Chapter 1. Stereoisomerism

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 1. Stereoisomerism Chapter 1. Stereoisomerism • symmetry elements Little Eliel “Symmetry” symmetry planes, symmetry axes, inversion centers p. 45-58 … • point groups chiral point groups • enantiomers and diastereomers in chiral point groups: chiral centers chiral axes planes of chirality • notation: Fischer D,L Cahn, Ingold, Prelog R,S • resolution of a racemic mixture and its detection For symmetry, also check out http://www.reciprocalnet.org/edumodules/symmetry, a very nice site. 4. Racemates (racemic mixtures) - 1:1 mixture of enantiomers I. Detection Optical activity - a chiral compound is optically active - it rotates the plane of linearly polarized light in a polarimeter andromeda.rutgers.edu/~huskey/335_lec.html - linearly polarized light is a linear combination of two waves: left +right circularly polarized light: - experience a different refraction index in the chiral sample (“diastereomeric interactions”) - slow down in the sample to a different extent ? -“circular birefringence” Polarized light linearly polarized wave two linearly polarized waves: a) in phase b) out of phase Polarized light continued This is what happens to linearly polarized light in the polarimeter: Here the right circularly polarized wave slows down in the sample. back 4. Racemates continued - rotation of the plane of linearly polarized light in a polarimeter: clockwise: +α for either R or S: (R)-(+)-… or (S)-(+)-… anticlockwise: -α for either R or S: (R)-(-)-… or (S)-(-)-… - racemic mixture is given as (±) - optical activity establishes the non-racemic character of a sample - magnitude of the rotation α is normalized as “specific rotation” [α] T 2 -1 Biot’s law: = []αα λ cl [α] in deg cm g λ is usually 589 nm (Na D-line) T in °C solvent needs to be listed [α] = f(T) f(c) www.youngscientists.co.uk/node/95 O 21 21 []α D = +167 [α ]D = +182 (c = 46 g/100mL in benzene) ? H α 25 α 21 Ph []D = +162 [ ]D = +215 (c = 1.5 g/100mL in benzene) - racemic mixture or meso-compound: no optical activity! 4. Racemates continued - quantitative treatments of the optical activity (non-racemic character): A. Optical purity, P []α observed P = +1 or -1 pure enantiomer P = []α max for the pure enantiomer P = 0 racemic mixture - possible problems: change in T, c, solvent crypto-chirality accidental degeneracy B. Enantiomeric excess, %ee RS[][]− %ee = 100 , where [R] > [S] RS[][]+ : excess over ⇒ - non-racemic 80:20 mixture of enantiomers 60% ee racemic mixture - the “diastereomeric excess”, %de, is defined similarly Insert 4. Racemates continued I. Detection - other methods can be used to detect racemic mixtures (IR, NMR…) - sometimes a modification step is needed: diastereomeric mixtures (will look at this in more detail later) 1H NMR O + Ph Ph NH2 Cl R - HCl R,S CH3O H O O Ph + Ph Ph R NH R Ph S NH R CH3O H CH3O H singlet singlet singlet singlet Jacobus, Raban, J. Chem. Ed. 46, 351 (1969) II. Resolution (closely linked to detection!).
Recommended publications
  • Separation of the Mixtures of Chiral Compounds by Crystallization
    1 Separation of the Mixtures of Chiral Compounds by Crystallization Emese Pálovics2, Ferenc Faigl1,2 and Elemér Fogassy1* 1Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 2Research Group for Organic Chemical Technology, Hungarian Academy of Sciences, Budapest, Hungary 1. Introduction Reaction of a racemic acid or base with an optically active base or acid gives a pair of diastereomeric salts. Members of this pair exhibit different physicochemical properties (e.g., solubility, melting point, boiling point, adsorbtion, phase distribution) and can be separated owing to these differences. The most important method for the separation of enantiomers is the crystallization. This is the subject of this chapter. Preparation of enantiopure (ee~100%) compounds is one of the most important aims both for industrial practice and research. Actually, the resolution of racemic compounds (1:1 mixture of molecules having mirror-imagine relationship) still remains the most common method for producing pure enantiomers on a large scale. In these cases the enantiomeric mixtures or a sort of their derivatives are separated directly. This separation is based on the fact that the enantiomeric ratio in the crystallized phase differs from the initial composition. In this way, obtaining pure enantiomers requires one or more recrystallizations. (Figure 1). The results of these crystallizations (recrystallizations) of mixtures of chiral compounds differ from those observed at the achiral compounds. Expectedly, not only the stereoisomer in excess can be crystallized, because the mixture of enantiomers (with mirror image relationship) follows the regularities established from binary melting point phase diagrams, and ternary composition solubility diagrams, respectively, as a function of the starting enantiomer proportion.
    [Show full text]
  • II. Stereochemistry 5
    B.Sc.(H) Chemistry Semester - II Core Course - III (CC-III) Organic Chemistry - I II. Stereochemistry 5. Physical and Chemical Properties of Stereoisomers Dr. Rajeev Ranjan University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi 1 Syllabus & Coverage Syllabus II Stereochemistry: Fischer Projection, Newmann and Sawhorse Projection formulae and their interconversions. Geometrical isomerism: cis–trans and syn-anti isomerism, E/Z notations with Cahn Ingold and Prelog (CIP) rules for determining absolute configuration. Optical Isomerism: Optical Activity, Specific Rotation, Chirality/Asymmetry, Enantiomers, Molecules with two or more chiral-centres, Distereoisomers, Meso structures, Racemic mixture. Resolution of Racemic mixtures. Relative and absolute configuration: D/L and R/S designations. Coverage: 1. Types of Isomers : Comparing Structures 2. Optical Activity 3. Racemic Mixtures : Separation of Racemic Mixtures 4. Enantiomeric Excess and Optical Purity 5. Relative and Absolute Configuration 6. Physical and Chemical Properties of Stereoisomers 2 Stereochemistry Types of Isomers Dr. Rajeev Ranjan 3 Stereochemistry Determining the Relationship Between Two Non-Identical Molecules Dr. Rajeev Ranjan 4 Stereochemistry Comparing Structures: Are the structures connected the same? yes no Are they mirror images? Constitutional Isomers yes no Enantiomers Enantiomers Is there a plane of symmetry? All chiral centers will be opposite between them. yes no Meso Diastereomers superimposable Dr. Rajeev Ranjan 5 Stereochemistry Optical Activity: • The chemical and physical properties of two enantiomers are identical except in their interaction with chiral substances. • The physical property that differs is the behavior when subjected to plane-polarized light ( this physical property is often called an optical property). • Plane-polarized (polarized) light is light that has an electric vector that oscillates in a single plane.
    [Show full text]
  • Cross-Linked Protein Crystal Technology in Bioseparation and Biocatalytic Applications
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aaltodoc Helsinki University of Technology, Department of Chemical Technology Technical Biochemistry Report 1/2004 Espoo 2004 TKK-BE-8 CROSS-LINKED PROTEIN CRYSTAL TECHNOLOGY IN BIOSEPARATION AND BIOCATALYTIC APPLICATIONS Antti Vuolanto Dissertation for the degree of Doctor in Science in Technology to be presented with due permission of the Department of Chemical Technology for public examination and debate in Auditorium KE 2 (Komppa Auditorium) at Helsinki University of Technology (Espoo, Finland) on the 20th of August, 2004, at 12 noon. Helsinki University of Technology Department of Chemical Technology Laboratory of Bioprocess Engineering Teknillinen korkeakoulu Kemian osasto Bioprosessitekniikan laboratorio Distribution: Helsinki University of Technology Laboratory of Bioprocess Engineering P.O. Box 6100 FIN-02015 HUT Tel. +358-9-4512541 Fax. +358-9-462373 E-mail: [email protected] ©Antti Vuolanto ISBN 951-22-7176-1 (printed) ISBN 951-22-7177-X (pdf) ISSN 0359-6621 Espoo 2004 Vuolanto, Antti. Cross-linked protein crystal technology in bioseparation and biocatalytic applications. Espoo 2004, Helsinki University of Technology. Abstract Chemical cross-linking of protein crystals form an insoluble and active protein matrix. Cross-linked protein crystals (CLPCs) have many excellent properties including high volumetric activity and stability. In this thesis CLPC technology was studied in bioseparation and biocatalytic applications. A novel immunoaffinity separation material, cross-linked antibody crystals (CLAC), was developed in this thesis for enantiospecific separation of a chiral drug, finrozole. Previously, the preparation of an antibody Fab fragment ENA5His capable of enantiospecific affinity separation of the chiral drug has been described.
    [Show full text]
  • The Racemate-To-Homochiral Approach to Crystal Engineering Via Chiral Symmetry-Breaking
    CrystEngComm The Racemate -to -Homochiral Approach to Crystal Engineering via Chiral Symmetry-Breaking Journal: CrystEngComm Manuscript ID: CE-HIG-02-2015-000402.R1 Article Type: Highlight Date Submitted by the Author: 04-Apr-2015 Complete List of Authors: An, Guanghui; Heilongjiang University, School of Chemistry and Materials Science Yan, Pengfei; Heilongjiang University, School of Chemistry and Materials Science Sun, Jingwen; Heilongjiang University, School of Chemistry and Materials Science Li, Yuxin; School of Chemsitry and Materials Science of Heilongjiang University, Yao, Xu; Heilongjiang University, School of Chemistry and Materials Science Li, Guangming; School of Chemsitry and Materials Science of Heilongjiang University, Page 1 of 12Journal Name CrystEngComm Dynamic Article Links ► Cite this: DOI: 10.1039/c0xx00000x www.rsc.org/xxxxxx ARTICLE TYPE The Racemate-to-Homochiral Approach to Crystal Engineering via Chiral Symmetry-Breaking Guanghui An, a Pengfei Yan, a Jingwen Sun, a Yuxin Li, a Xu Yao, a Guangming Li,* a Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX 5 DOI: 10.1039/b000000x The racemate-to-homochiral approach is to transform or separate the racemic mixture into homo chiral compounds. This protocol, if without an external chiral source, is categorized into chiral symmetry- breaking. The resolution processes without chiral induction are highly important for the investigation on the origin of homochirality in life, pharmaceutical synthesis, chemical industrial and material science. 10 Besides the study on the models and mechanisms to explain the racemate-to-homochiral approach which may give the probable origin of homochirality in life, the recent developments in this field have been plotted towards the separation of enantiomers for the synthesis of pharmaceuticals, chiral chemicals.
    [Show full text]
  • Chapter 4: Stereochemistry Introduction to Stereochemistry
    Chapter 4: Stereochemistry Introduction To Stereochemistry Consider two of the compounds we produced while finding all the isomers of C7H16: CH3 CH3 2-methylhexane 3-methylhexane Me Me Me C Me H Bu Bu Me Me 2-methylhexane H H mirror Me rotate Bu Me H 2-methylhexame is superimposable with its mirror image Introduction To Stereochemistry Consider two of the compounds we produced while finding all the isomers of C7H16: CH3 CH3 2-methylhexane 3-methylhexane H C Et Et Me Pr Pr 3-methylhexane Me Me H H mirror Et rotate H Me Pr 2-methylhexame is superimposable with its mirror image Introduction To Stereochemistry Consider two of the compounds we produced while finding all the isomers of C7H16: CH3 CH3 2-methylhexane 3-methylhexane .Compounds that are not superimposable with their mirror image are called chiral (in Greek, chiral means "handed") 3-methylhexane is a chiral molecule. .Compounds that are superimposable with their mirror image are called achiral. 2-methylhexane is an achiral molecule. .An atom (usually carbon) with 4 different substituents is called a stereogenic center or stereocenter. Enantiomers Et Et Pr Pr Me CH3 Me H H 3-methylhexane mirror enantiomers Et Et Pr Pr Me Me Me H H Me H H Two compounds that are non-superimposable mirror images (the two "hands") are called enantiomers. Introduction To Stereochemistry Structural (constitutional) Isomers - Compounds of the same molecular formula with different connectivity (structure, constitution) 2-methylpentane 3-methylpentane Conformational Isomers - Compounds of the same structure that differ in rotation around one or more single bonds Me Me H H H Me H H H H Me H Configurational Isomers or Stereoisomers - Compounds of the same structure that differ in one or more aspects of stereochemistry (how groups are oriented in space - enantiomers or diastereomers) We need a a way to describe the stereochemistry! Me H H Me 3-methylhexane 3-methylhexane The CIP System Revisited 1.
    [Show full text]
  • Chirality and Enantiomers
    16.11.2010 Bioanalytics Part 5 12.11.2010 Chirality and Enantiomers • Definition: Optical activity • Properties of enantiomers • Methods: – Polarimetry – Circular dichroism • Nomenclature • Separation of enantiomers • Determination of enantiomeric excess (ee) Determination of absolute configuration • Enantiomeric ratio (E‐value) 1 16.11.2010 Definitions Enantiomers: the two mirror images of a molecule Chirality: non‐superimposable mirror‐images •Depends on the symmetry of a molecule •Point‐symmetry: asymmetric C, Si, S, P‐atoms •Helical structures (protein α‐helix) Quarz crystals snail‐shell amino acids Properties of Enantiomers – Chemical identical – Identical UV, IR, NMR‐Spectra – Differences: • Absorption and refraction of circular polarized light is different – Polarimetry, CD‐spectroscopy • Interaction with other chiral molecules/surfaces is different – Separation of enantiomers on chiral columns (GC, HPLC) 2 16.11.2010 Chiral compounds show optical activity A polarimeter is a device which measures the angle of rotation by passing polarized light through an „optical active“ (chiral) substance. Interaction of light and matter If light enters matter, its intensity (amplitude), polarization, velocity, wavelength, etc. may alter. The two basic phenomena of the interaction of light and matter are absorption (or extinction) and a decrease in velocity. 3 16.11.2010 Interaction of light and matter Absorption means that the intensity (amplitude) of light decreases in matter because matter absorbs a part of the light. (Intensity is the square of amplitude.) Interaction of light and matter The decrease in velocity (i.e. the slowdown) of light in matter is caused by the fact that all materials (even materials that do not absorb light at all) have a refraction index, which means that the velocity of light is smaller in them than in vacuum.
    [Show full text]
  • Preferential Crystallization of a Racemic Compound Via Its Conglomerate Co-Crystals
    Preferential crystallization of a racemic compound via its conglomerate co-crystals Master Thesis Oscar F. Villamil R August 24th 2016 Faculty of 3ME Department: Process & Energy Section: Intensified Reaction & Separation Systems Graduation Committee Ir. W. Li PDeng Dr. ir. H.J.M Kramer Dr. ir. H.W.Nugteren Dr. ir. A. van der Heijden 1 Abstract Preferential crystallization, as a powerful chiral resolution technique, is intrinsically limited to chiral molecules that crystallize as conglomerates. Many studies have been conducted on using chemical reactions to convert the target molecules, which originally form racemic compounds, into conglomerate-forming derivatives salts or by creating solvate, for the application of preferential crystallization. Up to this date conglomerate co-crystals of racemic compounds have never been applied as the intermediate for chiral resolution. In this study, preferential crystallization of the model compound Ibuprofen (IBU), originally a racemic compound, was carried out via its conglomerate co-crystal with 2,4-bipyridine ethylene (BPE) in heptane. Suitable operation conditions were selected based on pseudo- binary phase diagram of the model compound system constructed under different IBU-BPE ratio. A unique measurement method combining polarimeter and Nuclear Magnetic Resonance (NMR) measurements was developed to identify the enantiopurity and the yield of the final product, which was a mixture of racemic IBU and IBU-BPE co-crystals, a likely result from this complex system. With respect to the results, preferential crystallization of IBU was successfully performed by slowly cooling down a saturated solution of racemic IBU-BPE, initially at T=57.5°C, after seeding it with S-IBU/BPE crystals to T=53°C with a cooling rate of 0.3°C/min.
    [Show full text]
  • Polarimetric Detection of Enantioselective Adsorption by Chiral Au Nanoparticles – Effects of Temperature, Wavelength and Size
    Nanomaterials and Nanotechnology ARTICLE Polarimetric Detection of Enantioselective Adsorption by Chiral Au Nanoparticles – Effects of Temperature, Wavelength and Size Invited Article Nisha Shukla2, Nathaniel Ondeck1, Nathan Khosla1, Steven Klara1, Alexander Petti1 and Andrew Gellman1* 1 Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA 2 Institute of Complex Engineered Systems, Carnegie Mellon University, Pittsburgh, PA, USA * Corresponding author(s) E-mail: [email protected] Received 01 November 2014; Accepted 07 January 2015 DOI: 10.5772/60109 © 2015 The Author(s). Licensee InTech. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract 1. Introduction R- and S-propylene oxide (PO) have been shown to interact The importance of chirality arises from the need of the enantiospecifically with the chiral surfaces of Au nanopar‐ pharmaceutical industry, and other producers of bioactive ticles (NPs) modified with D- or L-cysteine (cys). This compounds, for chemical processes that are enantioselec‐ enantiospecific interaction has been detected using optical tive and thereby produce enantiomerically pure chiral polarimetry measurements made on solutions of the D- or products. [1-4] This is one of the most challenging forms of L-cys modified Au (cys/Au) NPs during addition of chemical synthesis and is critical to the performance of racemic PO. The selective adsorption of one enantiomer of bioactive chiral products. Ingestion of the two enantiomers the PO onto the cys/Au NP surfaces results in a net rotation of a chiral compound by a living organism can result in of light during addition of the racemic PO to the solution.
    [Show full text]
  • A Review on Chiral Chromatography and Its Application to the Pharmaceutical Industry
    Chemsearch Journal 2(1): 8 - 11 Publication of Chemical Society of Nigeria, Kano Chapter CHIRAL CHROMATOGRAPHY AND ITS APPLICATION TO THE PHARMACEUTICAL INDUSTRY: A REVIEW Mudi, S. Y. and *Muhammad, A. Department of Pure and Industrial Chemistry, Bayero University, PMB 3011, Kano. *Correspondence author: [email protected] ABSTRACT Chiral chromatographic enantioseparation has been in practice by researchers. There has been a considerable interest in the synthesis and separation of enantiomers of organic compounds especially because of their importance in the biochemical and pharmaceutical industries. Often, these compounds are purified rather than being produced by chiral-specific synthesis. We herein present a general discussion that focuses on the chromatographic enantioseparation, which we hope will be useful to chromatographic and pharmaceutical industries. Keywords: Chiral chromatography, enantioseparation, pharmaceutical industry. INTRODUCTION giving differing affinities between the analytes Chromatography is the collective term for a set of (Schreier et al., 1995). laboratory techniques for the separation of mixtures. It The main goal of this review is to provide a brief involves passing a mixture dissolved in a "mobile overview of chiral separations to researchers who phase" through a “stationary phase”, which separates are versed in the area of analytical separations but the analyte from other compounds in the mixture unfamiliar with chiral separations. This review based on differential partitioning between the mobile highlights significant issues of the chiral and stationary phases. Subtle differences in a separations and provides salient examples from compound's partition coefficient result in differential specific classes of chiral selectors where retention on the stationary phase and thus effecting appropriate. the separation (Laurence and Christopher, 1989; Pascal et al., 2000).
    [Show full text]
  • Polarimeter Buyer's Guide
    Polarimeter Buyer’s Guide Understanding Polarimeters Selecting the Right Polarimeter Illumination Method 3 Polarimeters use different lamp sources for transmitting Measurement Range and Accuracy Polarimeters are precise optical instruments that measure purity polarized light. Some models employ halogen lamps which 1 Purchasing a new polarimeter is a major decision. Choose the and concentration through the optical activity exhibited in have a short life span, generate heat, and require servicing model that offers the best measurement range and accuracy inorganic and organic compounds. Compounds are considered while others have LED illumination. LED illumination does not to meet present and future application needs. Be aware to be optically active if linearly polarized light is rotated when require maintenance or generate heat and is environmentally that many polarimeters offer a very limited measurement passing through them. This optical rotation in general means friendly and energy efficient. All Reichert polarimeters feature range that may limit readings. Also, most importantly, there that the polarization of the direction of light is rotated at LED illumination. a specific angle proportionate to the concentration of the are many polarimeters on the market that have a non-linear accuracy specification. In other words, within the limited optically active substance being tested. Maintenance measurement range of these instruments, the accuracy Optical rotation is measured in degrees of angle. At point 4 Operating costs are important to consider when evaluating specification can degrade to different levels across that range. zero, a polarizer and analyzer are set in an angle of 90 degrees instruments. Many companies offer expensive service plans. toward each other, which means that no light reaches the Reichert builds robust instruments that provide reliable detector (0% transmission).
    [Show full text]
  • Chapter 1: Optical Activity and Polarimetry
    Chapter 1: Optical Activity and Polarimetry Chiral, non-racemic compounds have the ability to rotate polarized light. This phenomenon is known as circular birefringence, and is where the phrase “optically active” comes from. The specific rotation of a material is an intrinsic, constant value at a given temperature and wavelength of light; specific rotation can be found by using polarimetry. 1.1 Optical Activity Normal light contains a mixture of all vibrational directions that are perpendicular to the direction of travel. We can use polarized filters to block most of the components of normal light and only allow through one direction of polarization (Figure 1-1). Figure 1-1: Polarized light vibrates only in one plane, while normal light vibrates in all planes. When we use two filters in series, the first one is called the polarizer (because it converts the light to polarized light) and the second is called the analyzer (because it allows you to analyze the light you just polarized). If the polarizer and analyzer are parallel to each other, the polarized light gets through fine. But if they’re at right angles, no light can pass through the analyzer, as shown in Figure 1-2. Figure 1-2: Whether polarized light can pass through the analyzer depends on its orientation to the polarizer. Since optical activity gives a compound the ability to rotate plane-polarized light, we can put a sample of the compound in between the polarizer and analyzer. This will rotate the light, allowing some of it to get through the analyzer even when the filters are at right angles (Figure 1-3).
    [Show full text]
  • Distinction of Enantiomers by NMR
    REVIEWS Disinction of enantiomers by NMR spectroscopy using chiral orienting media Burkhard Luy Abstract | NMR spectroscopy is a very important analytical tool in modern organic and inorganic chemistry. Next to the identification of molecules and their structure determination, it is also used for the distinction of enantiomers and the measurement of enantiomeric purity. This article gives a brief review of the techniques being developed for enantiomeric differentiation by virtue of chiral alignment media and their induction of enantiomerically dependent anisotropic NMR parameters like residual dipolar couplings. An overview of existing chiral alignment media, a brief introduction into the basic theory and measurement of the various anisotropic parameters, and several example applications are given. 1. Introduction valuable compounds one doesn’t necessarily want to NMR spectroscopy is one of the most important irreversibly modify the substance. analytical tools in modern organic and inorganic Another possibility for the distinction of chemistry as it is the only tool that allows the enantiomers is the orientation of the molecule of determination of molecular structures at atomic interest in a so-called chiral alignment medium. resolution in solution. It is used to identify the In this case, the molecule is partially aligned constitution, conformation and configuration and anisotropic NMR parameters like residual of countless molecules every day. However, the quadrupolar couplings, residual dipolar couplings magnetic field used for the induction of the Zeeman and residual chemical shift anisotropy can be splitting is per se achiral so that enantiomers measured2–4. As the orientation in a chiral have identical properties and therefore identical alignment medium is different for the two NMR spectra.
    [Show full text]