A New Moth-Preying Alpine Pit Viper Species from Qinghai-Tibetan Plateau (Viperidae, Crotalinae)

Total Page:16

File Type:pdf, Size:1020Kb

A New Moth-Preying Alpine Pit Viper Species from Qinghai-Tibetan Plateau (Viperidae, Crotalinae) Amphibia-Reptilia 38 (2017): 517-532 A new moth-preying alpine pit viper species from Qinghai-Tibetan Plateau (Viperidae, Crotalinae) Jingsong Shi1,2,∗, Gang Wang3, Xi’er Chen4, Yihao Fang5,LiDing6, Song Huang7,MianHou8,9, Jun Liu1,2, Pipeng Li9 Abstract. The Sanjiangyuan region of Qinghai-Tibetan Plateau is recognized as a biodiversity hotspot of alpine mammals but a barren area in terms of amphibians and reptiles. Here, we describe a new pit viper species, Gloydius rubromaculatus sp. n. Shi, Li and Liu, 2017 that was discovered in this region, with a brief taxonomic revision of the genus Gloydius.The new species can be distinguished from the other congeneric species by the following characteristics: cardinal crossbands on the back, indistinct canthus rostralis, glossy dorsal scales, colubrid-like oval head shape, irregular small black spots on the head scales, black eyes and high altitude distribution (3300-4770 m above sea level). The mitochondrial phylogenetic reconstruction supported the validity of the new species and furthermore reaffirms that G. intermedius changdaoensis, G. halys cognatus, G. h. caraganus and G. h. stejnegeri should be elevated as full species. Gloydius rubromaculatus sp. n. was found to be insectivorous: preying on moths (Lepidoptera, Noctuidae, Sideridis sp.) in the wild. This unusual diet may be one of the key factors to the survival of this species in such a harsh alpine environment. Keywords: Gloydius rubromaculatus sp. n., insectivorous, new species, Sanjiangyuan region. Introduction leopards (Uncia uncia), wild yaks (Bos grun- niens) and Tibetan antelopes (Pantholops hodg- The Sanjiangyuan region (the Source of Three sonii) (Shen and Tan, 2012). However, the her- Rivers region) lies in the southern part of Qing- petological diversity here is quite low due to hai Province, along the eastern part of Qinghai- the harsh conditions for sustaining life (e.g. Tibetan Plateau with an area covering 0.36 mil- low temperatures, low oxygen levels, and in- lion km2. It encompasses the headwaters of tense solar radiation). To date, only ten rep- the Yellow River, the Yangtze River, and the tile species have been recorded (Li et al., 1989; Mekong River. The Sanjiangyuan region is rich Zhao et al., 1998), within which are three snake in biodiversity of alpine mammals, such as snow species (Gloydius strauchi, Gloydius cognatus and Elaphe dione). In this study, a new species 1 - Key Laboratory of Vertebrate Evolution and Human of Asian pit viper (Gloydius) has been discov- Origins of Chinese Academy of Sciences, Institute of ered along the Tongtianhe River at the elevation Vertebrate Paleontology and Paleoanthropology, Chi- up to 4770 m. nese Academy of Science, 100044 Beijing, China Asian pit vipers are small venomous snakes 2 - University of Chinese Academy of Sciences, 100044 Beijing, China distributed mainly in Asia. They are widely 3 - Chengdu Normal University, 611130 Chengdu, China recognized to be one of the most successfully 4 - College of Life Sciences, Peking University. 100871 evolved snake groups, which radiated into vari- Beijing, China ous habitats, such as subfrigid forests (G. halys), 5 - Institute of Eastern-Himalaya Biodiversity Research, Dali University, 671003 Dali, China alps or plateaus (G. strauchi, G. himalayanus 6 - Chengdu Institute of Biology, Chinese Academy of Sci- and G. monticola), islands (G. shedaoensis ences. 610041 Chengdu, China and G. changdaoensis) and deserts (G. cogna- 7 - Huangshan University, 245000 Huangshan, China tus) (Hoge and Romano-Hoge, 1981). Asian 8 - Sichuan Normal University, 610101 Chengdu, China 9 - Institute of Herpetology, Shenyang Normal University, pit vipers hold the record for the highest alti- 110034 Shenyang, China tude distribution within venomous snakes (G. ∗Corresponding author; e-mail: [email protected] himalayanus, above 4880 m; Sharma et al., Downloaded from Brill.com10/07/2021 08:28:56AM via free access © Koninklijke Brill NV, Leiden, 2017. DOI:10.1163/15685381-00003134 518 J. Shi et al. 2013) and the highest population density within and G. liupanensis. Thus, a further investigation the suborder of Serpentes (G. shedaoensis, is required to clarify the taxonomic relationship 20 281 snakes within 0.73 km2, express as about between the different taxa of this complex. 0.028/m2, based on the pit viper population sur- vey conducted by the Snake Island National Na- ture Reserve; Li et al., 2007). Taking advan- Material and methods tage of their heat sensitive pits, most Asian pit We examined preserved specimens from Chengdu Insti- vipers tend to prey on small endotherms. As tute of Biology (CIB), Northwest Institute of Plateau Bi- well, some of them are reported to be insectivo- ology (NWIPB) and Kunming Institute of Zoology (KIZ). Newly obtained specimens collected were preserved in 75% rous (Gloyd and Conant, 1990; Zhao, 2006). ethanol and deposited at Institute of Zoology (IOZ), North- Based on previous taxonomy (Orlov and west Institute of Plateau Biology (NWIPB) (table 1). Barabanov 1999; Xu et al., 2012; Shi et al., 2016; Wagner et al., 2016), the genus Gloydius Institutional abbreviations could be preliminarily divided into the follow- IVPP: Institute of Vertebrate Paleontology and Paleoanthro- ing complexes (groups): pology; CIB: Chengdu Institute of Biology; IOZ: Institute 1. Gloydius halys-intermedius complex (G. of Zoology; NWIPB: Northwest Institute of Plateau Biol- ogy; SYNU: Shenyang Normal University; KIZ: Kunming halys, G. intermedius, G. changdaoensis, Institute of Zoology. (IVPP, CIB, IOZ and NWIPB are be- G. rickmersi, G. cognatus, G. stejnegeri longing to Chinese Academy of Science.) and G. shedaoensis). 2. Gloydius blomhoffii complex (G. blomhof- Morphology fii, G. brevicaudus, G. tsushimaensis and Measurements were taken with vernier calliper (Guanglu, G. ussuriensis). 0-200 mm, Made in China). Snout-vent length (SVL), tail length (TL) and total length (TTL = SVL + TL) are 3. Gloydius strauchi complex (G. strauchi, measured to the nearest 0.1 mm; head length (HL, from the G. monticola, G. qinlingensis G. liupanen- tip of snout to the posterior margin of mandible), head width sis and G. himalayanus). (HW, from the posterior jaw, which is the widest part of the head), head height (HH, the highest part of the head), eye The members of Gloydius strauchi complex diametre (ED, horizontal distance), interorbital space (IOS), are generally described as an alpine group with and internasal space (INS). We took counts of supralabials 21 dorsal scale rows (except for 19 rows in G. (SPL), infralabials (IFL), dorsal scales (DS), ventral scales (V) and subcaudal scales (Sc). Dimensions and scale data monticola) and three palatine teeth, distributed are listed in table 2. along the north of the Hengduanshan Moun- tains (Zhao and Yang, 1997). The taxonomy on X-ray micro-computerized tomography this group is still controversial: some regard G. The scanning was carried out with the 225 kV micro- monticola as a full species (Gloyd and Conant, computerized tomography (developed by the Institute of 1990; Wagner et al., 2016), while others suggest High Energy Physics (IHEP), Chinese Academy of Sciences that G. monticola should be attributed to one (CAS)) at the Key Laboratory of Vertebrate Evolution and Human Origins, CAS. Specimens were scanned at 140 kV of the subspecies of G. strauchi and deny the with a flux of 100 μA at a resolution of 42.3 μmperpixel validity of qinlingensis and liupanensis (Zhao, using a 360° rotation with a step size of 0.5° and an unfil- 1998; Zhao, 2006). Xu et al. (2012) conducted tered aluminium reflection target. A total of 720 transmis- sion images were reconstructed into the 2048 × 2048 ma- the molecular phylogeny of the genus Gloydius trix of 1536 slices using a two-dimensional reconstruction and suggested that G. qinlingensis and G. li- software developed by IHEP, CAS. upanensis should be regarded as full species. However, the topological structures of the max- Laboratory protocols imum likelihood (ML), maximum parsimony Specimens were fixed in 95% ethanol or 10% formalin. (MP) and Bayesian inference (BI) trees differ Shed skin and scale tissues were preserved in 98% ethanol for molecular study. Genomic DNA was extracted with significantly, with primary differences indicated Miniprep Kit (Axygen). Samples included in this study are by the positions of G. qinlingensis, G. strauchi listed in table 1. Downloaded from Brill.com10/07/2021 08:28:56AM via free access A new alpine pit viper species Table 1. Details of the molecular samples for this study. Museum voucher Code Taxa Locality GenBank Accession Numbers Reference 12s 16s Cytb ND4 JSSD1408Z1 Z1 G. changdaoensis Lianyungang, Jiangsu KY040521 KY040553 KX063821 KX063794 this study JSSD1510C1 C1 G. changdaoensis Changdao, Shandong KY040522 KY040554 KX063823 KX063796 this study JSSD11110D2 D2 G. shedaoensis Lvshun, Liaoning KY040523 KY040555 KX063819 KX063792 this study JS150622 22 G. intermedius Zhuanghe, Liaoning KY040524 KY040556 KY040617 KY040638 this study JSSD1110Q4 Q4 G. intermedius Wafangdian, Liaoning KY040525 KY040557 KX063793 KX063820 this study QS002 QS002 G. intermedius Anshan, Liaoning JX661216 / JX661205 JX661228 Wu et al. (2015) –SX1G. intermedius Heilongjiang KM434236 KM434236 KM434236 KM434236 Xu et al. (2012) SYNU1301908 46 G. h. halys Lingyuan, Liaoning KY040526 KY040558 KX063802 KX063775 this study JSSD1508X3 X3 G. h. halys Xilinhot, Inner KY040527 KY040559 KX063803 KX063776 this study Mongolia JS1407H9 H9 G. h. halys Greater Hinggan Mts., KY040528
Recommended publications
  • Biotic and Abiotic Influences on Activity Patterns Of
    Biological Conservation 97 (2001) 387±398 www.elsevier.com/locate/biocon Biotic and abiotic in¯uences on activity patterns of insular pit-vipers (Gloydius shedaoensis, Viperidae) from north-eastern China Li-xin Sun a, Richard Shine b,*, Zhao Debi a, Tang Zhengren a aSnake Island Protection District, Lushun, People's Republic of China bBiological Sciences A08, University of Sydney, NSW 2006, Australia Received 3 May 2000; received in revised form 18 July 2000; accepted 19 July 2000 Abstract In order to use counts of active animals to estimate population parameters (abundance, sex ratio, age structure), we need to understand the factors that bias such counts. For many taxa, the main problems involve behavioural dierences among age/sex classes, and the eects of local conditions on activity levels. A unique opportunity to quantify such eects on snakes occurs on Shedao, a small island in the Bohai Sea o north-eastern China. The island contains an extraordinary density of endemic pit-vipers (Gloydius shedaoensis), that feed primarily on migrating passerine birds. Over an 8-year period we walked the same 540-m path on 936 mornings during bird-migration periods, counted all pit-vipers within a 3-m-wide transect, and recorded the animals' sex and age class (adult vs juvenile). Total numbers of snakes averaged 40.6 per survey (0.31 per m): thus, the data set contains 37,980 records of sightings of snakes. The total numbers and the composition (sex ratio, age structure) of snakes seen in a morning diered among segments of the path, diered between seasons (spring versus autumn), diered with time within each season, and were in¯uenced by weather conditions (temperature, wind speed, relative humidity).
    [Show full text]
  • Bibliography and Scientific Name Index to Amphibians
    lb BIBLIOGRAPHY AND SCIENTIFIC NAME INDEX TO AMPHIBIANS AND REPTILES IN THE PUBLICATIONS OF THE BIOLOGICAL SOCIETY OF WASHINGTON BULLETIN 1-8, 1918-1988 AND PROCEEDINGS 1-100, 1882-1987 fi pp ERNEST A. LINER Houma, Louisiana SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE NO. 92 1992 SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE The SHIS series publishes and distributes translations, bibliographies, indices, and similar items judged useful to individuals interested in the biology of amphibians and reptiles, but unlikely to be published in the normal technical journals. Single copies are distributed free to interested individuals. Libraries, herpetological associations, and research laboratories are invited to exchange their publications with the Division of Amphibians and Reptiles. We wish to encourage individuals to share their bibliographies, translations, etc. with other herpetologists through the SHIS series. If you have such items please contact George Zug for instructions on preparation and submission. Contributors receive 50 free copies. Please address all requests for copies and inquiries to George Zug, Division of Amphibians and Reptiles, National Museum of Natural History, Smithsonian Institution, Washington DC 20560 USA. Please include a self-addressed mailing label with requests. INTRODUCTION The present alphabetical listing by author (s) covers all papers bearing on herpetology that have appeared in Volume 1-100, 1882-1987, of the Proceedings of the Biological Society of Washington and the four numbers of the Bulletin series concerning reference to amphibians and reptiles. From Volume 1 through 82 (in part) , the articles were issued as separates with only the volume number, page numbers and year printed on each. Articles in Volume 82 (in part) through 89 were issued with volume number, article number, page numbers and year.
    [Show full text]
  • Species Identification of Shed Snake Skins in Taiwan and Adjacent Islands
    Zoological Studies 56: 38 (2017) doi:10.6620/ZS.2017.56-38 Open Access Species Identification of Shed Snake Skins in Taiwan and Adjacent Islands Tein-Shun Tsai1,* and Jean-Jay Mao2 1Department of Biological Science and Technology, National Pingtung University of Science and Technology 1 Shuefu Road, Neipu, Pingtung 912, Taiwan 2Department of Forestry and Natural Resources, National Ilan University No.1, Sec. 1, Shennong Rd., Yilan City, Yilan County 260, Taiwan. E-mail: [email protected] (Received 28 August 2017; Accepted 25 November 2017; Published 19 December 2017; Communicated by Jian-Nan Liu) Tein-Shun Tsai and Jean-Jay Mao (2017) Shed snake skins have many applications for humans and other animals, and can provide much useful information to a field survey. When properly prepared and identified, a shed snake skin can be used as an important voucher; the morphological descriptions of the shed skins may be critical for taxonomic research, as well as studies of snake ecology and conservation. However, few convenient/ expeditious methods or techniques to identify shed snake skins in specific areas have been developed. In this study, we collected and examined a total of 1,260 shed skin samples - including 322 samples from neonates/ juveniles and 938 from subadults/adults - from 53 snake species in Taiwan and adjacent islands, and developed the first guide to identify them. To the naked eye or from scanned images, the sheds of almost all species could be identified if most of the shed was collected. The key features that aided in identification included the patterns on the sheds and scale morphology.
    [Show full text]
  • (Gloydius Blomhoffii) Antivenom in Japan, Korea, and China
    Jpn. J. Infect. Dis., 59, 20-24, 2006 Original Article Standardization of Regional Reference for Mamushi (Gloydius blomhoffii) Antivenom in Japan, Korea, and China Tadashi Fukuda*, Masaaki Iwaki, Seung Hwa Hong1, Ho Jung Oh1, Zhu Wei2, Kazunori Morokuma3, Kunio Ohkuma3, Lei Dianliang4, Yoshichika Arakawa and Motohide Takahashi Department of Bacterial Pathogenesis and Infection Control, National Institute of Infectious Diseases, Tokyo 208-0011; 3First, Production Department, Chemo-Sero-Therapeutic Research Institute, Kumamoto 860-8568, Japan; 1Korea Food and Drug Administration, Soul 122-704, Korea; 2Shanghai Institute of Biological Products, Shanghai 200052; and 4Department of Serum, National Institute for the Control of Pharmaceutical and Biological Products, Beijing 10050, People’s Republic of China (Received June 27, 2005. Accepted November 11, 2005) SUMMARY: The mamushi (Gloydius blomhoffii) snakes that inhabit Japan, Korea, and China produce venoms with similar serological characters to each other. Individual domestic standard mamushi antivenoms have been used for national quality control (potency testing) of mamushi antivenom products in these countries, because of the lack of an international standard material authorized by the World Health Organization. This precludes comparison of the results of product potency testing among countries. We established a regional reference antivenom for these three Asian countries. This collaborative study indicated that the regional reference mamushi antivenom has an anti-lethal titer of 33,000 U/vial and anti-hemorrhagic titer of 36,000 U/vial. This reference can be used routinely for quality control, including national control of mamushi antivenom products. reference antivenom. INTRODUCTION In the present study, the potency of a candidate regional Snakebites are a threat to human life in areas inhabited by reference mamushi antivenom produced by Shanghai Insti- poisonous snakes.
    [Show full text]
  • Ecology, Behavior and Conservation of the Japanese Mamushi Snake, Gloydius Blomhoffii: Variation in Compromised and Uncompromised Populations
    ECOLOGY, BEHAVIOR AND CONSERVATION OF THE JAPANESE MAMUSHI SNAKE, GLOYDIUS BLOMHOFFII: VARIATION IN COMPROMISED AND UNCOMPROMISED POPULATIONS By KIYOSHI SASAKI Bachelor of Arts/Science in Zoology Oklahoma State University Stillwater, OK 1999 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY December, 2006 ECOLOGY, BEHAVIOR AND CONSERVATION OF THE JAPANESE MAMUSHI SNAKE, GLOYDIUS BLOMHOFFII: VARIATION IN COMPROMISED AND UNCOMPROMISED POPULATIONS Dissertation Approved: Stanley F. Fox Dissertation Adviser Anthony A. Echelle Michael W. Palmer Ronald A. Van Den Bussche A. Gordon Emslie Dean of the Graduate College ii ACKNOWLEDGMENTS I sincerely thank the following people for their significant contribution in my pursuit of a Ph.D. degree. I could never have completed this work without their help. Dr. David Duvall, my former mentor, helped in various ways until the very end of his career at Oklahoma State University. This study was originally developed as an undergraduate research project under Dr. Duvall. Subsequently, he accepted me as his graduate student and helped me expand the project to this Ph.D. research. He gave me much key advice and conceptual ideas for this study. His encouragement helped me to get through several difficult times in my pursuit of a Ph.D. degree. He also gave me several books as a gift and as an encouragement to complete the degree. Dr. Stanley Fox kindly accepted to serve as my major adviser after Dr. Duvall’s departure from Oklahoma State University and involved himself and contributed substantially to this work, including analysis and editing.
    [Show full text]
  • Sounding Paiwan: Institutionalization and Heritage-Making of Paiwan Lalingedan and Pakulalu Flutes in Contemporary Taiwan
    Ethnomusicology Review 22(2) Sounding Paiwan: Institutionalization and Heritage-Making of Paiwan Lalingedan and Pakulalu Flutes in Contemporary Taiwan Chia-Hao Hsu Lalingedan ni vuvu namaya tua qaun Lalingedan ni vuvu namaya tua luseq…… Lalingedan sini pu’eljan nu talimuzav a’uvarun Lalingedan nulemangeda’en mapaqenetje tua saluveljengen The ancestor’s nose flute is like weeping. The ancestor’s nose flute is like tears... When I am depressed, the sound of the nose flute becomes a sign of sorrow. When I hear the sound of the nose flute, I always have my lover in mind. —Sauniaw Tjuveljevelj, from the song “Lalingedan ni vuvu,” in the album Nasi1 In 2011, the Taiwanese government’s Council for Cultural Affairs declared Indigenous Paiwan lalingedan (nose flutes) and pakulalu (mouth flutes) to be National Important Traditional Arts. 2 Sauniaw Tjuveljevelj, a designated preserver of Paiwan nose and mouth flutes at the county level, released her first album Nasi in 2007, which included one of her Paiwan songs “Lalingedan ni vuvu” [“The Ancestor’s Nose Flute”]. Using both nose flute playing and singing in Paiwan language, the song shows her effort to accentuate her Paiwan roots by connecting with her ancestors via the nose flute. The lines of the song mentioned above reflect how prominent cultural discourses in Taiwan depict the instruments today; the sound of Paiwan flutes (hereafter referred to collectively as Paiwan flutes) resembles the sound of weeping, which is a voice that evokes a sense of ancestral past and “thoughtful sorrow.” However, the music of Paiwan flutes was rarely labeled as sorrowful in literature before the mid-1990s.
    [Show full text]
  • P. 1 AC27 Inf. 7 (English Only / Únicamente En Inglés / Seulement
    AC27 Inf. 7 (English only / únicamente en inglés / seulement en anglais) CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________ Twenty-seventh meeting of the Animals Committee Veracruz (Mexico), 28 April – 3 May 2014 Species trade and conservation IUCN RED LIST ASSESSMENTS OF ASIAN SNAKE SPECIES [DECISION 16.104] 1. The attached information document has been submitted by IUCN (International Union for Conservation of * Nature) . It related to agenda item 19. * The geographical designations employed in this document do not imply the expression of any opinion whatsoever on the part of the CITES Secretariat or the United Nations Environment Programme concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries. The responsibility for the contents of the document rests exclusively with its author. AC27 Inf. 7 – p. 1 Global Species Programme Tel. +44 (0) 1223 277 966 219c Huntingdon Road Fax +44 (0) 1223 277 845 Cambridge CB3 ODL www.iucn.org United Kingdom IUCN Red List assessments of Asian snake species [Decision 16.104] 1. Introduction 2 2. Summary of published IUCN Red List assessments 3 a. Threats 3 b. Use and Trade 5 c. Overlap between international trade and intentional use being a threat 7 3. Further details on species for which international trade is a potential concern 8 a. Species accounts of threatened and Near Threatened species 8 i. Euprepiophis perlacea – Sichuan Rat Snake 9 ii. Orthriophis moellendorfi – Moellendorff's Trinket Snake 9 iii. Bungarus slowinskii – Red River Krait 10 iv. Laticauda semifasciata – Chinese Sea Snake 10 v.
    [Show full text]
  • Reproductive Biology and Natural History of the White-Lipped Pit Viper (Trimeresurus Albolabris Gray, 1842) in Hong Kong Anne Devan-Song University of Rhode Island
    University of Rhode Island DigitalCommons@URI Natural Resources Science Faculty Publications Natural Resources Science 2017 Reproductive Biology and Natural History of the White-lipped Pit Viper (Trimeresurus albolabris Gray, 1842) in Hong Kong Anne Devan-Song University of Rhode Island Paolo Martelli See next page for additional authors Follow this and additional works at: https://digitalcommons.uri.edu/nrs_facpubs Citation/Publisher Attribution Devan-Song, A., Martelli, P., & Karraker, N. E. (2017). Reproductive Biology and Natural History of the White-lipped Pit Viper (Trimeresurus albolabris Gray, 1842) in Hong Kong. Herpetological Conservation and Biology, 12(1), 41-55. Retrieved from http://www.herpconbio.org/Volume_12/Issue_1/Devan-Song_etal_2017.pdf Available at: http://www.herpconbio.org/Volume_12/Issue_1/Devan-Song_etal_2017.pdf This Article is brought to you for free and open access by the Natural Resources Science at DigitalCommons@URI. It has been accepted for inclusion in Natural Resources Science Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. Authors Anne Devan-Song, Paolo Martelli, and Nancy E. Karraker This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/nrs_facpubs/115 Herpetological Conservation and Biology 12:41–55. Submitted: 30 September 2015; Accepted: 18 January 2017; Published: 30 April 2017. Reproductive Biology and Natural History of the White-lipped Pit Viper (Trimeresurus albolabris Gray,
    [Show full text]
  • 2008 Board of Governors Report
    American Society of Ichthyologists and Herpetologists Board of Governors Meeting Le Centre Sheraton Montréal Hotel Montréal, Quebec, Canada 23 July 2008 Maureen A. Donnelly Secretary Florida International University Biological Sciences 11200 SW 8th St. - OE 167 Miami, FL 33199 [email protected] 305.348.1235 31 May 2008 The ASIH Board of Governor's is scheduled to meet on Wednesday, 23 July 2008 from 1700- 1900 h in Salon A&B in the Le Centre Sheraton, Montréal Hotel. President Mushinsky plans to move blanket acceptance of all reports included in this book. Items that a governor wishes to discuss will be exempted from the motion for blanket acceptance and will be acted upon individually. We will cover the proposed consititutional changes following discussion of reports. Please remember to bring this booklet with you to the meeting. I will bring a few extra copies to Montreal. Please contact me directly (email is best - [email protected]) with any questions you may have. Please notify me if you will not be able to attend the meeting so I can share your regrets with the Governors. I will leave for Montréal on 20 July 2008 so try to contact me before that date if possible. I will arrive late on the afternoon of 22 July 2008. The Annual Business Meeting will be held on Sunday 27 July 2005 from 1800-2000 h in Salon A&C. Please plan to attend the BOG meeting and Annual Business Meeting. I look forward to seeing you in Montréal. Sincerely, Maureen A. Donnelly ASIH Secretary 1 ASIH BOARD OF GOVERNORS 2008 Past Presidents Executive Elected Officers Committee (not on EXEC) Atz, J.W.
    [Show full text]
  • Climate Change and Evolution of the New World Pitviper Genus
    Journal of Biogeography (J. Biogeogr.) (2009) 36, 1164–1180 ORIGINAL Climate change and evolution of the New ARTICLE World pitviper genus Agkistrodon (Viperidae) Michael E. Douglas1*, Marlis R. Douglas1, Gordon W. Schuett2 and Louis W. Porras3 1Illinois Natural History Survey, Institute for ABSTRACT Natural Resource Sustainability, University of Aim We derived phylogenies, phylogeographies, and population demographies Illinois, Champaign, IL, 2Department of Biology and Center for Behavioral for two North American pitvipers, Agkistrodon contortrix (Linnaeus, 1766) and Neuroscience, Georgia State University, A. piscivorus (Lace´pe`de, 1789) (Viperidae: Crotalinae), as a mechanism to Atlanta, GA and 37705 Wyatt Earp Avenue, evaluate the impact of rapid climatic change on these taxa. Eagle Mountain, UT, USA Location Midwestern and eastern North America. Methods We reconstructed maximum parsimony (MP) and maximum likelihood (ML) relationships based on 846 base pairs of mitochondrial DNA (mtDNA) ATPase 8 and ATPase 6 genes sequenced over 178 individuals. We quantified range expansions, demographic histories, divergence dates and potential size differences among clades since their last period of rapid expansion. We used the Shimodaira–Hasegawa (SH) test to compare our ML tree against three biogeographical hypotheses. Results A significant SH test supported diversification of A. contortrix from northeastern Mexico into midwestern–eastern North America, where its trajectory was sundered by two vicariant events. The first (c. 5.1 Ma) segregated clades at 3.1% sequence divergence (SD) along a continental east–west moisture gradient. The second (c. 1.4 Ma) segregated clades at 2.4% SD along the Mississippi River, coincident with the formation of the modern Ohio River as a major meltwater tributary.
    [Show full text]
  • A Phylogeny and Revised Classification of Squamata, Including 4161 Species of Lizards and Snakes
    BMC Evolutionary Biology This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted PDF and full text (HTML) versions will be made available soon. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes BMC Evolutionary Biology 2013, 13:93 doi:10.1186/1471-2148-13-93 Robert Alexander Pyron ([email protected]) Frank T Burbrink ([email protected]) John J Wiens ([email protected]) ISSN 1471-2148 Article type Research article Submission date 30 January 2013 Acceptance date 19 March 2013 Publication date 29 April 2013 Article URL http://www.biomedcentral.com/1471-2148/13/93 Like all articles in BMC journals, this peer-reviewed article can be downloaded, printed and distributed freely for any purposes (see copyright notice below). Articles in BMC journals are listed in PubMed and archived at PubMed Central. For information about publishing your research in BMC journals or any BioMed Central journal, go to http://www.biomedcentral.com/info/authors/ © 2013 Pyron et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes Robert Alexander Pyron 1* * Corresponding author Email: [email protected] Frank T Burbrink 2,3 Email: [email protected] John J Wiens 4 Email: [email protected] 1 Department of Biological Sciences, The George Washington University, 2023 G St.
    [Show full text]
  • Eleutherodactylus Ridens (Pygmy Rainfrog) Predation Tobias Eisenberg
    Sacred Heart University DigitalCommons@SHU Biology Faculty Publications Biology 9-2007 Eleutherodactylus ridens (Pygmy Rainfrog) Predation Tobias Eisenberg Twan Leenders Sacred Heart University Follow this and additional works at: https://digitalcommons.sacredheart.edu/bio_fac Part of the Population Biology Commons, and the Zoology Commons Recommended Citation Eisenberg, T. & Leenders, T. (2007). Eleutherodactylus ridens (Pygmy Rainfrog) predation. Herpetological Review, 38(3), 323. This Article is brought to you for free and open access by the Biology at DigitalCommons@SHU. It has been accepted for inclusion in Biology Faculty Publications by an authorized administrator of DigitalCommons@SHU. For more information, please contact [email protected], [email protected]. SSAR Officers (2007) HERPETOLOGICAL REVIEW President The Quarterly News-Journal of the Society for the Study of Amphibians and Reptiles ROY MCDIARMID USGS Patuxent Wildlife Research Center Editor Managing Editor National Museum of Natural History ROBERT W. HANSEN THOMAS F. TYNING Washington, DC 20560, USA 16333 Deer Path Lane Berkshire Community College Clovis, California 93619-9735, USA 1350 West Street President-elect [email protected] Pittsfield, Massachusetts 01201, USA BRIAN CROTHER [email protected] Department of Biological Sciences Southeastern Louisiana University Associate Editors Hammond, Louisiana 70402, USA ROBERT E. ESPINOZA CHRISTOPHER A. PHILLIPS DEANNA H. OLSON California State University, Northridge Illinois Natural History Survey USDA Forestry Science Lab Secretary MARION R. PREEST ROBERT N. REED MICHAEL S. GRACE R. BRENT THOMAS Joint Science Department USGS Fort Collins Science Center Florida Institute of Technology Emporia State University The Claremont Colleges Claremont, California 91711, USA EMILY N. TAYLOR GUNTHER KÖHLER MEREDITH J. MAHONEY California Polytechnic State University Forschungsinstitut und Illinois State Museum Naturmuseum Senckenberg Treasurer KIRSTEN E.
    [Show full text]