Statistical Equilibrium in Quantum Gravity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reduced Phase Space Quantization and Dirac Observables
Reduced Phase Space Quantization and Dirac Observables T. Thiemann∗ MPI f. Gravitationsphysik, Albert-Einstein-Institut, Am M¨uhlenberg 1, 14476 Potsdam, Germany and Perimeter Institute f. Theoretical Physics, Waterloo, ON N2L 2Y5, Canada Abstract In her recent work, Dittrich generalized Rovelli’s idea of partial observables to construct Dirac observables for constrained systems to the general case of an arbitrary first class constraint algebra with structure functions rather than structure constants. Here we use this framework and propose how to implement explicitly a reduced phase space quantization of a given system, at least in principle, without the need to compute the gauge equivalence classes. The degree of practicality of this programme depends on the choice of the partial observables involved. The (multi-fingered) time evolution was shown to correspond to an automorphism on the set of Dirac observables so generated and interesting representations of the latter will be those for which a suitable preferred subgroup is realized unitarily. We sketch how such a programme might look like for General Relativity. arXiv:gr-qc/0411031v1 6 Nov 2004 We also observe that the ideas by Dittrich can be used in order to generate constraints equivalent to those of the Hamiltonian constraints for General Relativity such that they are spatially diffeomorphism invariant. This has the important consequence that one can now quantize the new Hamiltonian constraints on the partially reduced Hilbert space of spatially diffeomorphism invariant states, just as for the recently proposed Master constraint programme. 1 Introduction It is often stated that there are no Dirac observables known for General Relativity, except for the ten Poincar´echarges at spatial infinity in situations with asymptotically flat boundary conditions. -
Theory of Systems with Constraints
Theory of systems with Constraints Javier De Cruz P´erez Facultat de F´ısica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.∗ Abstract: We discuss systems subject to constraints. We review Dirac's classical formalism of dealing with such problems and motivate the definition of objects such as singular and nonsingular Lagrangian, first and second class constraints, and the Dirac bracket. We show how systems with first class constraints can be considered to be systems with gauge freedom. We conclude by studing a classical example of systems with constraints, electromagnetic field I. INTRODUCTION II. GENERAL CONSIDERATIONS Consider a system with a finite number, k , of degrees of freedom is described by a Lagrangian L = L(qs; q_s) that don't depend on t. The action of the system is [3] In the standard case, to obtain the equations of motion, Z we follow the usual steps. If we use the Lagrangian for- S = dtL(qs; q_s) (1) malism, first of all we find the Lagrangian of the system, calculate the Euler-Lagrange equations and we obtain the If we apply the least action principle action δS = 0, we accelerations as a function of positions and velocities. All obtain the Euler-Lagrange equations this is possible if and only if the Lagrangian of the sys- tems is non-singular, if not so the system is non-standard @L d @L − = 0 s = 1; :::; k (2) and we can't apply the standard formalism. Then we say @qs dt @q_s that the Lagrangian is singular and constraints on the ini- tial data occur. -
Quantum Theory of Geometry I: Area Operators
The Erwin Schrodinger International Boltzmanngasse ESI Institute for Mathematical Physics A Wien Austria Quantum Theory of Geometry I Area Op erators Abhay Ashtekar Jerzy Lewandowski Vienna Preprint ESI August Supp orted by Federal Ministry of Science and Research Austria Available via httpwwwesiacat Quantum Theory of Geometry I Area Op erators Abhay Ashtekar and Jerzy Lewandowski August Center for Gravitational Physics and Geometry Physics Department Penn State University Park PA USA Institute of Theoretical Physics Warsaw University ul Hoza Warsaw Poland Max Planck Institut fur Gravitationphysik Schlaatzweg Potsdam Germany Abstract A new functional calculus develop ed recently for a fully nonp erturbative treatment of quantum gravity is used to b egin a systematic construction of a quantum theory of geometry Regulated op erators corresp onding to areas of surfaces are intro duced and shown to b e selfadjoint on the underlying kinematical Hilb ert space of states It is shown that their sp ectra are purely discrete indicating that the underlying quantum geometry is far from what the continuum picture might suggest Indeed the fundamental excitations of quantum geometry are dimensional rather like p olymers and the dimensional continuum geometry emerges only on coarse graining The full Hilb ert space admits an orthonormal decomp osition into nite dimensional subspaces which can b e interpreted as the spaces of states of spin systems Using this prop erty the complete sp ectrum of the area op erators is evaluated The -
Arxiv:Math-Ph/9812022 V2 7 Aug 2000
Local quantum constraints Hendrik Grundling Fernando Lledo´∗ Department of Mathematics, Max–Planck–Institut f¨ur Gravitationsphysik, University of New South Wales, Albert–Einstein–Institut, Sydney, NSW 2052, Australia. Am M¨uhlenberg 1, [email protected] D–14476 Golm, Germany. [email protected] AMS classification: 81T05, 81T10, 46L60, 46N50 Abstract We analyze the situation of a local quantum field theory with constraints, both indexed by the same set of space–time regions. In particular we find “weak” Haag–Kastler axioms which will ensure that the final constrained theory satisfies the usual Haag–Kastler axioms. Gupta– Bleuler electromagnetism is developed in detail as an example of a theory which satisfies the “weak” Haag–Kastler axioms but not the usual ones. This analysis is done by pure C*– algebraic means without employing any indefinite metric representations, and we obtain the same physical algebra and positive energy representation for it than by the usual means. The price for avoiding the indefinite metric, is the use of nonregular representations and complex valued test functions. We also exhibit the precise connection with the usual indefinite metric representation. We conclude the analysis by comparing the final physical algebra produced by a system of local constrainings with the one obtained from a single global constraining and also consider the issue of reduction by stages. For the usual spectral condition on the generators of the translation group, we also find a “weak” version, and show that the Gupta–Bleuler example satisfies it. arXiv:math-ph/9812022 v2 7 Aug 2000 1 Introduction In many quantum field theories there are constraints consisting of local expressions of the quantum fields, generally written as a selection condition for the physical subspace (p). -
Lagrangian Constraint Analysis of First-Order Classical Field Theories with an Application to Gravity
PHYSICAL REVIEW D 102, 065015 (2020) Lagrangian constraint analysis of first-order classical field theories with an application to gravity † ‡ Verónica Errasti Díez ,1,* Markus Maier ,1,2, Julio A. M´endez-Zavaleta ,1, and Mojtaba Taslimi Tehrani 1,§ 1Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 Munich, Germany 2Universitäts-Sternwarte, Ludwig-Maximilians-Universität München, Scheinerstrasse 1, 81679 Munich, Germany (Received 19 August 2020; accepted 26 August 2020; published 21 September 2020) We present a method that is optimized to explicitly obtain all the constraints and thereby count the propagating degrees of freedom in (almost all) manifestly first-order classical field theories. Our proposal uses as its only inputs a Lagrangian density and the identification of the a priori independent field variables it depends on. This coordinate-dependent, purely Lagrangian approach is complementary to and in perfect agreement with the related vast literature. Besides, generally overlooked technical challenges and problems derived from an incomplete analysis are addressed in detail. The theoretical framework is minutely illustrated in the Maxwell, Proca and Palatini theories for all finite d ≥ 2 spacetime dimensions. Our novel analysis of Palatini gravity constitutes a noteworthy set of results on its own. In particular, its computational simplicity is visible, as compared to previous Hamiltonian studies. We argue for the potential value of both the method and the given examples in the context of generalized Proca and their coupling to gravity. The possibilities of the method are not exhausted by this concrete proposal. DOI: 10.1103/PhysRevD.102.065015 I. INTRODUCTION In this work, we focus on singular classical field theories It is hard to overemphasize the importance of field theory that are manifestly first order and analyze them employing in high-energy physics. -
Emergence of Time in Loop Quantum Gravity∗
Emergence of time in Loop Quantum Gravity∗ Suddhasattwa Brahma,1y 1 Center for Field Theory and Particle Physics, Fudan University, 200433 Shanghai, China Abstract Loop quantum gravity has formalized a robust scheme in resolving classical singu- larities in a variety of symmetry-reduced models of gravity. In this essay, we demon- strate that the same quantum correction which is crucial for singularity resolution is also responsible for the phenomenon of signature change in these models, whereby one effectively transitions from a `fuzzy' Euclidean space to a Lorentzian space-time in deep quantum regimes. As long as one uses a quantization scheme which re- spects covariance, holonomy corrections from loop quantum gravity generically leads to non-singular signature change, thereby giving an emergent notion of time in the theory. Robustness of this mechanism is established by comparison across large class of midisuperspace models and allowing for diverse quantization ambiguities. Con- ceptual and mathematical consequences of such an underlying quantum-deformed space-time are briefly discussed. 1 Introduction It is not difficult to imagine a mind to which the sequence of things happens not in space but only in time like the sequence of notes in music. For such a mind such conception of reality is akin to the musical reality in which Pythagorean geometry can have no meaning. | Tagore to Einstein, 1920. We are yet to come up with a formal theory of quantum gravity which is mathematically consistent and allows us to draw phenomenological predictions from it. Yet, there are widespread beliefs among physicists working in fundamental theory regarding some aspects of such a theory, once realized. -
On Gauge Fixing and Quantization of Constrained Hamiltonian Systems
BEFE IC/89/118 INTERIMATIOIMAL CENTRE FOR THEORETICAL PHYSICS ON GAUGE FIXING AND QUANTIZATION OF CONSTRAINED HAMILTONIAN SYSTEMS Omer F. Dayi INTERNATIONAL ATOMIC ENERGY AGENCY UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION 1989 MIRAMARE-TRIESTE IC/89/118 International Atomic Energy Agency and United Nations Educational Scientific and Cultural Organization INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS Quantization of a classical Hamiltonian system can be achieved by the canonical quantization method [1]. If we ignore the ordering problems, it consists of replacing the classical Poisson brackets by quantum commuta- tors when classically all the states on the phase space are accessible. This is no longer correct in the presence of constraints. An approach due to Dirac ON GAUGE FIXING AND QUANTIZATION [2] is widely used for quantizing the constrained Hamiltonian systems |3|, OF CONSTRAINED HAMILTONIAN SYSTEMS' [4]. In spite of its wide use there is confusion in the application of it in the physics literature. Obtaining the Hamiltonian which Bhould be used in gauge theories is not well-understood. This derives from the misunder- standing of the gauge fixing procedure. One of the aims of this work is to OmerF.Dayi" clarify this issue. The constraints, which are present when there are some irrelevant phase International Centre for Theoretical Physics, Trieste, Italy. space variables, can be classified as first and second class. Second class constraints are eliminated by altering some of the original Poisson bracket relations which is equivalent to imply the vanishing of the constraints as strong equations by using the Dirac procedure [2] or another method |Sj. ABSTRACT Vanishing of second class constraints strongly leads to a reduction in the number of the phase apace variables. -
The EPRL Intertwiners and Corrected Partition Function Wojciech Kamiski, Marcin Kisielowski, Jerzy Lewandowski
The EPRL intertwiners and corrected partition function Wojciech Kamiski, Marcin Kisielowski, Jerzy Lewandowski To cite this version: Wojciech Kamiski, Marcin Kisielowski, Jerzy Lewandowski. The EPRL intertwiners and corrected partition function. Classical and Quantum Gravity, IOP Publishing, 2010, 27 (16), pp.165020. 10.1088/0264-9381/27/16/165020. hal-00616260 HAL Id: hal-00616260 https://hal.archives-ouvertes.fr/hal-00616260 Submitted on 21 Aug 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Confidential: not for distribution. Submitted to IOP Publishing for peer review 31 May 2010 The EPRL intertwiners and corrected partition function Wo jciech Kami´nski, Marcin Kisielowski, Jerzy Lewandowski Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, ul. Ho˙za 69, 00-681 Warszawa (Warsaw), Polska (Poland) Abstract Do the SU(2) intertwiners parametrize the space of the EPRL solutions to the sim- plicity constraint? What is a complete form of the partition function written in terms of this parametrization? We prove that the EPRL map is injective in the general n-valent vertex case for the Barbero-Immirzi parameter less then 1. We find, however, that the EPRL map is not isomet- ric. -
On the Consistency of the Constraint Algebra in Spin Network Quantum
SU-GP-97/10-2 On the consistency of the constraint algebra in spin network quantum gravity Rodolfo Gambini∗ Instituto de F´ısica, Facultad de Ciencias, Tristan Narvaja 1674, Montevideo,CGPG-97-10/1 Uruguay gr-qc/9710018 Jerzy Lewandowski† Max-Planck-Institut f¨ur Gravitationsphysik Schlaatzweg 1 D-14473 Potsdam, Germany Donald Marolf Physics Department, Syracuse University, Syracuse, NY 13244-1130 Jorge Pullin Center for Gravitational Physics and Geometry, Department of Physics, 104 Davey Lab, The Pennsylvania State University, University Park, PA 16802 Abstract We point out several features of the quantum Hamiltonian constraints re- arXiv:gr-qc/9710018v1 2 Oct 1997 cently introduced by Thiemann for Euclidean gravity. In particular we dis- cuss the issue of the constraint algebra and of the quantum realization of the ab object q Vb, which is classically the Poisson Bracket of two Hamiltonians. I. INTRODUCTION In a remarkable series of papers [1–4] by Thiemann, the loop approach to the quantiza- tion of general relativity reached a new level. Using ideas related to those of Rovelli and ∗Associate member of ICTP. †On leave from Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, ul. Ho˙za 69, 00-681 Warszawa, Poland 1 Smolin [8], Thiemann proposed a definition of the quantum Hamiltonian (Wheeler-DeWitt) constraint of Einstein-Hilbert gravity which is a densely defined operator on a certain Hilbert space and which is (in a certain sense [1]) anomaly free on diffeomorphism invariant states. The fact that the proposed constraints imply the existence of a self-consistent, well defined theory is very impressive. However, it is still not clear whether the resulting theory is con- nected with the physics of gravity. -
Loop Quantum Gravity
QUANTUM GRAVITY Loop gravity combines general relativity and quantum theory but it leaves no room for space as we know it – only networks of loops that turn space–time into spinfoam Loop quantum gravity Carlo Rovelli GENERAL relativity and quantum the- ture – as a sort of “stage” on which mat- ory have profoundly changed our view ter moves independently. This way of of the world. Furthermore, both theo- understanding space is not, however, as ries have been verified to extraordinary old as you might think; it was introduced accuracy in the last several decades. by Isaac Newton in the 17th century. Loop quantum gravity takes this novel Indeed, the dominant view of space that view of the world seriously,by incorpo- was held from the time of Aristotle to rating the notions of space and time that of Descartes was that there is no from general relativity directly into space without matter. Space was an quantum field theory. The theory that abstraction of the fact that some parts of results is radically different from con- matter can be in touch with others. ventional quantum field theory. Not Newton introduced the idea of physi- only does it provide a precise mathemat- cal space as an independent entity ical picture of quantum space and time, because he needed it for his dynamical but it also offers a solution to long-stand- theory. In order for his second law of ing problems such as the thermodynam- motion to make any sense, acceleration ics of black holes and the physics of the must make sense. -
Characteristic Hypersurfaces and Constraint Theory
Characteristic Hypersurfaces and Constraint Theory Thesis submitted for the Degree of MSc by Patrik Omland Under the supervision of Prof. Stefan Hofmann Arnold Sommerfeld Center for Theoretical Physics Chair on Cosmology Abstract In this thesis I investigate the occurrence of additional constraints in a field theory, when formulated in characteristic coordinates. More specifically, the following setup is considered: Given the Lagrangian of a field theory, I formulate the associated (instantaneous) Hamiltonian problem on a characteristic hypersurface (w.r.t. the Euler-Lagrange equations) and find that there exist new constraints. I then present conditions under which these constraints lead to symplectic submanifolds of phase space. Symplecticity is desirable, because it renders Hamiltonian vector fields well-defined. The upshot is that symplecticity comes down to analytic rather than algebraic conditions. Acknowledgements After five years of study, there are many people I feel very much indebted to. Foremost, without the continuous support of my parents and grandparents, sister and aunt, for what is by now a quarter of a century I would not be writing these lines at all. Had Anja not been there to show me how to get to my first lecture (and in fact all subsequent ones), lord knows where I would have ended up. It was through Prof. Cieliebaks inspiring lectures and help that I did end up in the TMP program. Thank you, Robert, for providing peculiar students with an environment, where they could forget about life for a while and collectively find their limits, respectively. In particular, I would like to thank the TMP lonely island faction. -
Structure of Constrained Systems in Lagrangian Formalism and Degree of Freedom Count
Structure of Constrained Systems in Lagrangian Formalism and Degree of Freedom Count Mohammad Javad Heidaria,∗ Ahmad Shirzada;b† a Department of Physics, Isfahan University of Technology b School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM), P.O.Box 19395-5531, Tehran, Iran March 31, 2020 Abstract A detailed program is proposed in the Lagrangian formalism to investigate the dynam- ical behavior of a theory with singular Lagrangian. This program goes on, at different levels, parallel to the Hamiltonian analysis. In particular, we introduce the notions of first class and second class Lagrangian constraints. We show each sequence of first class constraints leads to a Neother identity and consequently to a gauge transformation. We give a general formula for counting the dynamical variables in Lagrangian formalism. As the main advantage of Lagrangian approach, we show the whole procedure can also be per- formed covariantly. Several examples are given to make our Lagrangian approach clear. 1 Introduction Since the pioneer work of Dirac [1] and subsequent forerunner papers (see Refs. [2,3,4] arXiv:2003.13269v1 [physics.class-ph] 30 Mar 2020 for a comprehensive review), people are mostly familiar with the constrained systems in the framework of Hamiltonian formulation. The powerful tool in this framework is the algebra of Poisson brackets of the constraints. As is well-known, the first class constraints, which have weakly vanishing Poisson brackets with all constraints, generate gauge transformations. ∗[email protected] †[email protected] 1 However, there is no direct relation, in the general case, to show how they do this job.