
    [Show full text]
  • Arxiv:1811.10987V1 [Math.FA]
    FRECHET´ ALGEBRAS IN ABSTRACT HARMONIC ANALYSIS Z. ALIMOHAMMADI AND A. REJALI Abstract. We provide a survey of the similarities and differences between Banach and Fr´echet algebras including some known results and examples. We also collect some important generalizations in abstract harmonic anal- ysis; for example, the generalization of the concepts of vector-valued Lips- chitz algebras, abstract Segal algebras, Arens regularity, amenability, weak amenability, ideal amenability, etc. 0. Introduction The class of Fr´echet algebras which is an important class of locally convex algebras has been widely studied by many authors. For a full understanding of Fr´echet algebras, one may refer to [27, 36]. In the class of Banach algebras, there are many concepts which were generalized to the Fr´echet case. Examples of these concepts are as follows. Biprojective Banach algebras were studied by several authors, notably A. Ya. Helemskii [35] and Yu. V. Selivanov [62]. A number of papers appeared in the literature concerned with extending the notion of biprojectivity and its results to the Fr´echet algebras; see for example [48, 63]. Flat cyclic Fr´echet modules were investigated by A. Yu. Pirkovskii [49]. Let A be a Fr´echet algebra and I be a closed left ideal in A. Pirkovskii showed that there exists a necessary and sufficient condition for a cyclic Fr´echet A-module A♯/I to be strictly flat. He also generalized a number of characterizations of amenable Ba- nach algebras to the Fr´echet algebras (ibid.). In 2008, P. Lawson and C. J. Read [43] introduced and studied the notions of approximate amenability and approxi- mate contractibility of Fr´echet algebras.
    [Show full text]
  • Stojan Radenovi C Zoran Kadelburg
    Scientiae Mathematicae Vol.1, No. 11998, 43{49 43 ON A. GROTHENDIECK'S PROBLEMS CONCERNING F AND DF{SPACES Stojan Radenovic Zoran Kadelburg For non-exp erts only Received Novemb er 7, 1996; revised March 6, 1997 Abstract. This is an exp ository article devoted to the answers to the ten op en problems from the fundamental pap er [16] of A. Grothendieck, some of whichwere given in the recent years. A signi cant contribution to the development of the theory of lo cally convex spaces lcs , as a part of functional analysis, was given in the fties by a group of French mathematicians L. Schwartz, N. Bourbaki, J. Dieudonn e, A. Grothendieck. The dominant part in their work, concerning this part of functional analysis, was devoted to the so called duality theory.Itwas esp ecially applied to the investigation of metrizable, i.e. Fr echet lcs, which are \nearest" to the normed and Banach spaces [14]. The article [16] of A. Grothendieck \on F and DF spaces" takes a sp ecial place in the theory of lcs. Apart from solving nearly all the problems of L. Schwartz and J. Dieudonn e, p osed in [14], a signi cant class of spaces|\DF-spaces"|was intro duced in it. This class contains a lot of imp ortant functional spaces|we mention just a few, following the pap er [16] itself: m 0 0 m 0 a The spaces E , E , D , D , intro duced byL.Schwartz in [28] for ap- L L p p plication in the theory of distributions; also the space C of continuous functions with compact supp ort.
    [Show full text]
  • 1 .L. Throughout This Paper K Is a Non-Archimedean, Non-Trivially Valued, Complete Field with a Valuation 1
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector MATHEMATICS Proceedings A 90 (3) September 28, 1987 Nuclear topologies on non-archimedean locally convex spaces by N. de Grande-de Kimpe Free University, Department of Mathematics, Pleinlaan 2 (F7). B-1050 Brussels, Belgium Communicated by Prof. H. Freudenthal at the meeting of February 23, 1987 ABSTRACT Let K be a non-archimedean, non-trivially valued, complete field. Given a polar space E, dover K we characterize the nuclearity of E, Pby sequences in the dual space E’. If the topology Sis not nuclear we describe the finest nuclear topology, on E, coarser than 3? Applications of this theory are studied. 1. PRELIMINARIES 1 .l. Throughout this paper K is a non-archimedean, non-trivially valued, complete field with a valuation 1. I. If E, 9is a locally convex space over K with topology d we denote by sl, (or by 9 if no confusion is possible) a family of semi-norms determining the topology 2X We always assume that E, B is a Hausdorff space. For the basic notions and properties concerning locally convex spaces we refer to [8] if K is spherically complete and to [6] if K is not spherically complete. However we recall the following: A subset B of a vector space E over K is called absolutely convex ( = K-convex in [8]) if ax+ /Q E B whenever x,ycB; I,,ueK; 111~1, \~l~l. The absolutely convex hull of a subset D of E is denoted by C(D).
    [Show full text]