Exploration and Mining in the South Central Region, British Columbia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Related Magmatism in the Upper Wind River Basin, Wyoming (USA), GEOSPHERE; V
Research Paper THEMED ISSUE: Cenozoic Tectonics, Magmatism, and Stratigraphy of the Snake River Plain–Yellowstone Region and Adjacent Areas GEOSPHERE The leading wisps of Yellowstone: Post–ca. 5 Ma extension- related magmatism in the upper Wind River Basin, Wyoming (USA), GEOSPHERE; v. 14, no. 1 associated with the Yellowstone hotspot tectonic parabola doi:10.1130/GES01553.1 Matthew E. Brueseke1, Anna C. Downey1, Zachary C. Dodd1, William K. Hart2, Dave C. Adams3, and Jeff A. Benowitz4 12 figures; 2 tables; 1 supplemental file 1Department of Geology, Kansas State University, 108 Thompson Hall, Manhattan, Kansas 66506, USA 2Department of Geology and Environmental Earth Science, Miami University, 118C Shideler Hall, Oxford, Ohio 45056, USA 3Box 155, Teton Village, Wyoming 83025, USA CORRESPONDENCE: brueseke@ ksu .edu 4Geophysical Institute and Geochronology Laboratory, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA CITATION: Brueseke, M.E., Downey, A.C., Dodd, Z.C., Hart, W.K., Adams, D.C., and Benowitz, J.A., 2018, The leading wisps of Yellowstone: Post–ca. 5 Ma ABSTRACT the issue of linking volcanic events to a specific driving mechanism (Fouch, extension-related magmatism in the upper Wind River 2012; Kuehn et al., 2015). Complicating matters, magmatism often continues Basin, Wyoming (USA), associated with the Yellow- The upper Wind River Basin in northwest Wyoming (USA) is located ~80– long after (e.g., millions of years) the upper plate has been translated away stone hotspot tectonic parabola: Geosphere, v. 14, no. 1, p. 74–94, doi:10.1130/GES01553.1. 100 km southeast of the Yellowstone Plateau volcanic field. While the upper from an upwelling plume (Bercovici and Mahoney, 1994; Sleep, 2003; Shervais Wind River Basin is a manifestation of primarily Cretaceous to Eocene Lara- and Hanan, 2008; Jean et al., 2014). -
^ Geology of the Mount Polley Intrusive Complex
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! Disclaimer: While every effort has been taken to ensure the accuracy of the information in this map, the ! ! ! ! ! data are provided on an 'as-is' basis, without any warranty, guarantee or representation of any kind, ! XY ! ! whether expressed or implied. It is the responsibility of the user to check the facts before entering any ! ! ! ! financial or other commitment based upon this information. ! ! ! ! ! ! ! 32 ! ! ! Map 1. Geology of Mount Polley Intrusive Complex (pre-mining, except Cariboo-Bell zones) ! ! ! ! ! ! ! ! ! ! ! ! ! ! 31 ! ! ! Map 3. Gold Mineralization ! Map 2. Copper Mineralization ! ! 591,000 592,000 593,000 594,000 591,000 592,000 593,000 594,000 ! ! 591,000 592,000 593,000 594,000 0 0 0 0 ! ! ! 0 0.6% Copper 0 0 0 ! 0.6 g/t Gold ! ! 21 0 0 0 0 ! ! ! ! ! , , , , ! ! 6 6 6 6 ! ! ! ! D 2 2 2 2 ! ! ! ! D 8 8 8 8 , , , , ! ! ! D ! D ! D 5 5 5 5 ! D D ! D D D ! 0.3% Copper 0.3 g/t Gold ! ! ! D D Pit outline ! ! ! Quesnel terrane ! ! ! ! D D ! f ! ! D 65 ! D ! 0.1% Copper 0.1 g/t Gold ! 1 0 0 ! EJbc D 10 ! Stikine terrane Planned pit0 ! 0 0 ! ! 0 0 ! , , ! LT ! ! rp 6 km D 6 Limit of elevated Cu, Limit of elevated Cu, ! ! 2 2 ! ! ! 8 8 ! , , Au mineralization Au mineralization ! ! 5 D 5 ! ! ! D EJt D ! ! D D 85 ! ff 86 ! ! LTrJNbc ! ! ! ! 0 Pit outline Pit outline ! Prince 00 73 ! ! 1 ! ! D ! ! ! f ! George 0 0 0 0 ! ! 0 0 0 0 ! 85 ! ! ! LTrpkm 0 0 0 0 ! ! f , , , , ! ! Planned pit ! 5 5 5 5 ! Planned pit ! ! ! ! ! ! 2 2 2 2 ! ! f ! ! D ! ! ! 8 8 8 8 ! ! ! ! ^ , , , , ! Map Area 53 D 5 5 5 5 ! LTrJNbc ! ! ! ! ! D D D ! D D D ! ! D D LTrpbx2 P o l l e y L a k e P o l l e y L a k e ! ! ! ! ! D . -
DRAFT Dam Safety Review Mount Polley Mine, Likely British Columbia
AMEC Earth & Environmental a division of AMEC Americas Limited 2227 Douglas Road, Burnaby, BC Canada V5C 5A9 Tel +1 (604) 294-3811 Fax +1 (604) 294-4664 www.amec.com DRAFT DAM SAFETY REVIEW Mount Polley Mine Likely, British Columbia Submitted to: Imperial Metals Corporation 200 – 580 Hornby Street Vancouver, BC Submitted by: AMEC Earth & Environmental Limited Burnaby, BC November 2006 AMEC File: VM00448 AMEC010565_0001 Imperial Metals Corporation Dam Safety Review Mt. Polley Mine - Tailings Storage Facility November 2006 – DRAFT REPORT TABLE OF CONTENTS SUMMARY III 1.0 INTRODUCTION .............................................................................................................. 1 2.0 BACKGROUND ............................................................................................................... 4 2.1 General ...................................................................................................................... 4 2.2 Relevant Documentation to DSR ............................................................................... 5 2.3 Existing Dam Safety Program .................................................................................... 5 2.3.1 Dam Safety Inspections ................................................................................. 5 2.3.2 Dam Safety Review ........................................................................................ 5 2.4 Water Balance ........................................................................................................... 5 3.0 DAM -
Cleaning up BC's Dirty Mining Industry
Vol.35 No.1 | 2016 Published by the Wilderness Committee FREE REPORT Joe Foy The Quesnel Lake watershed risks and health impacts from BC's National Campaign have been looking at reducing the Director, supports an important component mining industry. pressure on mine dams. That sounds Wilderness Committee of the Fraser River sockeye salmon Tailings storage facilities like the like good news – but it isn’t. There @JoeFoyWild run. Fisheries managers are holding one at Mount Polley have become is now an increase in schemes that their breath, waiting to see what long- widespread throughout the province. involve dumping mine wastewater term impacts BC now has 98 into downstream rivers, lakes and the Mount Polley permitted tailings creeks, which are often important hen the tailings pond dam disaster will have ponds at 60 operating salmon habitat. Wbreached at BC's Mount Polley on the run. and closed mines.5 For example, the Gibraltar Mine, Mine in August 2014, it unleashed First Nation Many of them are the located near Williams Lake, was a torrent of mine waste and water. community size of a lake – multiple recently issued a temporary permit Much of this ended up pouring into members who kilometres across. to increase the release of mine one of the province's most important fish for salmon At the Highland tailings pond water up to 5.4 million salmon nurseries – Quesnel Lake. downstream Valley Copper mine cubic metres a year directly into the An estimated 8 million cubic of the spill are located between Logan Fraser River.7 metres of solid mine -
Tailings Dam Spills at Mount Polley & Mariana Summary
BY JUDITH MARSHALL August 2018 Tailings dam spills at Download the Mount Polley & Mariana full report at: corporatemapping.ca/ CHRONICLES OF DISASTERS FORETOLD tailings-disasters Summary THIS PAPER EXPLORES THE MANY PARALLELS between the tailings dam spills at the Mount Polley mine in British Columbia (BC), Canada, and the Samarco mine in Mariana, Minas Gerais, Brazil. The Mount Polley disaster took place in August 2014, when the dam holding toxic waste from the copper and gold mine collapsed, creating the largest environ- mental disaster in Canada’s mining history. It was not long after — in November of the following year — that the largest mine disaster in Latin American history took place in Mariana, Brazil, when an even larger reservoir of waste collapsed at the Samarco iron mine. TOP: AERIAL VIEW OF MOUNT POLLEY MINE SITE, JULY 24, 2014 PRIOR TO THE DAM BREACH. BOTTOM: AFTER THE AUGUST 4, 2014 DAM BREACH. BY JESSE ALLEN, USING LANDSAT DATA FROM THE U.S. GEOLOGICAL SURVEY. — VISIBLE EARTH, NASA The enormity of tailings ponds Despite their name, tailings ponds are often more like lakes — many square kilometres in size, held in by dams that may be from 40 to more than 100 metres high. “Tailings” refers to the chemical-laden waste rock left behind from the processing of ore: in milling and separating ore from marketable minerals, a huge quantity of waste rock is ground to the consistency of sand and ends up mixed with a tremendous amount of water into a “slurry,” which is then piped into a tailings pond. The solids settle to the bottom of the pond and also form “tail- ings beaches” that become an important buffer between a pond’s embankment (waste rock set 2 SUMMARY — TAILINGS DAM SPILLS AT MOUNT POLLEY AND MARIANA up to hold in solids) and the water. -
Pleistocene Volcanism in the Anahim Volcanic Belt, West-Central British Columbia
University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2014-10-24 A Second North American Hot-spot: Pleistocene Volcanism in the Anahim Volcanic Belt, west-central British Columbia Kuehn, Christian Kuehn, C. (2014). A Second North American Hot-spot: Pleistocene Volcanism in the Anahim Volcanic Belt, west-central British Columbia (Unpublished doctoral thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/25002 http://hdl.handle.net/11023/1936 doctoral thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY A Second North American Hot-spot: Pleistocene Volcanism in the Anahim Volcanic Belt, west-central British Columbia by Christian Kuehn A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN GEOLOGY AND GEOPHYSICS CALGARY, ALBERTA OCTOBER, 2014 © Christian Kuehn 2014 Abstract Alkaline and peralkaline magmatism occurred along the Anahim Volcanic Belt (AVB), a 330 km long linear feature in west-central British Columbia. The belt includes three felsic shield volcanoes, the Rainbow, Ilgachuz and Itcha ranges as its most notable features, as well as regionally extensive cone fields, lava flows, dyke swarms and a pluton. Volcanic activity took place periodically from the Late Miocene to the Holocene. -
Ministry of Energy and Mines BC Geological Survey Assessment
Ministry of Energy and Mines Assessment Report BC Geological Survey Title Page and Summary TYPE OF REPORT [type of survey(s)]: Geological and Geochemical TOTAL COST: $12,214.45 AUT!-IOR(S): R.A. (Bob) Lane NOTICE OF WORK PERMIT NUMBER(S)/DATE(S): -n/a---- ----------- ------- YEAR OF WORK: 2017 STATEMENT OF WORK - CASH PAYMENTS EVENT NUMBER(S)/DATE(S): 5653004 (June 15,2017) ------------------------- PROPERTY NAME: Nazko ------------------------------------------- CLAIM NAME(S) (on which the work was done): 552594, 1041719, 1047066 --------------------------------- COMMODITIES SOUGHT: Au, Ag ---"-------------------------------------- MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN: ------------------------------ MINING DIVISION: Cariboo NTS/BCGS: 093B.082 and 093B.092 -------------------- LATITUDE: 52 ° 55 • 32.3 " LONGITUDE: 123 ° 44 ' 10.8 " (at centre of work) OWNER(S): 1) CANLAVA Mining Corp. 2) ----------------------- MAILING ADDRESS: 203 - 1312 Keitch Court Coquitlam, B.C. V3K 6W1 OPERATOR(S) [who paid for the work]: 1) CANLAVA Mining Corp. 2) ----------------------- MAILING ADDRESS: 203 - 1312 Keitch Court Coquitlam, B.C. V3K 6W1 PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure, alteration, mineralization, size and attitude): Eocene Ootsa lake Group, rhyolite, basalt, Cretaceous Skeena Group, elastic sedimentary rocks, gold-silver quartz veins REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS: ------------------36171 Next Page TYPE OF WORK IN EXTENT OF WORK ON WHICH CLAIMS PROJECT COSTS THIS REPORT -
Mount Polley Mine Reclamation Tour Pro-D for SD 27 Teachers, Sept
MineralsEd: Mount Polley Mine Reclamation Tour Pro-D for SD 27 teachers, Sept. 27, 2019 Mount Polley Mine Reclamation Tour As part of the September Pro D day for SD 27 teachers, MineralsEd is partnering with Imperial Metals to present a reclamation tour of the Mount Polley Mine, an open pit copper-gold mine near Williams Lake. The Mount Polley deposit was first discovered in the late 1960s and was opened as a mine by Imperial Metals in 1997. In 2017 the mine produced roughly 19,000,000 pounds of copper and 48,000 ounces of gold while employing roughly 300 people. The mine is now under care and maintenance. In August 2014 the tailings dam at Mount Polley failed releasing 17 Re-established vegetation around Hazeltine Creek. Mount Polley Mine. million cubic meters of water and 8 million cubic meters of tailings/ materials into Polley Lake, Hazeltine Creek and Quesnel Lake. Extensive remediation work in the areas affected by the 2014 breach have been achieved during the past five years. Most of the remediation work has been done by local employees and contractors, as well as, the mine’s First Nation partners. The visit will include an overview presentation on the Mount Polley Mine operation. The tour will include four stops: 1) Top of reach 2 of Hazeltine Creek to view the creek remediation and new fish habitat. 2) Water treament plant (WTP) and influent pond. 3) WTP in operation. Samples of influent and effluent were collected in glass jars for tour participants to observe the clarity of the water. -
Geochemistry of Tailings from the Mount Polley Mine, British Columbia
Proceedings Tailings and Mine Waste 2016 | Keystone, Colorado, USA | October 2-5, 2016 Geochemistry of Tailings from the Mount Polley Mine, British Columbia C.B. Kennedy & S.J. Day SRK Consulting (Canada) Inc., Vancouver, BC, Canada C.D. Anglin Imperial Metals Corp., Vancouver, BC, Canada To support remedial decisions for the Tailings Storage Facility breach at the Mount Polley Mine (MPM), a geochemical characterization program assessing the metal leaching and acid rock drainage potential of the tailings and other materials released into Polley Lake, Hazeltine Creek, and Quesnel Lake was performed. Because the tailings and other materials settled under subaerial conditions along the banks of Hazeltine Creek and in subaqueous conditions in Polley and Quesnel Lakes, the geochemical characterization assessed reactivity in both terrestrial and aquatic environments. Tailings and other materials deposited in these areas were found to be consistently non-acid generating indicating that weathering conditions are expected to be pH- basic under all depositional conditions. Leaching potential of tailings in subaerial environments was low and the potential for oxidative and reductive dissolution under deep water conditions was found to be negligible. Sub-aerial copper leaching is likely controlled by mineral solubility, which will limit loadings to the environment and can be used to inform remedial decisions. 1 INTRODUCTION A failure of a glacial lacustrine layer beneath the Perimeter Embankment of the Tailings Stor- age Facility at the Mount Polley Mine (MPM), British Columbia caused a breach of the em- bankment tailings dam on August 4, 2014 (IEEIRP, 2015). The dam breach resulted in a release of tailings and other materials into Polley Lake, Hazeltine Creek, and Quesnel Lake. -
Water Quality Impacts and River System Recovery Following the 2014 Mount Polley Mine Tailings Dam Spill, British Columbia, Canad
Applied Geochemistry 91 (2018) 64–74 Contents lists available at ScienceDirect Applied Geochemistry journal homepage: www.elsevier.com/locate/apgeochem Water quality impacts and river system recovery following the 2014 Mount T Polley mine tailings dam spill, British Columbia, Canada ∗ Patrick Byrnea, , Karen A. Hudson-Edwardsb, Graham Birdc, Mark G. Macklind,e, Paul A. Brewerf, Richard D. Williamsg, Heather E. Jamiesonh a School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, L3 3AF, UK b Camborne School of Mines and Environment and Sustainability Institute, University of Exeter, Tremough Campus, Penryn, TR10 9EZ, UK c School of Environment, Natural Resources and Geography, Bangor University, Bangor, Gwynedd, LL57 2UW, UK d School of Geography and Lincoln Centre for Water and Planetary Health, College of Science, University of Lincoln, Brayford Pool, Lincoln, Lincolnshire, LN6 7TS, UK e Innovative River Solutions, Institute of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand f Department of Geography and Earth Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, WY23 3FL, UK g School of Geographical and Earth Sciences, University of Glasgow, Glasgow, G12 8QQ, UK h Geological Sciences and Geological Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada ARTICLE INFO ABSTRACT Handling Editor: Prof. M. Kersten The Mount Polley mine tailings embankment breach on August 4th, 2014, in British Columbia, Canada, is the fi Keywords: second largest mine waste spill on record. The mine operator responded swiftly by removing signi cant quan- Mount Polley tities of tailings from the primary receiving watercourse, stabilizing the river corridor and beginning con- Mine waste struction of a new river channel. -
Imperial Metals Corporation
2020 Annual Report IMPERIAL | The Company is well positioned to benefit from a strong copper market with 43-101 supported measured and indicated copper resources of about 5 billion pounds. We remain focused in British Columbia, where we have worked with local communities, First Nations partners, and our province for decades. We plan to be a key part of British Columbia’s post pandemic economic recovery and we look forward to reopening Mount Polley and Huckleberry in the near future. RED CHRIS | All metal production in 2020 saw an increase over 2019 totals, with gold production increasing over 100%. The cash cost of producing copper including by-product revenue in 2020 was US$1.43 per pound. Newcrest has initiated a pre-feasibility study on the development of an underground block cave mine. Completion of this study is expected mid-2021. Thereafter, a feasibility study is planned for delivery mid-2022. MOUNT POLLEY | The potential of underground block cave mining is being investigated. This type of mining utilizes new technology, results in a smaller environmental impact and is more carbon neutral. MANAGEMENT’S DISCUSSION AND ANALYSIS This Management’s Discussion and Analysis (“MD&A”) for Imperial Metals Corporation (“Imperial”, the “Company”, “we”, “us” or “our”) should be read in conjunction with the audited Consolidated Financial Statements and related notes for the year ended December 31, 2020. The Consolidated Financial Statements and comparative information have been prepared in accordance with International Financial Reporting Standards (“IFRS”). The reporting currency of the Company is the Canadian (“CDN”) Dollar. The Company has made additional adjustments related to the restatement and correction of values during the provisional period associated with the sale of a 70% interest in the Red Chris mine. -
The Origin of Mantle Xenoliths in Tertiary Alkaline Basalts, British Columbia, Canada: Implications for Convergent Plate Margin Geodynamic and Petrogenetic Processes
University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 1-11-2016 The origin of mantle xenoliths in Tertiary alkaline basalts, British Columbia, Canada: Implications for convergent plate margin geodynamic and petrogenetic processes Eyal Friedman University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Friedman, Eyal, "The origin of mantle xenoliths in Tertiary alkaline basalts, British Columbia, Canada: Implications for convergent plate margin geodynamic and petrogenetic processes" (2016). Electronic Theses and Dissertations. 5637. https://scholar.uwindsor.ca/etd/5637 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. The origin of mantle xenoliths