MASARYKOVA UNIVERZITA V BRN Ě Přírodov ědecká fakulta

Jind řiška Bojková

VARIABILITA MAKROZOOBENTOSU PODÉL MINERÁLNĚ-TROFICKÉHO GRADIENTU PRAMENIŠTNÍCH SLATINIŠ Ť

Diserta ční práce

Školitel: Doc. RNDr. Jan Helešic, Ph.D. Brno, 2009

Bibliografická identifikace

Jméno a p říjmení autorky: Jind řiška Bojková

Název diserta ční práce: Variabilita makrozoobentosu podél mineráln ě-trofického gradientu prameništních slatiniš ť

Název diserta ční práce anglicky: The variability of macroinvertebrates along the gradient of mineral richness in the Western Carpathian spring fens

Studijní program: Biologie

Studijní obor (sm ěr), kombinace obor ů: Hydrobiologie

Školitel: Doc. RNDr. Jan Helešic, Ph.D.

Rok obhajoby: 2009

Klí čová slova v češtin ě: makrozoobentos, mineráln ě-trofický gradient, slatiništ ě

Klí čová slova v angli čtin ě: macroinvertebrates, poor-rich gradient, spring fen

2

© Jind řiška Bojková, Masarykova univerzita v Brn ě, 2009

3 Pod ěkování

Na prvním míst ě bych ráda pod ěkovala Michalu Horsákovi, který p řišel s nápadem zkoumat vodní bezobratlé slatiniš ť, a který je motorem bez jehož entuziasmu, znalostí a podpory by nebylo možné tuto práci realizovat. Pod ěkování náleží také Michalu Hájkovi, který zcela nezištn ě poskytl mnoho cenných rad. Dále d ěkuji Markét ě Omelkové za její neutuchající elán a optimismus při nesmírn ě vy čerpávajícím odebírání všech možných vzork ů v terénu a obrovskou energii, kterou vložila do p řebírání vzork ů larev i dosp ělc ů, i když už se zdálo, že to nep řebereme ani do soudného dne. Velké díky pat ří všem nepostradatelným pomocník ům v terénu i laborato ři, Vendule K řoupalové, Markét ě Fránkové, Marcele Růži čkové, Vand ě Rádkové a hlavn ě Standovi N ěmejcovi, který s námi bez reptání n ěkolikrát projezdil k řížem krážem moravsko-slovenské pomezí. Nicole Černohorské srde čně d ěkuji za pomoc s angli čtinou a velké ucho. Děkuji těm, kdo ur čili náro čné skupiny bezobratlých: Jana Schenková (Clitellata), Věra Opravilová (Testacea a Rotifera), Petr Pa řil a Ví ťa Syrovátka (Chironomidae), Michal Straka a Honza Sychra (Coleoptera); a také t ěm, kdo se ujali determinace dosp ělc ů z Malaiseho pastí: Petr Komzák (Trichoptera), Tomáš Soldán (Ephemeroptera), Rudolf Rozkošný (Stratiomyidae, Sciomyzidae), Jan Ježek (Psychodidae) a Jaroslav Starý (Limoniidae). Speciální pod ěkování náleží mému školiteli Janu Helešicovi za rady, zázemí a ochrannou ruku. Děkuji správám CHKO Bílé Karpaty, Beskydy a Kysuce, že nám umožnili pracovat na jejich území a grant ům GA ČR 524/05/H536, GA ČR 526/09/H025 a výzkumnému zám ěru MSM 0021622416 za finan ční podporu. Na záv ěr chci pod ěkovat svým nejbližším za jejich podporu, zájem a povzbuzení (a ť už si o téhle práci myslí cokoli).

4 Abstrakt

Mineráln ě-trofický gradient, který probíhá od kyselých, mineráln ě chudých vrchoviš ť a přechodových rašeliniš ť po extrémn ě mineráln ě bohatá p ěnovcová slatiništ ě, je hlavním ekologickým gradientem, který se projevuje na prameništních slatiništích a ur čuje jejich jednotlivé ekologické typy. Závislost na tomto gradientu byla prokázána ve vegetaci a také spole čenstvech m ěkkýš ů, krytenek a hub, jeho vliv na spole čenstvo makrozoobentosu doposud nebyl studován. Hlavním cílem této práce proto bylo testovat zda a jak jednotlivé skupiny makrozoobentosu odráží mineráln ě-trofický gradient prameništních slatiniš ť a také porovnat odpov ědi různých taxocenóz. Vzhledem k tomu, že tato stanoviště byla v minulosti nedostate čně studována, díl čím cílem byl popis druhového složení a struktury spole čenstev prameništních slatiniš ť. Pro tuto studii bylo vybráno 17 lokalit na moravsko-slovenském pomezí, které reprezentují hlavní typy západokarpatských prameništních slatiniš ť. Sb ěr vzork ů makrozoobentosu, rozsivek a dosp ělc ů vodního hmyzu prob ěhl v roce 2006 kvantitativními a semikvantitativními metodami. U tří studovaných skupin vodních organism ů byla prokázána r ůzná míra vazby na mineráln ě-trofický gradient. Rozsivky, které jsou svými fyziologickými nároky p římo vázány na minerální bohatost a živiny, jsou na mineráln ě-trofickém gradientu siln ě závislé podobn ě jako cévnaté rostliny a m ěkkýši slatiniš ť. Stejn ě jako u t ěchto skupin také roste druhová bohatost rozsivek od mineráln ě chudých k mineráln ě bohatým slatiništím. Slabší vazba byla zjišt ěna u skupiny Clitellata, která na minerální bohatost reaguje zprost ředkovan ě skrze závislost na vlastnostech organického substrátu, které jsou ur čeny p ředevším zm ěnou charakteru vegetace podél gradientu. Průběh druhové bohatosti taxocenózy opaskovc ů je opa čný než u cévnatých rostlin, m ěkkýš ů a rozsivek. Vodní hmyz, reprezentovaný v této studii p ředevším pošvatkami () je ovlivn ěn p ředevším substrátem dna jednotlivých stanoviš ť. Minerální bohatost je d ůležitá pouze na lokalitách se silným srážením p ěnovce, kde vznikají specifické podmínky pro larvy.

5 Abstract

The gradient of mineral richness, which goes from acidic, mineral-poor bogs and transitional mires to extremely mineral-rich tufa forming fens, is the main environmental gradient present on spring fens and it determines their habitat types. This gradient governs the species composition of vegetation, algae, testaceans, and molluscs however it was never investigated for macroinvertebrates. The main aim of this study was to test whether and how different groups of aquatic macroinvertebrates reflect the gradient of mineral richness of spring fens, and also to compare responds of different taxocoenoses. As these biotopes were insufficiently studied in the past, a partial goal was also to describe the species richness and composition of macroinvertebrate assemblages of these fens. Altogether 17 sites in the border region between the and were chosen for this study. They represent the main types of the Western Carpathian fens. The samples of macroinvertebrates, diatoms, and aquatic imagines were collected in 2006 by quantitative and semiquantitative methods. Three different taxonomical and ecological groups of organisms studied showed different degree of dependency on the gradient of mineral richness. Diatoms, which are due to their physiological requirements directly reliant on mineral richness and nutrients, were very closely dependent on the studied gradient similarly like the vascular plants and molluscs. As for these groups the species richness of diatoms also grows from mineral-poor to mineral-rich fens. A weaker connection to the gradient was found for Clitellata, which respond to mineral richness vicariously through a dependency on organic substrate that is determined primarily by the change of vegetation along the gradient. The pattern of species richness change along the gradient is opposite than in vascular plants, molluscs, and diatoms. Aquatic , represented in this study by stoneflies (Plecoptera), are influenced mainly by the substrate characteristics of spring fens. Mineral richness is important only on sites with extreme tufa precipitation where specific conditions for the development of larvae are present.

6 Obsah

1. Úvod ...... 8 1.1 Rašeliništ ě a jejich vodní bezobratlí...... 9 1.1.1 Hlavní ekologické gradienty...... 9 1.1.2 Vodní bezobratlí rašeliniš ť...... 10 1.1.3 Prameništní slatiništ ě Západních Karpat ...... 11 1.2 Cíle diserta ční práce ...... 12 1.3 Metodika...... 12 2. Výsledky ...... 13 2.1 Shrnutí dosažených výsledk ů ...... 14 2.1.1 Faunistické nálezy a druhová bohatost vodního hmyzu ...... 14 2.1.2 Ekologické studie ...... 16 Část A: New and interesting records of Plecoptera (Insecta) from the Czech Republic ...... 21 Část B: Faunisticky zajímavé nálezy chrostík ů (Insecta: Trichoptera) Moravskoslezských Beskyd ...... 28 Část C: Diversity of Diptera larvae in the Western Carpathian spring fens ...... 33 Část D: The taxonomic and functional composition of Ephemeroptera, Plecoptera, and Trichoptera taxocoenoses along the poor-rich gradient in the Western Carpathian spring fens ...... 38 Část E: Spring fens as a unique biotope of stonefly larvae (Plecoptera): species richness and species composition gradients ...... 57 Část F: The structure and species richness of the diatom assemblages of the Western Carpathian spring fens along the gradient of mineral richness ...... 71 Část G: Species richness and composition patterns of clitellate (Annelida) assemblages in the treeless spring fens: the effect of water chemistry and substrate ...... 97 3. Literatura ...... 121 4. Publikace autorky ...... 126

7 1. Úvod

Náplní této diserta ční práce je studium rozší ření, druhové skladby a ekologie vodních bezobratlých na prameništních slatiništích Západních Karpat a srovnání závislosti jednotlivých skupin organism ů na mineráln ě-trofickém gradientu, který je hlavním ekologickým gradientem ovliv ňujícím studovaná stanovišt ě. Práce je zpracována ve form ě několika publikací a rukopis ů, které svým obsahem napl ňují stanovené cíle. V následujícím textu je stru čně zpracován úvod do studované problematiky, vymezení cíl ů práce a shrnutí dosažených výsledk ů. Vlastní práce se skládá z následujících publikovaných a do tisku p řijatých článk ů nebo rukopis ů v r ůzném stupni recenzního řízení.

A Bojková J., Špa ček J. 2006: New and interesting records of Plecoptera (Insecta) from the Czech Republic. Acta Musei Moraviae, Scientiae Biologicae (Brno), 91: 1-6. B Komzák P., Kro ča J., Bojková J. 2006: Faunisticky zajímavé nálezy chrostík ů (Insecta: Trichoptera) Moravskoslezských Beskyd. Časopis Slezského Muzea Opava (A), 55: 73- 76. C Křoupalová V., Bojková J., Rádková V., Horsák M., 2009: Diversity of Diptera larvae in the Western Carpathian spring fens. Abstract book of the 1st International Conference on Diptera and their juvenile stages in aquatic and semiaquatic ecosystems in Europe. Gustav Stresemann Institut, Bad Bevensen, 11-15. (rozší řený abstrakt) D Bojková J., Komzák P., Soldán T., Horsák M., Hájek M., Omelková M.: The taxonomic and functional composition of Ephemeroptera, Plecoptera, and Trichoptera taxocoenoses along the poor-rich gradient in the Western Carpathian spring fens. (rukopis) E Bojková J., Helešic J. 2009: Spring fens as a unique biotope of stonefly larvae (Plecoptera): species richness and species composition gradients. Aquatic Insects. (v tisku) F Fránková M., Bojková J., Poulí čková A., Hájek M. 2009: The structure and species of the diatom assemblages of the Western Carpathian spring fens along the gradient of mineral richness. Fottea (v tisku). G Bojková J., Schenková J., Horsák M., Hájek M.: Species richness and composition patterns of clitellate (Annelida) assemblages in the treeless spring fens: the effect of water chemistry and substrate (zasláno do časopisu Freshwater biology).

8 1.1 Rašeliništ ě a jejich vodní bezobratlí

1.1.1 Hlavní ekologické gradienty Existence r ůzných typ ů rašeliniš ť ve st řední Evrop ě poskytuje jedine čnou možnost studovat spole čenstva vodních bezobratlých podél hlavních ekologických gradient ů, které ovliv ňují biotu t ěchto mok řad ů. Za rozlišení hlavních typ ů rašeliniš ť jsou zodpov ědné dva komplexní gradienty: gradient pH a minerální bohatosti a gradient trofie (HÁJEK et al. 2006).

Hlavní gradient, gradient pH a minerální bohatosti , popsal MALMER (1986) na vegetaci skandinávských rašeliniš ť (tzv. poor-rich gradient). Jedná se o postupnou změnu druhového složení a bohatosti vegetace od kyselých, mineráln ě chudých vrchoviš ť a p řechodových rašeliniš ť po extrémn ě mineráln ě bohatá p ěnovcová slatiništ ě. Tento výrazný floristický gradient je dán zm ěnou pH a koncentrace vápníku, ale i ostatních minerál ů (ho řč ík a železo) a dostupností jednotlivých makroelement ů (fosfor, draslík, amoniakální dusík). Výrazn ě ovliv ňuje druhovou bohatost a složení spole čenstev r ůzných skupin organism ů, od cévnatých rostlin a mech ů (HÁJEK et al. 2006), p řes řasy (POULÍ ČKOVÁ et al. 2005) a krytenky

(OPRAVILOVÁ & HÁJEK 2006), až po m ěkkýše (HORSÁK & HÁJEK 2003). Podél tohoto gradientu se st řídá p ět floristicky i faunisticky vymezených typ ů slatiniš ť (Obr. 1), které odpovídají ekologické klasifikaci rašeliniš ť používané ve Skandinávii a anglicky mluvících zemích (viz HÁJEK et al. 2006). Ve st řední Evrop ě se díky variabilnímu chemismu podloží nacházejí rašeliništ ě pokrývající celou ší ři tohoto gradientu, narozdíl od geologicky uniformní Skandinávie, kde jsou vápnitá slatiništ ě vzácná a omezen ě rozší řená, zejména díky tém ěř úplné erozi vápnitých hornin v d ůsledku glaciálního zaledn ění.

Obr. 1. Typy slatiniš ť podél gradientu minerální bohatosti a pr ůběh jednotlivých prom ěnných prost ředí. P řevzato z prácí HÁJEK et al. (2006) a HÁJEK & HÁJKOVÁ (2007).

9 Druhým nejd ůležit ějším gradientem, který zásadním zp ůsobem ovliv ňuje biotu slatiniš ť, je gradient trofie (úživnosti) . Tento gradient odráží dostupnost živin a vodní režim slatiniš ť. Je charakterizován růstem zastoupení širolistých bylin ve vegetaci, kde jsou jinak dominantní mechy a ost řice (tzv. fen-to-meadow gradient). Ve spole čenstvech živo čich ů se projevuje nahrazením mok řadních specialist ů ubiquistními druhy, jak bylo dokumentováno na p říkladu měkkýš ů (HÁJEK et al. 2006). Gradient trofie je nezávislý na minerální bohatosti, a čkoli se projevuje primárn ě na mineráln ě bohatých slatiništích, kde díky kolísání vodnosti dochází k prosychání svrchních vrstev p ůdy a mineralizaci živin. Tento gradient je tedy p ředevším ovlivn ěn vodním režimem (a také managementem) slatiniš ť a existence slatinných a rašelinných luk tak nemusí být nutn ě spojená s přísunem živin z vn ějšího prost ředí (HÁJEK et al. 2006, ROZBROJOVÁ & HÁJEK 2008). Protože oba gradienty jsou p římo reflektovány spole čenstvy organism ů, byla také dokumentována vysoká míra konkordance mezi spole čenstvy rostlin a živo čich ů. Variabilita ve spole čenstvech krytenek a m ěkkýš ů byla vysv ětlena lépe vegetací slatiniš ť než všemi m ěř enými prom ěnnými prost ředí (HORSÁK &

HÁJEK 2003, OPRAVILOVÁ & HÁJEK 2006). To je pochopitelné, uv ědomíme se, že spole čenstva rostlin odrážejí nejen sou časné podmínky prost ředí, ale také dlouhodobé vlastnosti jednotlivých stanoviš ť a historické procesy (HORSÁK et al. 2007a, b).

1.1.2 Vodní bezobratlí rašeliniš ť Obecn ě lze říci, že spole čenstva vodních bezobratlých rašeliniš ť byla doposud nedostate čně studována, proto je dostupných informací relativn ě málo. Je to mimo jiné zp ůsobeno tím, že populace vodních organism ů obývající tato stanovišt ě jsou obvykle málo početné, je zde mnoho drobných druh ů, jež se t ěžko determinují a jednotlivé druhy často vyhledávají specifické mikrohabitaty, aby se vyhnuly extrémním podmínkám. Extrémní stanovišt ě jsou navíc druhov ě chudá. Informace o vodních bezobratlých, zejména hmyzu, jsou především faunistické a ty jsou velmi často nedostate čně dopln ěny relevantními informacemi o typu mok řadu, kde byl materiál nasbírán (tzn. často chybí i základní rozlišení slatiniš ť, vrchoviš ť a jiných kyselých bažinných mok řad ů) (viz také ROSENBERG & DANKS 1987). Je málo detailních informací jak o ekologii druh ů obývajících tato stanovišt ě, tak o vztazích druhové bohatosti a skladby k hlavním ekologickým faktor ům. V ětšina publikovaných prací je zam ěř ena na vrchovišt ě nebo vrchovištní t ůně (nap ř. PAASIVIRTA et al. 1988; LARSON &

HOUSE 1990; DOWNIE et al. 1998; VAN DUINEN ET AL . 2006). Studie zabývající se slatiništi se týkají p ředevším druhové bohatosti taxocenóz semiakvatických a akvatických dvouk řídlých, jež jsou zde bohaté (nap ř. ROSENBERG et al. 1988; SALMELA 2004; SALMELA & ILMONEN

10 2005). Komplexní ekologické studie však chybí. Jediná relevantní studie zam ěř ená na spole čenstva vodních bezobratlých byla provedena na čty řech slatinných mok řadech na

Novém Zélandu (SUREN et al. 2008). Tento výzkum prokázal d ůležitost faktor ů popisujících jednotlivé mok řady spíš než stanovištní variabilita a heterogenita v rámci jednotlivých mok řad ů. Mezi nejd ůležit ější prom ěnné popisující variabilitu spole čenstev pat řily pH, vodivost a obsah živin ve vod ě, i když v této studii byla zachycena pouze část možného rozsahu jejich gradient ů. Ve st řední a západní Evrop ě se výzkum rašeliniš ť týkal p ředevším revitalizace degradovaných stanoviš ť (nap ř. LAMERS et al. 2002; VAN DUINEN et al. 2003;

LANGHEINRICH et al. 2004), jelikož mok řady zde byly často odvodn ěny kv ůli zem ědělskému využití p ůdy nebo poškozeny jinou lidskou činností (JOOSTEN & CLARKE 2002). Je tedy obecn ě nedostatek informací o nepoškozených, zachovalých mok řadech.

1.1.3 Prameništní slatiništ ě Západních Karpat Západní Karpaty jsou vhodným modelovým územím, protože jsou zde p řítomna slatiništ ě pokrývající úplnou škálu gradientu minerální bohatosti. Prameništní slatiništ ě Západních Karpat mají v ětšinou velmi malou rozlohu (od n ěkolika čtvere čních metr ů po, spíše výjime čně, 0,2 hektaru). Jsou izolovaná a rozptýlená v mozaice terestrických biotop ů, pastvin a les ů. A čkoli jsou to malé ostrovy podmá čených a živinami limitovaných mok řad ů v jinak spíše suché a živinami bohaté krajin ě, jsou d ůležitým zdrojem lokální diverzity a tudíž i d ůležitým objektem ochrany p řírody a krajiny (POULÍ ČKOVÁ et al. 2005; JONGEPIEROVÁ

2008; HORSÁK & CERNOHORSKY 2008; HÁJKOVÁ et al. 2009). V minulosti byly v této krajin ě pom ěrn ě časté díky specifickým geomorfologickým a hydrologickým pom ěrům území. Jak bylo dokumentováno paleobotanickými a paleomalakologickými výzkumy, p ůvod slatiniš ť, jejich historický vývoj a stá ří jsou v rámci Západních Karpat rozdílné (RYBNÍ ČEK &

RYBNÍ ČKOVÁ 2003; HORSÁK & HÁJKOVÁ 2005), což se promítá v rozdílech druhového složení vegetace a malakocenóz mezi vn ější a vnit řní částí Západních Karpat (HORSÁK et al.

2007a; HRIVNÁK et al. 2008). Ve vn ější části se nacházejí p ředevším velmi mladá slatiništ ě, která bu ď vznikla nebo byla odlesn ěna před zhruba 600-700 lety díky odlesn ění v dob ě vrcholu Valašské kolonizace. Existence t ěchto slatiniš ť je siln ě svázaná s lidskou činností, zejména s kosením. Jsou velmi citlivá na zm ěnu hydrologického režimu a každá jeho zm ěna zp ůsobuje zpravidla nevratné poškození, proto tato stanovišt ě pat ří mezi nejohrožen ější mok řadní biotopy (HÁJEK et al. 2005).

11 1.2 Cíle diserta ční práce

Hlavním cílem diserta ční práce je testovat zda a jak spole čenstvo makrozoobentosu odráží mineráln ě-trofický gradient prameništních slatiniš ť a také konfrontovat získané výsledky s výsledky studií paraleln ě probíhajících na prameništích, kdy hlavním cílem je porovnání odpov ědí spole čenstev na vybrané klí čové faktory popisující hlavní ekologické gradienty. Vzhledem k tomu, že tato stanovišt ě byla v minulosti velmi nedostate čně studována, díl čím cílem je vlastní popis druhového složení a struktury spole čenstev prameništních slatiniš ť.

1.3 Metodika

Na základ ě p ředcházejících botanických a malakologických výzkum ů slatiniš ť bylo vybráno 17 modelových lokalit na moravsko-slovenském pomezí (Bílé Karpaty, Moravskoslezské Beskydy, Jablunkovská a Turzovská vrchovina, Obr. 2) tak, aby pokrývaly úplný gradient minerální bohatosti.

Obr. 2. Lokalizace studovaných slatiniš ť. Pěnovcová slatiništ ě: 1 – PP Kalábová (B řezová), 2-3 – Hrubý Mechná č (Lopeník), 4 – PR Hut ě (Žitková), 5-6 – PR Bílé potoky (Valašské Klobouky); bazická slatiništ ě bez p ěnovce: 7 – PP Chmelinec (Vyškovec), 8 – Čierne p ři Čadci, 9-10 – PR Bukovec, 11 – PP Ky čmol (Horní Lomná); rašelinná slatiništ ě: 12-14 – PP Obidová (Visalaje), 15 – Horní Lomná, 16-17 – Kloko čovské rašeliniská (Zajacovci, Jan číkovci)

12 Toto území má podobnou geologickou stavbu a ve vodní faun ě se neprojevují podstatné geografické rozdíly, což umož ňuje studovat rozdíly dané chemismem stanoviš ť bez dalších výrazných vliv ů. Podloží studovaného území je budováno horninami flyšového pásma vn ějších Západních Karpat, které je v rámci tohoto území zna čně variabilní co do obsahu uhli čitanu vápenatého a ho řečnatého, což se výrazn ě promítá do chemismu podzemních vod

(RAPANT et al. 1997). Proto se zde setkáme s r ůznými mineráln ě-trofickými typy slatiniš ť, od extrémn ě bazických typ ů se silným srážením p ěnovce až po kyselá p řechodová rašeliništ ě. Vzorky makrozoobentosu byly odebrány kvantitativn ě z plochy 25x25 cm 2 do hloubky 5 cm ze st ředu slatiništ ě (nejvíce vodná, pr ůto čná část mok řadu) a z jeho okraje (mén ě vodná, ale nevysychající část mok řadu) a to ve t řech vzorkovacích termínech (kv ěten, červenec a zá ří 2006). Ješt ě p řed odebráním makrozoobentosu byl z plochy pipetou odebrán vzorek sapropelu a trs mechu, který byl v laborato ři omyt destilovanou vody a vyždímán. Z těchto vzork ů byly zpracovány rozsivky. Vedle každé vzorkovací plochy byl odebrán substrát pro stanovení organického uhlíku. Stejnou metodikou jako makrozoobentos byly jednorázov ě ( říjen 2006) odebrány vzorky substrátu pro granulometrickou analýzu anorganického substrátu a zjišt ění zastoupení partikulované organické hmoty v substrátu. Organická a anorganická složka substrátu byly odd ěleny plavením, velikostní struktura obou složek byla zjišt ěna p řesitím p řes sadu sít o r ůzné velikosti ok a zvážením jednotlivých frakcí (OMESOVÁ & HELEŠIC 2004). V podzimním období ( říjen 2006), kdy je chemismus vody napájející slatiništ ě nejstabiln ější

(HÁJEK & HEKERA 2004), byly odebrány také vzorky vody pro chemickou analýzu (stanovení 2+ 2+ + + - 3- 2- - koncentrace Ca , Mg , Na , K , Fe, Cl , PO 4 , SO 4 a NO 3 ). Pro zjišt ění druhového spektra vodního hmyzu sledovaných lokalit byly použity Malaiseho pasti postavené do st ředu 11 slatiniš ť. Tyto pasti byly exponovány od dubna do listopadu 2006 se zhruba m ěsí čním intervalem výb ěru vzork ů. Další podrobnosti k použitým metodám jsou uvedeny v jednotlivých publikacích.

2. Výsledky

Vlastní práce je tvo řena sedmi částmi (A-G), které se dají tématicky rozd ělit na dva okruhy: faunistické p řísp ěvky a práce o diverzit ě vodního hmyzu studovaných slatiniš ť ( části A-D) a práce týkající se distribuce r ůzných skupin organism ů v závislosti na faktorech prost ředí ( části E-G).

13 2.1 Shrnutí dosažených výsledk ů

2.1.1 Faunistické nálezy a druhová bohatost vodního hmyzu První fáze tohoto výzkumu byla zam ěř ena na poznání vodní fauny studovaných stanoviš ť, protože mimo ojedin ělých (a nep říliš d ůvěryhodných) inventariza čních pr ůzkum ů nebyly k dispozici žádné informace. Z tohoto d ůvodu byly na slatiništích a jejich okolí sbíráni dosp ělci pošvatek, chrostík ů a vodních brouk ů a na vybraných lokalitách byly instalovány Malaiseho pasti. Výsledky tohoto faunistického pr ůzkumu byly pom ěrn ě p řekvapivé. Bylo nalezeno dev ět nových druh ů pro Českou republiku, jeden nový druh pro Slovensko, n ěkolik vzácných druh ů registrovaných v červených seznamech a mnoho druh ů, jež jsou nalézány zřídka a jejichž rozší ření a ekologie nejsou p říliš známy, a to jednak kv ůli nedostate čné prozkoumanosti stanoviš ť, která obývají, jednak kv ůli omezenému výskytu t ěchto stanoviš ť. Protože byly tyto výsledky publikovány nejen mnou (části A, B, C), ale jsou také sou částí několika publikací jiných autor ů (OMELKOVÁ & JEŽEK 2007; STARÝ 2007; BOUKAL et al.

2007; OMELKOVÁ et al. 2009; CHVOJKA & KOMZÁK 2009), ráda bych tyto výsledky stru čně shrnula. Na slatiništích a ve stružkách, které je odvod ňují bylo nalezeno n ěkolik druh ů chrostík ů, které mají v České republice omezený areál, proto jsou hodnoceny jako zranitelné (Chaetopteryx polonica Dzi ędzielewicz, 1889 a Rhyacophila philopotamoides McLachlan,

1879) nebo ohrožené ( Ernodes vicinus (McLachlan, 1879)) (CHVOJKA et al. 2005). Poprvé byly v České republice nalezeny karpatské druhy pošvatek Nemoura carpathica Illies, 1963, N. fusca Kis, 1963 a Protonemura aestiva Kis, 1965 a chrostík Synagapetus dubitans McLachlan, 1879, jehož výskyt v Bílých Karpatech je na severovýchodní hranici jeho areálu. Z p ěnovcových prameniš ť v Bílých Karpatech pochází velmi zajímavé nálezy koutulí (Psychodidae). P ředevším jsou to Clytocerus (Boreoclytocerus ) tetracorniculatus Wagner, 1977 a Oomormia andrenipes (Strobl, 1910), které jsou v České republice kriticky ohroženými druhy (JEŽEK 2005) a první nálezy druh ů Threticus balkaneoalpinus Krek, 1972 a Pericoma (Pericoma ) pallida Vaillant, 1978. Posledn ě jmenovaný druh byl znám pouze z originálního popisu ze Špan ělska (VAILLANT 1978). Poprvé byla v České republice zaznamenána také tiplice Savtshenkia goriziensis Strobl, 1893 a bahnomilky Orimarga (Orimarga ) juvenilis (Zetterstedt, 1851) a Idiocera (Idiocera ) sexguttata (Dale, 1842), která byla doposud známa jen z Velké Británie a Dánska. Mezi zajímavé nálezy dvouk řídlých z pěnovcových prameniš ť pat ří také Thaumastoptera calceata Mik, 1866 (Limoniidae), jejíž larvy si z písku staví schránky tvaru pouzdra na brýle. V hygropetrických habitatech t ěchto

14 prameniš ť se také hojn ě vyskytují brouci druhu Eubria palustris (Germar, 1818), který je v České republice ohroženým druhem (BOUKAL 2005). Posledním zajímavým druhem, který bych ráda zmínila, je vodní brouk Laccobius (Dimorpholaccobius ) atratus Rottenberg, 1874 nalezený na p řechodovém rašeliništi Zajacovci v oblasti CHKO Kysuce. Tento druh z České republiky není znám, na Slovensku je to první nález. St řední Evropou prochází severní hranice rozší ření tohoto druhu (BOUKAL et al. 2007) a jeho st ředoevropské populace jsou acidofilní. Ro čním odchytem dosp ělc ů jepic, pošvatek a chrostík ů pomocí Malaiseho pastí na vybraných 11 slatiništích byla získána data o druhovém složení taxocenóz na jednotlivých lokalitách. Tyto informace výrazn ě usnadnily determinaci larválních stádíí mnoha druhů, jež jsou velmi obtížn ě rozpoznatelné (nap ř. pošvatky Nemoura sk. marginata a chrostíci čeledi Limnephilidae) a také umožnily srovnání taxonomické i funk ční struktury taxocenóz na t řech hlavních typech slatiniš ť (p ěnovcová slatiništ ě, bazická slatiništ ě bez p ěnovce a rašelinná slatiništ ě). Celkem bylo zjišt ěno až 71 druh ů sledovaných t ří řád ů. Uvedené t ři typy slatiniš ť jsou si podobné výskytem velkého podílu krenofilních a madikolních druh ů a liší se zastoupením mok řadních druh ů a druh ů preferujících organický substrát a phytal. Analogicky se liší také zastoupením limnofilních a rheophilních druh ů. P ěnovcová slatiništ ě jsou strukturou svých taxocenóz nejblíže chladným pramenům typu helokrénu či rheokrénu. Vyskytují se zde p ředevším rheofilní druhy preferující lithal nebo madikolní habitaty. Jsou to druhy s dlouhým obdobím výletu, které se líhnou v jarním, jaroletním i letním aspektu. Tím se p ěnovcová slatiništ ě liší od ostatních dvou typ ů slatiniš ť, kde v ětšina druh ů vylétává na ja ře a podíl druh ů s letním a podzimním obdobím emergence klesá. To je bezpochyby dáno kolísáním vodnosti a teploty na jednotlivých typech slatiniš ť. Na rašelinných slatiništích, kde je toto kolísání nejv ětší (HÁJKOVÁ et al. 2004), je nejmenší podíl semivoltinních druh ů a velká v ětšina druh ů se líhne na ja ře. Podíl druh ů, jejichž larvy dokon čují sv ůj vývoj v lét ě a na podzim, kdy dochází k poklesu vodní hladiny a proh řívání vody, je nejmenší. Bazická slatiništ ě bez srážení p ěnovce jsou naopak specifická velkým zastoupením drobných druh ů chrostík ů, jejichž larvy se vyvíjejí déle než jeden rok a také nejv ětším po čtem druh ů čeledi Limnephilidae (p ředevším rok Limnephilus ), jež jsou typickými a b ěžnými obyvateli drobných mok řad ů, pr ůsak ů a t ůní (nap ř. WALLACE et al. 2003 a CZACHOROWSKI 1994). Jejich vývojový cyklus s diapauzou ve stádiu imaga v letním období umož ňuje p řežití také ve vysychavých mok řadech (NOVÁK & SEHNAL 1963). Na sledovaných rašelinných slatiništích se t ěchto druh ů vyskytovalo jen velmi málo, což je dáno rozvojem rašeliníku, který tvo ří koberce zar ůstající pr ůsaky vody. Rašelinná slatiništ ě západní části Vn ějších Karpat jsou také

15 specifická absencí t ůní se submerzní nebo emerzní vegetací, proto se zde nevyskytují zástupci čeledí Leptoceridae, Polycentropodidae, Hydroptilidae a Phryganeidae typicky obývající mok řady se stálými t ůněmi (nap ř. FLANNAGAN & MACDONALD 1987; PAASIVIRTA et al. 1988;

BLADES & MARSHALL 1994; CZACHOROWSKI 1994).

2.1.2 Ekologické studie Druhá fáze výzkumu byla zam ěř ena na studium r ůzných ekologických skupin vodních organism ů podél gradientu minerální bohatosti ( části E-G). Byly studovány t ři skupiny vodních organism ů: rozsivky jako zástupci mikrobentosu, Clitellata jako permanentní složka makrozoobentosu a Plecoptera jako zástupci temporální fauny. Složení a struktura taxocenózy rozsivek siln ě odráží gradient minerální bohatosti. Na základ ě druhového složení byly vzorky shlukovou analýzou rozd ěleny do čty ř skupin reprezentujících čty ři hlavní vegeta ční typy slatiniš ť. Toto d ělení bylo ve shod ě s výsledky dosaženými pomocí detrendované koresponden ční analýzy (DCA), kdy jednotlivé typy byly podél první osy rozloženy podle vodivosti a pH lokalit (Obr. 3).

Obr. 3. Ordina ční diagram pozice vzork ů rozsivek na první a druhé DCA ose. Pasivn ě jsou proloženy prom ěnné signifikantn ě korelované s pozicí vzork ů na t ěchto osách. Klasifikace lokalit je podle výsledku shlukové analýzy ( část F). Prázdné symboly vzork ů ozna čují epipelon, plné epibryon.

Taxocenóza rozsivek se m ění od mineráln ě bohatých p ěnovcových slatiniš ť po mineráln ě chudá slatiniště, klesá druhová bohatost a m ění se zastoupení alkalibiontních/alkalifilních a acidobiontních/acidofilních druh ů. Podobný výsledek byl d říve zjišt ěn u další skupiny mikrobentosu slatiniš ť, krytenek. Zde se složení taxocenózy rovn ěž odvíjelo od minerální

16 bohatosti a pH lokalit, druhová bohatost se ale podél gradientu nem ěnila (OPRAVILOVÁ &

HÁJEK 2006). Druhá ordina ční osa, která korelovala s hloubkou vody, reprezentuje variabilitu rozsivek p ěnovcových slatiniš ť. Zde se na rozdíl od ostatních typ ů slatiniš ť signifikantn ě odlišují vzorky epibryonu a epipelonu (Obr. 3, prázdné a plné symboly). Hlavní odlišností je větší zastoupení halofilních a xerotolerantních druh ů ve vzorcích epibryonu. Celkov ě bylo na studovaných slatiništích nalezeno 188 taxon ů rozsivek, z nichž až t řetina náleží mezi taxony registrované v Červeném seznamu sladkovodních rozsivek N ěmecka (LANGE -BERTALOT 1996), což tato stanovišt ě řadí mezi jedny z nejcenn ějších biotop ů z hlediska diverzity t ěchto řas. Permanentní složka makrozoobentosu slatiniš ť reprezentovaná p ředevším opaskovci (Clitellata, celkem zjišt ěno 34 taxon ů na druhové a rodové úrovni) je podmín ěna minerální bohatostí stanoviš ť i vlastnostmi substrátu. Metodou rozkladu variance bylo zjišt ěno, že vyšší podíl variability v druhových datech vysv ětlují chemické parametry vody než vlastnosti substrátu (Obr. 4). Sdílená variabilita je podobná jako hodnoty vysv ětlené variability jednotlivých skupin, což ukazuje na propojenost t ěchto dvou parametr ů, která je daná silnou závislostí vegetace na minerální bohatosti. Podél hlavního gradientu v druhových datech jsou rozmíst ěny skupiny lokalit s různou minerální bohatostí vody a zastoupením organické složky v substrátu dna (Obr. 4).

Obr. 4. Ordina ční diagram pozice vzork ů opaskovc ů na první a druhé DCA ose (levá část obrázku). Pasivn ě jsou proloženy prom ěnné signifikantn ě korelované s pozicí vzork ů na těchto osách. Lokality jsou klasifikovány podle typologie slatiniš ť (HÁJEK et al. 2006): pěnovcová slatiništ ě – obdélníky, bazická slatiništ ě bez p ěnovce – body, mineráln ě bohatá rašeliništ ě – trojúhelníky, p řechodová rašeliništ ě – k řížek. Procento vysv ětlené variability v druhových datech chemismem vody a vlastnostmi substrátu (pravá část obrázku). Signifikantní prom ěnné jsou ozna čeny hv ězdi čkami.

17 Druhová bohatost podél tohoto gradientu roste a negativn ě koreluje s vodivostí a pH. V taxocenóze opaskovc ů se st řídají skupiny druh ů s různou afinitou k vodnímu prost ředí a půdě. Dochází k plynulému p řechodu od taxocenózy s dominantním zastoupením vzácného stygofilního druhu Trichodrilus strandi Hrab ě, 1936 dopln ěného roupicemi, p řes taxocenózu tvo řenou roupicemi a semiakvatickými málošt ětinatci s častým výskytem ve svrchních vrstvách p ůdy, po taxocenózu s p řevážn ě povrchov ě aktivními vodními druhy málošt ětinatc ů a pijavek. Stanovišt ě s převažujícím organickým substrátem na konci hlavního gradientu vykazují variabilitu ve vlhkosti a obsahu živin, což odráží rozmíst ění vzork ů podél druhé ordina ční osy (Obr. 4). S rostoucím obsahem živin a snižující se vlhkostí p řibývá ubikvistních vodních málošt ětinatc ů a pijavek. Podobný pr ůběh byl dokumentován ve vegetaci a malakocenózách v závislosti na zm ěnách obsahu živin a kolísání vodnosti na gradientu fertility (Hájek et al. 2006; Rozbrojová & Hájek 2008). Ve srovnání s předchozími výsledky variabilita a druhová bohatost taxocenóz pošvatek, jako jedné z hlavních skupin vodního hmyzu slatiniš ť, není ovlivn ěna pr ůběhem mineráln ě-trofického gradientu. Minerální bohatost je d ůležitá pouze na lokalitách se silným srážením p ěnovce, kde vznikají specifické podmínky pro larvy. Pošvatky jsou ovlivn ěny především charakterem substrátu dna jednotlivých stanoviš ť, v jehož závislosti se m ění složení taxocenóz. Po čet druh ů se na jednotlivých typech stanoviš ť/substrát ů nem ění. Št ěrkový a pís čitý substrát p ěnovcových slatiniš ť s podílem hrubé organické hmoty zejména ve form ě d řeva a listí byl preferován druhy Protonemura aestiva Kis, 1965, Nemoura fusca Kis, 1963 a Isoperla tripartita Illies, 1954, které obývaly výlu čně tento typ slatiniš ť (levá část první ordina ční osy, Obr. 6). S rostoucím podílem partikulované organické hmoty a jemných anorganických sediment ů roste zastoupení pošvatek druh ů Amphinemura standfussi (Ris, 1902), Nemoura sciurus Aubert, 1949 a Leuctra nigra Olivier, 1811. Na slatiništích s jemným, p ředevším organickým substrátem dosahují velkých po četností druhy Nemurella pictetii Klapálek, 1900 a Nemoura cinerea (Retzius, 1783). Na konci tohoto gradientu (pravá část první ordina ční osy, Obr. 6) je druh Nemoura dubitans Morton, 1894, pošvatka obývající různé mok řadní biotopy s makrofyty, které jsou pr ůto čné nebo napájené podzemní vodou. Tento druh se na slatiništích vyskytoval výlu čně v siln ě podmá čené travinné vegetaci.

18

Obr. 6. Ordina ční diagram pozice vzork ů pošvatek na první a druhé DCA ose a pozice jednotlivých druh ů na první ordina ční ose. Pasivn ě jsou proloženy prom ěnné signifikantn ě korelované se skore vzork ů na t ěchto osách. R ůzné symboly vzork ů ozna čují r ůzný typ substrátu slatiniš ť: substrát s převahou anorganické složky - obdélníky, substrát s převahou jemné organické hmoty - trojúhelníky, substrát s převahou hrubé organické hmoty - body.

U t ří studovaných skupin vodních organism ů byla prokázána r ůzná míra vazby na gradient minerální bohatosti. Rozsivky, které jsou svými fyziologickými nároky p římo vázány na minerální bohatost a živiny, jsou na mineráln ě-trofickém gradientu siln ě závislé podobn ě jako cévnaté rostliny a m ěkkýši slatiniš ť (HORSÁK & HÁJEK 2003; HÁJEK et al. 2002). Podobn ě jako u t ěchto skupin také roste druhová bohatost rozsivek od mineráln ě chudých k mineráln ě bohatým slatiništím. Slabší vazba byla dokumentována u skupiny Clitellata, která na minerální bohatost reaguje zprost ředkovan ě skrze závislost na vlastnostech organického substrátu, které jsou ur čeny p ředevším zm ěnou charakteru vegetace podél gradientu. Je velmi pravd ěpodobné, že tato závislost je daná také vlivem m ěnící se potravní nabídky pro málošt ětinaté červy. Ta se do zna čné míry skládá z bakterií, řas a hyf hub rostoucích na organickém substrátu (nap ř. SPRINGETT & LATTER 1977; MOORE 1978; MCMURTRY et al.

1983; RODRIGUEZ et al. 2001), které pat ří mezi skupiny organism ů, u nichž byla prokázána silná závislost na mineráln ě-trofickém gradientu (POULÍ ČKOVÁ et al. 2005). Pr ůběh druhové bohatosti taxocenózy opaskovc ů je opa čný než u cévnatých rostlin, m ěkkýš ů a rozsivek. Clitellata jsou z tohoto pohledu jakousi p řechodnou skupinou k vodnímu hmyzu slatiniš ť,

19 jehož variabilita je na mineráln ě-trofickém gradientu nezávislá. Vodní hmyz, jak bylo prokázáno na p říkladu pošvatek, je závislý p ředevším na substrátu dna slatiniš ť ve smyslu velikostní struktury anorganické a organické složky substrátu a podílu partikulované organické hmoty v substrátu. Tyto výsledky z řeteln ě ukazují, že ani z velmi t ěsné shody zm ěn druhového složení několika taxonomicky i ekologicky nezávislých skupin organizm ů podél gradientu minerální bohatosti není možné odvozovat univerzální predikce a aplikovat totožné záv ěry i na další skupiny organizm ů studovaných stanoviš ť. N ěkteré skupiny mohou i p řes existenci takto vyhran ěného ekologického gradientu, jakým je mineráln ě-trofický gradient, vnímat mnohem siln ěji jiné parametry prost ředí, které jsou pro n ě zásadní.

20

Část A

Bojková J., Špa ček J. 2006: New and interesting records of Plecoptera (Insecta) from the Czech Republic. Acta Musei Moraviae, Scientiae Biologicae (Brno) , 91: 1-6.

21

22

23

24

25

26

27

Část B

Komzák P., Kro ča J., Bojková J. 2006: Faunisticky zajímavé nálezy chrostík ů (Insecta: Trichoptera) Moravskoslezských Beskyd. Časopis Slezského Muzea Opava (A) , 55: 73-76.

28

29

30

31

32

Část C

Křoupalová V., Bojková J., Rádková V., Horsák M., 2009: Diversity of Diptera larvae in the Western Carpathian spring fens. Abstract book of the 1st International Conference on Diptera and their juvenile stages in aquatic and semiaquatic ecosystems in Europe. Gustav Stresemann Institut, Bad Bevensen, 11-15. (rozší řený abstrakt)

33 Diversity of Diptera larvae in the Western Carpathian spring fens

Vendula K řoupalová, Jind řiška Bojková, Vanda Rádková & Michal Horsák

Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlá řská 2, CZ 61137 Brno, Czech Republic

Spring fens are unique habitats in terms of biodiversity as well as the occurrence of rare and poorly known Diptera species. In contrast to North Europe, where the dipteran fauna of fens have been extensively investigated (e.g. Salmela 2001; Salmela & Ilmonen 2005; Salmela et al. 2007), detailed studies about dipteran assemblages of these biotopes in Central Europe are scarce. In this study we explored the taxonomic composition of Diptera larvae (excl. Simuliidae and Chironomidae) and the major abiotic parameters determining dipteran larva assemblages in the Western Carpathian spring fens. Altogether 14 sites differing in their mineral richness and substrate characteristics were chosen for the study. The sampling was carried out three times per year (spring, summer, and autumn) in the borderland between the Czech Republic and Slovakia in 2006. In total 42 benthic samples were collected. We took the samples semi- quantitatively from springbrooks with a 20 cm wide circular hand net with a 500 µm mesh size. Each sample was taken from ten sampling plots (20 cm x 20 cm) along a springbrook including representatively all habitats in the brook by the kicksampling method. We used cluster-analysis and detrended correspondence analysis (DCA) to analyse patterns in sample structure. The correlation between environmental factors and site scores on the first four ordination axes of DCA was assessed using the Spearman rank correlation and Mann- Whitney U test. The significance level was modified by Bonferroni corrections (Holm 1979). In total 2,249 specimens of 76 taxa belonging to 22 families were found. Limoniidae (17 taxa) was the most taxa rich family followed by Psychodidae (13) and Tipulidae (8). Based on cluster-analysis, the studied fens were classified into four groups according to substrate characteristics and mineral richness: tufa-forming fens with a high share of coarse particulate organic matter (CPOM), tufa-forming fens with a high proportion of coarse inorganic substrate, brown-moss fens, and Sphagnum -fens. This grouping of spring fens was also showed by DCA, where the first ordination axis displayed the arrangement of samples in relation to substrate characteristics and mineral richness as well (Fig. 1). Physicochemical factors (pH, conductivity, oxygen concentration, discharge, and Ca, Mg, Fe, and NO 3

34 concentrations) and the percentage of stones, gravel, sand, fine sediments, particulate organic matter (POM), and Sphagna significantly correlated with the first ordination axis (P < 0.003). The proportion of POM, Mg, and Fe correlated with the second axis. The season was not associated with any ordination axes (P > 0.1). Ordination analysis revealed that given groups of spring fens supported different dipteran assemblages. Springbrooks draining the tufa-forming fens, which are characterised by coarse substrate, were dominated by madicolous and hygropetric taxa (e.g. Pericoma calcilega , Oxycera pardalina , and O. pygmaea ). Brown-moss fens with a high amount of organic matter in springbrooks were dominated by Ptychoptera lacustris , and Sphagnum -fen streamlets with a high proportion of fine sediments and with the lowest pH values were characterised by Chrysops caecutiens , Hybomitra sp. and Dasyhelea sp. The taxonomic richness was significantly higher (M-W U test, P < 0.05) in tufa-forming fens with a high share of CPOM while the numbers of taxa did not differ significantly among the other groups of sites (Fig. 2). According to the results, diversity and taxonomic composition of dipteran assemblages were influenced by the gradient of physicochemical factors and substrate characteristics. The taxonomic richness of Diptera larvae was relatively high in comparison with similar studies (e.g. Ilmonen & Paasivirta 2005; Lindegaard et al. 1998). The highest numbers of taxa were recorded at sites with substantial amount of woody debris and dead leaves that formed suitable substrate mostly for Limoniidae and Psychodidae. These calcareous sites were also inhabited by species with strong encrustation of body surface (fam. Stratiomyidae). Furthermore, several rare crenobiont larvae (e.g. Thaumastoptera calceata – fam. Limoniidae, Sycorax sp. – fam. Psychodidae) were found. Tipula goriziensis (fam. Tipulidae) was reported for the first time in the Czech Republic. These original results clearly confirmed that the Western Carpathian spring fens are unique and valuable biotopes because of their diverse and specific dipteran assemblages.

References Holm S., 1979: A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6: 65-70. Ilmonen, J. & Pasiivirta L., 2005: Benthic macrocrustacean and insect assemblages in relation to spring habitat characteristics: patterns in abundance and diversity. Hydrobiologia, 533: 99 -113.

35 Lindegaard C., Brodersen K. P., Wiberg-Larsen P. & Skriver J., 1998: Multivariate analyses of macrofaunal communities in Danish springs and springbrooks. In: Botosaneanu L. (ed.), Studies in Crenobiology: The biology of springs and springsbrooks. Backhuys Publishers, Leiden, p. 201-220. Salmela J., 2001: Adult craneflies (Diptera: Nematocera) around springs in southern . Entomologica Fennica, 12: 139 -147. Salmela J. & Ilmonen I., 2005: Cranefly (Diptera: Tipuloidea) fauna of a boreal mire system in relation to mire trophic status: implications for conservation and bioassessment. Journal of Insect Conservation, 9: 85-94. Salmela J., Autio O. & Ilmonen J., 2007: A survey on the nematoceran (Diptera) communities of southern Finnish wetlands. Memoranda Soc. Fauna Flora Fennica, 83: 33-47.

Figure 1: Detrended correspondence analysis (DCA) of dipteran larvae assemblages: ordination plot of sampled sites on the first two DCA axes with posteriori plotted abiotic parameters. Only the parameters best describing the variability in the data set were showed.

36 Figure 2: Variation in numbers of taxa at four groups of spring fens differing in their substrate characteristics and mineral richness. Abbreviations: group 1 – tufa-forming fens with a high share of CPOM; group 2 – tufa-forming fens with a high proportion of coarse inorganic substrate; group 3 – brown-moss fens; group 4 – Sphagnum -fens.

37

Část D

Bojková J., Komzák P., Soldán T., Horsák M., Hájek M., Omelková M.: The taxonomic and functional composition of Ephemeroptera, Plecoptera, and Trichoptera taxocoenoses along the poor-rich gradient in the Western Carpathian spring fens. (rukopis)

38 The taxonomic and functional composition of Ephemeroptera, Plecoptera, and Trichoptera taxocoenoses along the poor-rich gradient in the Western Carpathian spring fens

Jind řiška Bojková 1* , Petr Komzák 2, Tomáš Soldán 3, Markéta Omelková 1, Michal Horsák 1, Michal Hájek 1,4

1Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlá řská 2, CZ-61137Brno, Czech Republic 2 Morava River Basin, s.e., D řeva řská 11, CZ-601 75 Brno, Czech Republic 3 Biological Centre, Academy of Sciences of the Czech Republic, Institute of Entomology, Branišovská 31, CZ-37005 České Bud ějovice, Czech Republic 4Department of Ecology, Institute of Botany, Academy of Sciences of the Czech Republic,

Po říčí 3b, CZ-60300 Brno, Czech Republic *corresponding author; e-mail:[email protected]

Running title: aquatic insects of Carpathian spring fens

Abstract Ephemeroptera, Plecoptera, and Trichoptera taxocoenoses were investigated in 11 treeless spring fens using Malaise traps. Studied sites included all vegetation types of fens in the border region between the Czech Republic and Slovakia. The main objectives of this study were to describe the species richness and composition of these taxocoenoses and to compare patterns of species traits along the poor-rich gradient. Altogether 71 species were recorded, which was high in comparison with published information on mires. The taxocoenoses of individual fen types were similar in the high proportions of crenophilous and madicol habitat preferring species and differed in the proportions of lithal, phytal, and organic habitat preferring species as well as in the species composition. Along the poor-rich gradient the abundance of limnophil species increased. There were also a decrease of species with summer and autumn emergence and species whose larvae’s maximum size was over 1 cm.

Key words: aquatic insect; mires; springs; fens

39 Introduction Treeless fens are wetlands saturated by mineral-rich groundwater that are nutrient limited and hosting low productive vegetation dominated by sedges and mosses (Grootjans et al., 2006, Hájek et al., 2006, Rozbrojová and Hájek, 2008). In the westernmost part of the Western Carpathians (i.e. flysch zone along the border between the Czech Republic and Slovakia) these biotopes are quite small in their extent, from several square meters to, rarely, 0.2 hectares. They are mostly highly isolated and scattered within a mosaic of terrestrial habitats, grasslands and forests. Nevertheless, they were naturally frequent in this region mainly thanks to specific geomorphologic and hydrological conditions of the area. As documented by palaeobotanical and palaeomalacological data, fen origin, historical development, and age are quite different throughout the Western Carpathians (Rybníček and Rybní čková, 2003, Poulí čková et al., 2005) resulting in different species composition and lower beta diversity of vegetation and molluscs of mires in westernmost flysch regions (Horsák, et al. 2007, Hrivnák et al., 2008). No matter if they originated as a forest or treeless site the existence of an open sedge-moss fen stage is quite young and linked with human activities, especially scything (Horsák and Hájková, 2005). This is particularly true for the fens in the studied area, but the situation in the central part of the Western Carpathians (Inner West Carpathians in geological term) is quite different. There are some fen sites that are continuously in a treeless phase from the late Glacial or the early Holocene (Jankovská, 1988, Horsák et al., 2007). Despite a smaller extent and lower beta diversity, fens at flysch bedrocks represent a unique study systems due to a variable bedrock chemistry that is mirrored in the existence of long pH/calcium gradient, so-called the poor-rich gradient in ecological studies (e.g. Hájek et al., 2002, 2006). As the study fens are often small islands of waterlogged and nutrient-limited habitats in otherwise rather dry and nutrient-rich landscape, the Carpathian fens represent very important sources of local diversity in the landscape and they are the object of nature conservation activities (e.g. Poulí čková et al., 2005, Jongepierová, 2008, Horsák and Cernohorsky, 2008, Hájková et al., 2009). They are unique not only in terms of their vegetation, but also for their specific water chemistry, assemblages of algae, fungi, testate amoebae, and molluscs, which have been already studied in detail (e.g. Horsák and Hájek, 2003, Poulí čková et al., 2003, 2005, Opravilová and Hájek, 2006). Unfortunately, only a little is known about aquatic fauna of these unique habitats so far. The same applies for information on fen aquatic insects in general, because the majority of researches on mires were focused on bog habitats (e.g. Paasivirta et al., 1988, Rosenberg et al., 1988) and bog pools particularly (Larson and House, 1990, Downie et al., 1998, Mazerolle

40 et al., 2006). Moreover, the individual types of wetland habitats were often insufficiently defined in these studies and fens were often not distinguished at all (cf. Danks and Rosenberg, 1987). There is also a lack of information on undamaged and preserved fens, especially in Central Europe, as these habitats have been frequently drained for agriculture (Joosten and Clarke, 2002) and damaged by other human impacts, so much attention was paid to the restoration of such habitats (Langheinrich et al., 2004, Lamers et al., 2002). The main objective of this study was to describe the species richness and composition of the Ephemeroptera, Plecoptera, and Trichoptera taxocoenoses of the Western Carpathian treeless spring fens. The second purpose was to explain differences among spring fen types by using information on ecological and biological species traits and to compare the obtained results with those published on mires.

Material and methods Study area and sites The study area is located on the western margin of the Western Carpathians forming a part of the flysch belt in which sandstone and claystone of variable calcium content alternate. Marls, lime-rich claystone, calcareous sandstone, and limestone prevail in the south-western part of the study area, where groundwater is extremely mineral-rich which supports cold water tufa (travertine) formation. The northern part of the study area is formed mostly by decalcified, often iron-cemented sandstone. In this part the calcium concentration is the lowest within the entire study area (Rapant et al., 1996). The majority of spring fens in this area are young, originated mainly as the result of an extensive deforestation during the largest Walachian colonization, which started 600-700 years ago (Horsák and Hájková, 2005). They are also similar in hydrological characteristics (Rybní čková et al., 2005). On the basis of previous extensive studies concerning the vegetation of the Western Carpathian spring fens we chose 11 sites (Fig. 1) which corresponded the best with fen types occurring in this area (Poulí čková et al., 2005). Four sites were selected within extremely mineral-rich fens with different degree of calcium carbonate precipitation, four sites within mineral-rich fen meadows, and three sites within Sphagnum -fens with different mineral richness. Studied sites do not markedly differ in size and water depth. Each site has a small brooklet permanently flowing through a fen. Thus, the taxocoenoses are not influenced by the absence of the flowing microhabitats and also by drying out in summer which could cause objectionable heterogeneity of the dataset. Altitude of the sites investigated varies between 450 m and 730 m a.s.l.

41 Methods Imagines were sampled using a Malaise trap which was placed in the centre of each spring fen. Traps were exposed from the beginning of May to the end of September 2006. Traps were visited every five weeks, so we obtained four samples from each site. However two summer samples had to be merged because of low numbers of sampled specimens. Finally, 33 samples were acquired; three samples per a site which reflected seasons (spring, summer, and autumn). Water temperature, conductivity, pH, and discharge were measured in the centre of fens at each visit of sites. For describing each site average values were used (Table 2). For characterizing each site a one-shot sample of substrate and water was taken in August 2006.

Inorganic substrate was described as Q 50 (median of particle diameters ) and organic substrate was characterized by total organic carbon (TOC) and proportion of particulate organic matter (POM). The data on temporal variability of pH, conductivity, water level, and temperature were taken from a study carried out during growing seasons 2000 and 2001 at six sites which represented the main types of fens on the western margin of Western Carpathians (Hájková et al, 2004). The main fen types are in concordance with the fen types in our study. Variables were measured at intervals ca. 14 days (first year) or one month (second year) in 48 plots positioned along several short transects from central to marginal part of each fen (for details see Hájková et al., 2004). Temporal variation was expressed as the coefficients of variation, which were calculated separately for each variable at each measured point (Fig. 5). The data on insect species traits were primarily based on Graf et al. (2008, 2009) for Trichoptera and Plecoptera and Zahrádková et al. (2009) and Soldán and Zahrádková (2000) for Ephemeroptera. Missing information on habitat preferences, flight period, and emergence of Plecoptera was fill in using unpublished database of stoneflies of the Czech Republic (for details about this data see Bojková 2009). Minor part of the data was supplemented following Šporka (2003) and other resources (Thorup, 1963, Iversen, 1976). We used habitat related traits (microhabitat, current, and zonation preferences) and life-history related traits (voltinism, duration of emergence period, flight period, life duration, maximal body size of larvae, and feeding type) to describe ecological differences of taxocoenoses among habitat types. Due to insufficient knowledge of biology of individual species we could not use several traits concerning resistance or resiliance potential (temperature preference, resistance to drought, and resistance form) and life history strategies (reproduction, r-, K-strategy, and dispersal capacity). Percentage of classified species for these traits was less than 20% (we did not use any information approximated from genus or family level). Averages of the weighted abundance ecological scores ( I) for the categories of nine species traits were used (Fig. 6).

42 This index weights the power of a particular trait by species abundance in the particular Σ × ( − ) ni B 0 10 sample: I = , where n i = number of specimens of i’species, B = value of 10 N categorization within one trait category, and N = total numbers of specimens. Indicator species analysis was computed using the PC-ORD package (McCune and Mefford, 1999). The significance of indicator species was tested by 999 Monte Carlo permutations. Only species with the Indicator Value higher than 50 were considered good indicators.

Results Altogether 71 species were recorded (10 mayfly species from 3 families, 24 stonefly species from 5 families, and 37 caddisfly species from 14 families) and 3,373 specimens were collected. The median number of species per site was 21. Many species were collected only rarely; ca one third of all species was recorded in less than four specimens. Taxocoenoses of all studied fens were mostly consisted of crenophilous (e.g. Beraea pullata , Potamophylax nigricornis , Wormaldia occipitalis , Plectrocnemia brevis , and Leuctra nigra ) and crenobiont species (e.g. Crunoecia irrorata , Adicella filicornis , and Parachiona picicornis ), which were supplemented by lotic species inhabiting brooklets flowing through fens (e.g. Ecdyonurus subalpinus , Leuctra digitata , Odontocerum albicorne , and Sericostoma personatum ) and also by several common wetland species (e.g. Oligotricha striata , Rhadicoleptus alpestris , and Limnephilus auricula ) (Table 1). A high number of species preferring madicol microhabitats was recorded at all sites. Madicole fauna encompassed several species restricted to these microhabitats (such as Beraea maurus and Ernodes spp.), preferably occurring there (Ptilocolepus granulatus and Crunoecia irrorata ), and several occasional inhabitants (such as Nemoura and Protonemura spec.). Calcareous fens and fen meadows were characterised by a high share of caddisflies in the samples; they comprised more than 55% of all specimens in the samples. Sphagnum -fens had a high proportion of stoneflies, about 50% of all specimens. Mayflies were represented by 7% at the most; this proportional representation was reached in calcareous fens (Fig. 4). Number of species and specimens per samples did not significantly differ among fen types (Figs 2, 3). Calcareous fens were mostly characterized by lithal-preferring species (e.g. Electrogena cf. ujhelyii , Ecdyonurus subalpinus , and Rhyacophila philopotamoides ), including several specialists for this microhabitat (e.g. Agapetus fuscipes , Synagapetus dubitans , and Wormaldia occipitalis ) and species dwelling on coarse particulate organic

43 matter (Nemouridae). Caddisflies considered being calcicolous or calciphilous (e.g. Rhyacophila pubescens and Tinodes unicolor ) were recorded exclusively at these sites. Indicator species for this habitat type were Electrogena cf. ujhelyii , Plectrocnemia brevis, and Protonemura aestiva , which were recorded solely at calcareous fens, and small caddisflies Ernodes articularis and Beraea maurus inhabiting madicol microhabitats (Fig. 6). Analogically, taxocoenoses were dominated by species dwelling in lithal and madicol microhabitats with mostly rheophilous current preferences (Fig. 6). There were no littoral species and a low share of macrophyte-preferring species. The taxocoenoses of calcareous spring fens were mostly consisted of univoltine species with long duration of flight period which emerged in the same amount in spring and summer. Fen meadows hosted predominantly limnophilous species dwelling in shallow microhabitats and species associated with phytal and POM-microhabitats (e.g. Beraea pullata , Adicella filicornis , Amphinemura standfussi ). Littoral-preferring species recorded was represented by common wetland species (e.g. Limnephilus auricula , Micropterna lateralis and Rhadicoleptus alpestris ). All these species were supplemented by several common lotic species with a relation to phytal or POM (e.g. Habroleptoides confusa , Centroptilum luteolum and Leuctra spp.). Limnephilus ignavus , Limnephilus sparsus , Baetis muticus , Leuctra digitata , and L. hippopus were identified as indicator species. The taxocoenoses had the same proportions of semivoltine and univoltine species, which emerged mostly in spring and had rather short duration of flight period. Sphagnum -fens were short of many lotic species dwelling on organic matter and vascular plants which were present in fen meadows. Except one rather accidental record of Baetis rhodani there were no mayflies and abundance of coarse organic matter related species, such as Leuctra nigra and Nemoura dubitans , increased. A typical inhabitant of acid wetlands Oligotricha striata and a common inhabitant of various wetland types Limnephilus centralis were indicator species. Comparing with previous fen types, Sphagnum -fens had the highest share of species preferring phytal and POM and limnophil and limnobiont species often occurring in littoral. They were predominantly univoltine with spring emergence and both short and long duration of flight period.

Discussion Taxonomic composition and habitat-related traits Contrary to several groups of aquatic insects and especially terrestrial insects, which include many species unique to mires (cf. Batzer and Wissinger, 1996, Spitzer and Danks, 2006), most species of Ephemeroptera, Plecoptera, and Trichoptera inhabiting mires are aquatic

44 generalists and only very few of them are truly restricted to mires. Species occurring in mires have adaptations for particular aquatic conditions rather than for existence in this type of wetlands as such (Danks and Rosenberg, 1987). According to Flannagan and Macdonald (1987), there is a high degree of similarity among the fauna of swamps, marches, mires, and similar open-water habitats (e.g. small pools) which suggests that the species have similar adaptations for living in such habitats. The studied types of mires were more similar to lotic habitats than to above-mentioned wetlands as they were predominantly inhabited by crenophilous and crenobiont species. It is definitely linked with certain particularity of the Carpathian fens studied. Mostly sloping fens with generally stable water supply are characteristic of the presence of little outflows and shallow slow-flowing microhabitats which create suitable conditions for many lotic species and thus noticeably enrich the heterogeneity of fens. It was also mirrored by a high proportion of species with a pronounced affinity to madicol microhabitats recorded at all sites (Tab. 1). We found several species restricted or preferably occurring in these microhabitats as well as the occasional inhabitants whose larvae occur there during short period of their development (Vaillant, 1956). Besides these collective characteristics, the aquatic fauna of individual habitat types were different as physical habitat attributes changed along the poor-rich gradient. The most unique and rare fen type, calcareous fens, hosted naturally the most distinctive taxocoenoses that had no joint characteristics with aquatic fauna of mires and wetlands in general. The composition of taxocoenoses was very close to helo-rheocrene type of Central European springs (Czachorowski, 1999, Hahn, 2000) with several habitat specialists and calcicolous and calciphilous species. An increasing number of littoral and phytal-preferring species along the gradient reflected the rise of the substrate organic matter content. Consequently, the taxocoenoses were highly dominated by limnophil species and species preferring shallow, slow-flowing organic habitats. The middle of the poor-rich gradient was characterized by the highest recorded number of species wetland caddisflies that are very common in pools, marshes or seepages and also in small and shallow wetlands temporarily drying out during extremely dry periods (Czachorowski and Szczepa ńska, 1991, Czachorowski, 1994, Wallace et al., 2003). Although Sphagnum -fens representing the mineral-poor end of the gradient did not include extremely poor and permanently acidic sites, many species occurring in mineral-rich were not recorded there. On the other hand, Oligotricha striata , one of the most typical inhabitants of acid pools and ditches, peaty wetlands, and bogs (Czachorowski, 1994, Wallace et al., 2003), together with few Limnephilidae were only representatives of caddisfly families commonly dwelling in Sphagnum -dominated mires (i.e. Limnephilidae, Leptoceridae, Polycentropodidae,

45 Hydroptilidae, and Phryganeidae; cf. Flannagan and Macdonald, 1987, Paasivirta et al., 1988, Blades and Marshall, 1994). The species require stable and deep stagnant habitats overgrown by partly emergent or submergent vegetation (Czachorowski, 1993) which are not present in studied Sphagnum-fens.

Life-history related traits Comparing main habitat types along the poor-rich gradient, different patterns in biological traits were observed. Along this gradient the combination of individual traits changed which could be linked with differences in temperature and flow regimes of individual fen habitats. For wetlands and other small freshwater habitats, habitat constraints like fluctuation of temperature and dissolved oxygen, seasonal variation of water supply or fluctuation of acidity, and consequent nutrient availability were reported to be crucial (Vaillant, 1956, Wiggins et al., 1980, Danks and Rosenberg, 1987). As studied fen habitats varied in temporal variation of water level, temperature, pH, and conductivity (Fig. 5), differences in biological traits could be interpreted from the environment stability point of view. Calcareous fens, which were the most stable in all measured variables (Fig. 5), were characterized by a high proportion of species whose larvae’s maximum size was over 1 cm and the same proportions of spring and summer emerging species that had predominantly long flight period. These traits showed no influence of adverse effects of unpredictable events. The domination of species with long flight period suggested that calcareous fens were similar to cold permanent springs in the grown pattern of many univoltine species which exhibit a wide range of larval size for most of the year (Williams, 1991). The decrease of stability of particular habitat types was mirrored in the dominance of species whose larvae are small, complete their development predominantly in spring, and had short as well as long emergence period. Fen meadows characteristic of relatively stable but low water level and discharge of brooklets (Tab. 2) and fluctuation in water temperature in summer and autumn hosted the same proportion of semivoltine and bivoltine species. Semivoltine species included mostly small caddisflies able to live in shallow habitats, whereas univoltine species included beside several euryoec species (e.g. Nemouridae) mostly caddisfly species (Limnephilidae) adapted for overcoming of unsuitable conditions by a diapause in an imaginal stage lasting even several months (Novák and Sehnal, 1963). Sphagnum -fens, the most unstable habitats in terms of water level, pH, and temperature, were inhabited mostly by species, which could avoid the unfavourable conditions by early emergence, and euryoec species. This pattern of species traits change along the poor-rich gradient probably included some attributes of adaptations expected to be

46 crucial for survival in habitats where conditions are unpredictable or resources are low. Small size, development during a period of habitat suitability, and the length of life cycles dependent of the resources are amongst the basic adaptations (e.g. Wiggins et al., 1980; Danks 1981, Danks and Rosenberg, 1987). However, the most relevant traits for evaluation the role of environment instability, resistance/resilience to drought, temperature preference, and resistance form, are unknown for the majority of recorded species. Our results showed that the Western Carpathian spring fens are unique biotopes, harbouring diverse and specific aquatic insect faunas. Since these habitats have been almost completely overlooked in the past, it is not surprising that they remain still unexplored in detail. Further researches covering more sites across a large extent are needed to learn more about the composition of taxocoenoses of different habitat types. The studies of life cycles in sites with different temperature and water level fluctuation are needed to show how aquatic insects of fens are adapted to these environments.

Acknowledgements

The study was supported by the Grant Agency of the Czech Republic (projects Nos. 526/09/H025 and 206/06/1133), the Ministry of Education of the Czech Republic (project No. MSM 0021622416), and the Grant Agency of the Academy of Sciences of the Czech Republic (Project No. QS500070505).

References Batzer P. & Wissinger S.A. 1996. Ecology of insect communities in nontidal wetlands. Annu. Rev. Entomol. 41 : 75-100. Blades D.C.A. & Marshall S.A. 1994. Terrestrial arthropodes of Canadian peatlands: synopsis of pan trap collections at four southern Ontario peatlands. Memoirs of the Entomological Society of Canada 169 : 221-284. Bojková J. & Helešic J. (2009). Spring fens as a unique biotope of stonefly larvae (Plecoptera): species richness and species composition gradients. Aquat. Insects 31 , Suppl. 1 (in print). Czachorowski S. 1993. Distribution of Trichoptera larvae in vertical profile of lakes. Pol. Arch. Hydrobiol. 40 : 139-163. Czachorowski S. 1994. Classification of small water bodies on the basis of the presence of caddisflies. Ekol. Pol. 42 : 41-59.

47 Czachorowski S. 1999. Chru ściki (Trichoptera) źródeł Polski – stan poznania, pp. 59-72. In: Biesiadka E., Czachorowski S. (eds), Źródła Polski - stan bada ń, monitoring i ochrona. Wyd. WSP w Olsztynie.

Czachorowski S. & Szczepa ńska W. 1991. Small temporary pools in the vicinity Mikołajki and their caddis fly (Trichoptera) fauna. Pol. Arch. Hydrobiol. 38 : 85-104. Danks H.V. & Rosenberg D.M. 1987. Aquatic insects of peatlands and marshes in Canada: synthesis of information and identification of needs for research. Memoirs of the Entomological Society of Canada 140 : 163-174. Downie I.S., Coulson J.C., Foster G.N. & Whitfield D.P. 1998. Distribution of aquatic macroinvertebrates within peatland pool complexes in the Flow Country, Scotland. Hydrobiologia 377 : 97-105. Flannagan J.F. & Macdonald S.R. 1987. Ephemeroptera and Trichoptera of peatlands and marshes in Canada. Memoirs of the Entomological Society of Canada. 140 : 47-56. Graf W., Lorenz A.W., Tierno de Figueroa J.M., Lucke S., Lopez-Rodriguez M.J., Davies C., 2009. Plecoptera. In: Schmidt-Kloiber, A. and D. Hering (eds.), Distribution and ecological preferences of European freshwater organisms, volume 2. Pensoft Publishers, Sofia. Graf W., Murphy J., Dahl C., Zamora-Mu ňoz C. and López Rodríguez M. J., 2008. Trichoptera. In: Schmidt-Kloiber, A. and D. Hering (eds.), Distribution and ecological preferences of European freshwater organisms, volume 1. Pensoft Publishers, Sofia. Grootjans A. P., Adema E. B., Bleuten W., Joosten H., Madaras M. & Janáková M. 2006. Hydrological landscape settings of base-rich fen mires and fen meadows: an overview Appl. Veg. Sci. 9: 175-184. Hahn H.J. 2000. Studies on classifying of undisturbed springs in southwestern by macrobenthic communities. Limnologica 30 : 247-259. Hájek M., Hekera P. & Hájková P. 2002. Spring fen vegetation and water chemistry in the Western Carpathian flysch zone. Folia Geobot. 37 : 205-224. Hájek M., Horsák M., Hájková P. & Dít ě D. 2006. Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies. Perspect. Plant. Ecol. 8: 97-114. Hájková P., Hájek M. & Kintrová K. 2009. How can we effectively restore species richness and natural composition of a Molinia -invaded fen? J. Appl. Ecol., 46(2) : 417-425.

48 Hájková P., Wolf P. & Hájek M. 2004. Environmental factors and Carpathian spring fen vegetation: the importance of scale and temporal variation. Annales Botanici Fennici 41 , 249-262. Horsák M. & Cernohorsky N. 2008. Mollusc diversity patterns in Central European fens: hotspots and conservation priorities. J. Biogeogr. 35 : 1215-1225. Horsák M. & Hájek M. 2003. Composition and species richness of mollusc communities in relation to vegetation and water chemistry in the Western Carpathian spring fens: the poor-rich gradient. J. Mollus. Stud. 69 : 349-357. Horsák M., Hájek M., Dít ě D. & Tichý L. 2007. Modern distribution patterns of snails and plants in the Western Carpathian spring fens: is it a result of historical development? J. Mollus. Stud. 73: 53-60. Horsák M. & Hájková P. 2005. The historical development of the White Carpathian spring fens based on palaeomalacological data, pp. 63-68. In: Poulí čková A., Hájek M. & Rybní ček K. (eds), Ecology and palaeoecology of spring fens in the western part of the Carpathians, Palacký University, Olomouc. Hrivnák R., Hájek M., Blanár D., Kochjarová J. & Hájková P. 2008. Mire vegetation of the Muránska planina Mts - formalised classification, ecology, main environmental gradient and influence of geographical position. Biologia 63 : 368-77. Iversen T.M. 1976. Life cycle and growth of Trichoptera in a Danish spring. Archiv für Hydrobiologie 78 : 482-493. Jankovská V. 1988. A reconstruction of the Late-Glacial and Early-Holocene evolution of forest vegetation in the Poprad basin, Czechoslovakia. Folia Geobotanica et Phytotaxonomica 23 : 303-319. Jongepierová I. (ed.): Louky Bílých Karpat. ZO ČSOP Bílé Karpaty, Veselí nad Moravou, 461 pp. Joosten H. & Clarke D. 2002. Wise use of peatlands. International Mire Conservation Group, International Peat Society, Jyväskylä, FI., 304 pp. Lamers L.P.M., Smolders A.J.P. & Roelofs J.G.M. 2002. The restoration of fens in the . Hydrobiologia 478 : 107-130. Langheinrich U., Tischew S., Gersberg R.M. & Lüderitz V. 2004. Ditches and canals in management of fens: opportunity or risk? A case study in the Drömling Natural Park, Germany. Wetlands Ecology and Management 12 : 429-445. Larson D.J. & House N.L. 1990. Insect communities of Newfoundland bog pools with emphasis on the Odonata. Can. Entomol. 122: 469–501.

49 Mazerolle M.J., Poullin M., La Voie C., Rochefort L., Desrochers A. & Drolet B. 2006. and vegetation patterns in natural and man-made bog pools: implications for restoration. Freshwat. Biol. 51 : 333-350. McCune B. & Mefford M.J. 1999. PC-ORD. Multivariate Analysis of Ecological Data. Version 4. MjM Software Design, Gleneden Beach. Novák K. & Sehnal F. 1963. The development cycle of some species of the genus Limnephilus . Acta Soc. Entomol. Čechoslov. 60 : 68-80. Opravilová V. & Hájek M. 2006. The variation of testacean assemblages (Rhizopoda) along the complete base-richness gradient in fens: a case study from the Western Carpathians. Acta Protozool. 45 : 191-204. Paasivirta L., Tapani L. & Perätie T. 1988. Emergence phenology and ecology of aquatic and semi-terrestrial insects on a boreal raised bog in Central Finland. Holarctic Ecology. 11 : 96-105. Poulí čková A., Bogdanová K., Hekera P. & Hájková P. 2003. Epiphytic diatoms of the spring fens in the flysh area of the Western Carpathians. Biologia 58 : 749-757. Poulí čková A., Hájek M. & Rybní ček, K. (eds.) 2005. Ecology and palaeoecology of spring fens in the western part of the Carpathians. Palacký University, Olomouc., 209 pp. Rapant S., Vrana K. & Bodiš D. 1996. Geochemical Atlas of Slovakia. Part Groundwater. GSSR, Bratislava. 58 pp. Rosenberg D.M., Wiens A.P. & Bilyj B. 1988. Chironomidae (Diptera) of peatlands in northwestern Ontario, Canada. Holarctic Ecology. 11 : 19-31. Rozbrojová Z. & Hájek M. 2008. Changes in nutrient limitation of spring fen vegetation along environmental gradiensts in the West Carpathians. J. Veg. Sci. 19 : 613-620. Rybní ček K. & Rybní čková E. 2003. Vegetation history of the Upper Orava Region in the last 11000 years. Acta Palaeobotanica 42 : 153-170. Rybní čková E., Hájková P. & Rybní ček K. 2005. The origin and development of spring fen vegetation and ecosystems – palaeogeobotanical results, pp. 29-62. In: Poulí čková A., Hájek M. & Rybní ček K. (eds.), Ecology and Palaeoecology of Spring Fens of the West Carpathians. Palacký University, Olomouc. Soldán, T. and Zahrádková S., 2000. Ephemeroptera of the Czech Republic: Atlas of Distribution, in Fauna Aquatica Europae Centralis I, eds. J. Helešic and S. Zahrádková, Brno: Masaryk University, p. 401. Spitzer K. & Danks H.V. 2006. Insect biodiversity of boreal peat bogs. Annu. Rev. Entomol. 51 : 137-161.

50 Šporka F. (Ed.), 2003. Vodné bezstavovce (makroevertebráta) Slovenska, súpis druhov a autekologické charakteristiky. Slovenský hydrometeorologický ústav, Bratislava, 590 pp. Thorup J. 1963. Growth and life-cycle of invertebrates from Danish springs. Hydrobiologia 22 : 55-84. Vaillant F. 1956. Recherches sur la faune madicole (hygropètrique s. l.) de , de Corse et d'Afrique du Nord. Mémoires du Muséum National d'Histoire Naturelle, Serie A Zoologie, 11, 258 pp. Wallace I.D., Wallace B. & Philipson G.N. 2003. Keys to the case-bearing caddis larvae of Britain and . Freshwater Biological Association. Scientific Publication No. 61, 259 pp. Wiggins G.B., Mackay R.J. & Smith I.M. 1980. Evolutionary and ecological strategies of in annual temporary pools. Arch. Hydrobiol. Suppl. 58: 97-106. Williams DD. 1991. Life history traits of aquatic in springs. Memoirs of the Entomological Society of Canada 155 : 63-87. Zahrádková S., Soldán T., Bojková J., Helešic J., Janovská H. & Sroka P., 2009. Distribution and biology of mayflies (Ephemeroptera) of the Czech Republic: present status and perspectives. Aquatic Insects, in press.

51 Table 1. List of all recorded species and their distribution within three types of fens. The average dominance of species in samples/the frequency in samples within each group are given. Number of samples are given in parentheses.

Calcareous Fen Sphagnum Family Species fens (15) meadows (9) fens (9) Baetidae Baetis muticus (Linnaeus, 1758) 0 0.80/4 0 Baetis rhodani (Pictet, 1843) 3.49/8 1.99/2 0.07/1 Baetis vernus Curtis, 1834 0.14/1 0.27/3 0 Centroptilum luteolum (Müller, 1776) 0 2.12/4 0 Ephemeridae Ephemera danica Müller, 1764 0 0.20/2 0 Heptageniidae Ecdyonurus subalpinus Klapálek, 1907 0.84/3 0.23/1 0 Electrogena cf. ujhelyii (Sowa, 1981) 2.09/8 0 0 Leptophlebiidae Habroleptoides confusa Sartori & Jacob, 1986 0 0.46/3 0.33/1 Habrophlebia fusca (Curtis, 1834) 0 0.46/1 0 Habrophlebia lauta Eaton, 1884 0 0.07/1 0 Perlodidae Isoperla sudetica (Kolenati, 1859) 0.29/2 0.07/1 0 Isoperla tripartita Illies, 1954 0.28/2 0 0 neglecta (Rostock, 1888) 0 0.33/1 0.33/1 Taeniopterygidae Brachyptera risi (Morton, 1896) 0 0.27/2 0.33/1 Leuctridae Leuctra albida Kempny, 1899 0 0.27/2 0.99/2 Leuctra armata Kempny, 1899 0 0 0.99/3 Leuctra braueri Kempny, 1898 1.26/4 0.33/1 0 Leuctra digitata Kempny, 1899 0 3.20/3 0 Leuctra hippopus Kempny, 1899 0 2.72/3 0 Leuctra inermis Kempny, 1899 0 0.13/1 0.33/1 Leuctra nigra (Olivier, 1811) 0 9.74/5 19.21/5 Leuctra prima Kempny, 1899 0 0.13/1 0.33/1 Leuctra pseudosignifera Aubert, 1954 0.36/1 0.73/1 0.33/1 Leuctra rauscheri Aubert, 1957 0 0.33/1 0 Nemouridae Amphinemura standfussi (Ris, 1902) 0 2.58/4 0.66/2 Nemoura cambrica Stephens, 1836 2.79/5 1.13/2 2.65/2 Nemoura cinerea (Retzius, 1783) 1.81/4 11.66/7 6.95/3 Nemoura dubitans Morton, 1894 0 1.26/2 10.60/3 Nemoura marginata Pictet, 1835 9.48/8 2.19/4 2.32/4 Nemoura monticola Raušer, 1965 0.14/1 0 0 Nemoura sciurus Aubert, 1949 1.26/3 0.33/1 3.00/2 Nemurella pictetii Klapálek, 1900 0.28/2 9.08/7 7.28/5 Protonemura aestiva Kis, 1965 19.24/10 0 0 Protonemura auberti Illies, 1954 0.42/2 0.08/1 0 Beraeidae Beraea maurus (Curtis, 1834) 3.49/7 0 0.66/1 Beraea pullata (Curtis, 1834) 8.51/5 30.35/6 30.46/6 Ernodes articularis (Pictet, 1834) 11.58/8 1.33/4 0 Ernodes vicinus (McLachlan, 1879) 4.46/3 0 0 Glossosomatidae Agapetus fuscipes Curtis, 1834 0.56/2 0 0 Synagapetus dubitans McLachlan, 1879 0.28/2 0 0 Glossosoma intermedium Klapálek, 1892 0 0.07/1 0 Hydropsychidae Hydropsyche saxonica McLachlan, 1884 0 0.60/2 0.66/1 Lepidostomatidae Crunoecia irrorata (Curtis, 1834) 0.14/1 0.60/2 0 Leptoceridae Adicella filicornis (Pictet, 1834) 0.28/1 0.66/2 0.66/1 Limnephilidae Ecclisopteryx madida (McLachlan, 1867) 0 2.19/1 0.66/1 Chaetopteryx fusca Brauer, 1857 0 0.46/2 0 Chaetopteryx polonica Dziedzielewicz, 1889 0 0.07/1 0

52 Hydatophylax infumatus (McLachlan, 1865) 0 0.60/1 0 Limnephilus auricula Curtis, 1834 0.12/1 0.20/1 0 Limnephilus centralis Curtis, 1834 0 0.13/1 1.66/3 Limnephilus extricatus McLachlan, 1865 0 0.07/1 0 Limnephilus hirsutus (Pictet, 1834) 0 0.20/1 0 Limnephilus ignavus McLachlan, 1865 0 0.93/3 0 Limnephilus sparsus Curtis, 1834 0.70/4 0.86/5 0 Micropterna lateralis (Stephens, 1834) 0.42/1 0.53/6 0 Parachiona picicornis (Pictet, 1834) 0 3.98/3 0.66/2 Potamophylax nigricornis (Pictet, 1834) 1.67/4 0.73/3 0 Rhadicoleptus alpestris (Kolenati, 1848) 0 0.80/2 0 Odontoceridae Odontocerum albicorne (Scopoli, 1763) 0.12/1 0.20/1 0 Philopotamidae Wormaldia occipitalis (Pictet, 1834) 8.23/10 0.33/1 0.33/1 Phryganeidae Oligotricha striata (Linnaeus, 1758) 0 0.13/1 3.97/3 Polycentropodidae Plectrocnemia brevis McLachlan, 1871 4.32/6 0 0 Plectrocnemia conspersa (Curtis, 1834) 0.12/1 0.27/1 0.99/3 Psychomyidae Lype reducta 0 0.07/1 0 Tinodes unicolor (Pictet, 1834) 9.21/3 0 0 Ptilocolepidae Ptilocolepus granulatus McLachlan, 1884 0 0 0.33/1 Rhyacophilidae Rhyacophila philopotamoides McLachlan, 1879 0.56/2 0 0 Rhyacophila polonica McLachlan, 1879 0.28/1 0 0 Rhyacophila pubescens Pictet, 1834 0.56/2 0 0 Sericostomatidae Notidobia ciliaris (Linnaeus, 1761) 0 0.33/1 0 Sericostoma personatum Kirby et Spencer, 1826 0.28/1 2.45/4 0.66/1

Table 2. Water chemistry, substrate characteristics, and altitude of fen types studied.

Calcareous fens Fen meadows Sphagnum -fens Mean MAX MIN SD Mean MAX MIN SD Mean MAX MIN SD Altitude 600.4 640.0 520.0 44.2 550.0 730.0 450.0 106.8 672.5 730.0 645.0 57.5 pH 7.9 8.2 7.3 0.3 7.3 8.4 6.3 0.6 6.0 6.9 5.0 0.6 Temperature (°C) 11 16 7 2.1 13 19 8 2.9 12 16 9 2.6 Conductivity (µS/cm) 486 599 406 2.1 288 599 48 169.8 61 75 31 16.4 DO (mg/l) 8.7 12.7 5.3 2.2 6.1 9.8 2.2 2.4 5.3 8.5 1.0 2.4 Discharge (ml/sec) 188.3 533.3 46.7 162.6 78.9 130.0 43.3 30.7 177.8 433.3 23.3 182.0 TOC (g/kg) 18.4 65.8 0 17.6 102.9 271.8 18.4 68.8 234.0 319.0 89.2 69.2 3- PO 4 (mg/l) 0.1 0.5 0 0.2 0.2 0.3 0 0.1 0.4 0.7 0 0.5 - NO 3 (mg/l) 9.3 20.5 0.2 6.2 1.0 2.5 0.1 0.9 0.7 1.3 0.1 0.5 Fe (µg/l) 305.7 816.0 40.0 280.3 2925.5 3600.0 269.0 4846.4 2201.0 3660.0 853.0 1148.6 Ca 2+ (mg/l) 88.8 112.0 60.6 19.8 48.7 107.0 9.3 33.2 7.1 9.2 5.4 1.6 Mg 2+ (mg/l) 11.7 18.6 2.4 5.8 9.3 15.5 1.2 5.5 1.9 2.7 1.3 0.6 Q50 (mm) 3.5 11.6 0.2 3.8 0.3 0.9 0.1 0.3 0.1 0.1 0.1 0 POM (%) 7.5 24.3 1.9 7.6 17.3 36.0 3.8 12.9 36.1 46.7 17.7 13.0

53 Figure 1. Location of studied sites.

Figure 2. Number of recorded species in samples. The median numbers of species per sites are added.

24

22

20

18

16

14

12

10

Number speciesof per sample 8

6

4

2 Median calcareous fens brown-moss fens Sphagnum fens 25%-75% Rozsah neodleh. SPRING FEN TYPES

Figure 3. Number of specimens in samples collected in three types of fens.

500

400

300

200 Number specimensof sample per 100 Median 25%-75% Rozsah neodleh. Outliers 0 calcareous fens brown-moss fens Sphagnum fens

54 Figure 4. The proportion of individual insect orders in samples of three types of fens.

100% 90%

80% 70% 60% Trichoptera 50% Plecoptera 40% Ephemeroptea 30% 20%

10% 0% calcareous fens brown-moss fens Sphagnum fens

Figure 5. Coefficient of variation relative to temporal variation of environmental factors in fen types along the poor-rich gradient. The box length is the interquartile range; a line across the box indicates the median.

55 Figure 6. Species traits. Averages of scores for the categories of the nine traits.

56

Část E

Bojková J., Helešic J. 2009: Spring fens as a unique biotope of stonefly larvae (Plecoptera): species richness and species composition gradients. Aquatic Insects . (v tisku)

57 Spring fens as a unique biotope of stonefly larvae (Plecoptera): species richness and species composition gradients

Jind řiška Bojková and Jan Helešic Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlá řská 2, CZ- 61137 Brno, Czech Republic . Email: [email protected]

Abstract Western Carpathian spring fens (groundwater-fed wetlands characterised by specific vegetation) represent a rare and unique biotope whose aquatic insects have not been studied till now. Therefore, the aims of this study were to describe the taxocoenosis of stoneflies and to determine the main environmental factors controlling species composition. The study was carried out in 2006 at 15 sites in the borderland of the Czech Republic and Slovakia. The species richness was surprisingly high. 12 out of all 33 recorded species developed in fens, the others inhabited small springbrooks in the vicinity of fens. The structure of stonefly taxocoenosis was influenced by season and substrate characteristics of the studied fens. The main gradient in species data represented change of species composition from species dwelling in fens with coarse substrate and without vegetation over species reaching high numbers in fine sediment fens to a species found exclusively in fens overgrown by sedges. Keywords: Fens; mires; springs; aquatic insects; stoneflies; Western Carpathians

Introduction Spring fens are wetlands saturated by mineral-rich groundwater. These rare and threatened habitats are characterized by specific low productive and nutrient limited vegetation dominated by sedges and mosses (Hájek et al. 2006). Due to the variety in the chemistry of the groundwater, the main ecological gradient exhibited in spring fens (and mires in general) is the mineral poor-mineral rich gradient (Malmer 1986; Hájek et al. 2006). It governs the species composition of vegetation, algae, testaceans, and molluscs (Horsák & Hájek 2003; Poulí čková et al. 2005; Opravilová & Hájek 2006). Though vegetation and molluscs of mires have been studied in detail, less work has been done on the aquatic fauna of such habitats. Aquatic insects of mires (also called peatlands) have been studied in detail in Canada (e.g. Rosenberg & Danks 1987; Rosenberg et al. 1988; Larson & House 1990), Scandinavia (e.g. Paasivirta et al. 1988; Salmela 2004) and Great Britain (e.g. Cragg 1961; Coulson & Butterfield 1985). Some data are also available from the USA (Erman & Erman 1975),

58 Australia, and New Zealand (Horwitz 1997; Suren et al. 2008). Little or no data are known from countries where mire habitats are rare. There is very little information on stoneflies of mires as they occur only rarely and in low species richness in such habitats. No research concerning solely Plecoptera of mires has been conducted. Thus the main aims of this study were to describe the structure and the species richness of stonefly taxocoenosis of spring fens and to determine the main environmental factors controlling species composition.

Material and methods Study area and sites The study area is located on the western margin of the Western Carpathians, in the borderland of the Czech Republic and Slovakia. This area forms a part of the flysh belt, in which sandstone and claystone of variable content of calcium, iron, silicium, and sulphates alternate. This is responsible for the variety in the quality of the groundwater in term of mineral richness. Fens vary along the gradient of mineral richness from mineral-poor Sphagnum -fens to mineral-rich fens with tufa precipitation. Following five vegetation types represent the most common fen habitats along the poor-rich gradient of the Western Carpathian fens: poor fens (Sphagno recurvi-Caricion canescentis ), moderately rich fens ( Caricion fuscae ), rich fens (Sphagno warnstorfii-Tomenthypnion ), extremely rich fens and calcareous fens (both corresponding to Caricion davallianae ) (for details see Hájek et al. 2006). Contrary to similar aquatic habitats fed by surface water, spring fens are unique for their stable environmental conditions (low variability in discharge, water temperature, water chemistry, and substrate characteristics), even though they are often small sized. Altogether fifteen sites differing both in mineral richness and substrate characteristics have been investigated (see Figure 1). In order to obtain a representative set of habitat types, seven sites were selected within calcareous spring fens with a different degree of calcium carbonate precipitation, three within mineral-rich fens without Sphagna , three sites of mineral-rich Sphagnum -fens, and two mineral-poor acid Sphagnum -fens. The altitudes of the studied fens vary between 450 m (the White Carpathians Mts.) and 750 m a.s.l. (the Turzovská vrchovina Mts.).

Sampling methods Samples of stonefly larvae were collected two times a year, in May and September 2006. Altogether thirty samples were collected. Each sample consisted of two subsamples taken from different habitats, i.e. the most flowing part of the spring fen and the part with slow

59 flowing or almost standing water. Each subsample was a plot of 25x25 cm 2 of vegetation and upper bottom layer gathered to the depth of five centimetres. Sampled substrate was elutriated through the net of 500 m mesh size and kept in 4% formaldehyde. Larvae were extracted by hand-sorting under a dissecting microscope in the laboratory and identified mostly to the species level. The identification of larvae of the problematic Nemoura marginata group was possible due to rearing of larvae collected simultaneously from places next to sampling plots. The species pools of Plecoptera of the whole spring fen area (i.e. including springbrooks draining the fens) were studied by sampling of imagines using Malaise traps. Traps were exposed from the beginning of May to the end of September 2006 at eleven sites. Two isolated and acid sites with very poor taxocoenosis and two sites with difficult accessibility for regular visiting of traps were omitted. Sampling by traps was supplemented by sweeping on vegetation.

Environmental variables Water conductivity, temperature, dissolved oxygen, and pH were measured in situ by portable instruments (WTW Multi 340i/SET). At each sampling date 100 ml of substrate were extracted from next to all sampling plots for the measuring of total organic carbon (Shimadzu

TOC-VCPH ). For characterizing each site a one-shot sample of substrate and water was taken in August 2006. Substrate samples were sampled from a plot of 25x25 cm 2 of vegetation and upper bottom layer gathered to the depth of five centimetres. These plots were always situated next to the places where samples of larvae were taken and reflected the same habitat type. Particulate organic matter (POM) was elutriated from these samples, dried at 80 °C and weighted. Remaining inorganic substrate was dried at 80 °C and used for grain size analysis.

Median and upper quartile of particle diameters (Q 50 , Q 75 ) were used for describing the substrate particle size. Water samples were collected in autumn due to relative stability of water chemistry (Hájek & Hekera 2004) and the content of ions Ca, Mg, Fe, NO 3 and PO 4 was measured in an accredited laboratory.

Statistical analyses The species abundance data were log-transformed as Y = log(n+1) to reduce the influence of dominance. Detrended Correspondence Analysis (DCA) was used to study relationships between species composition and measured variables. Spearman rank correlations (r s) and Mann-Whitney U test were used to examine possible relationships between explanatory variables and site scores on the first four ordination axes. Bonferroni corrections of the

60 significance level were used for multiple comparisons of environmental variables (Holm 1979). The CANOCO 4.5 package (ter Braak and Šmilauer 2002) was used for DCA techniques and STATISTICA 8 (www.statsoft.com) for the other (uni-dimensional) analyses.

Results Altogether 2,533 specimens of 12 stonefly species were recorded in studied spring fens. The median number of species per site was five. The stonefly taxocoenosis consisted of nine species of the family Nemouridae, two species of the family Leuctridae and one species of the family Perlodidae. In all the spring areas 33 species were collected using Malaise traps and sweeping (Table 1). The median number of species per site was ten. The first DCA axis accounted for 27.0%, the second for 13.1% and the third for 3.7% of the total variance of the species data. Samples were arranged along the first DCA axis in relation to substrate characteristics of spring fens forming three groups of samples (Figure 2). Variables displaying significant correlation (P<0.003) with the site scores were those describing the structure of the bottom substrate (Q50 , Q 75 , and proportion of POM in substrate) and its quality (TOC and type of vegetation) (Table 2). The first ordination axis was correlated also with pH, Fe, and NO 3. The second axis reflected the difference between spring and autumn samples; spring samples were plotted in the lower part of the diagram and autumn samples were placed on the upper site of the diagram. Calcium content correlated with the third ordination axis. The main gradient of species composition (i.e. the first DCA axis) represented the change from species dwelling in the fens with coarse substrate and without vegetation (Isoperla tripartita and Protonemura aestiva ) over species reaching high numbers in fine sediment fens ( Nemoura cinerea and Nemurella pictetii ) to the species ( Nemoura dubitans ) found exclusively in fens highly vegetated by sedges (Figure 3). The number of species and abundance did not correlate with the first ordination axis. The differences in mineral richness of spring fen water were not important for the species composition of Plecoptera taxocoenoses. Extremely rich calcareous fens were present along the whole main gradient (see ranges of calcium content and conductivity of the three main groups of samples in Table 3); only the first group of samples comprised solely petrifying fens.

Discussion In comparison with the literature concerning aquatic insects of peatlands (e.g. Rosenberg & Danks 1987; Paasivirta et al. 1988; Langheinrich et al. 2004; Surens et al. 2008) the species

61 richness of Plecoptera taxocoenosis of the Western Carpathian spring fens is surprisingly high. Fens themselves, i.e. the areas of sites without springbrooks draining water away, hosted twelve species belonging mostly to the family Nemouridae. The presence of springbrooks in the vicinity of fens doubled the median number of species recorded solely in fen habitats. Species that were recorded from the whole fen area, but whose larvae were not present in the fens themselves, were typical inhabitants of montane springs (e.g. Diura bicaudata, Isoperla sudetica, Nemoura carpathica, Leuctra prima, L. pseudosignifera, Protonemura auberti and Siphonoperla neglecta ) and submontane torrents (e.g. Brachyptera risi, Leuctra fusca, L. inermis, P. intricata , and Siphlonoperla torrentium ) (Krno 2000). Fens were inhabited by species which were not limited by absence of nimbly flowing water and could tolerate low depth of fens that could often approach madicole conditions. Published researches about aquatic insects of peatlands are focused mostly on raised bogs or peatland pools where stoneflies are ordinarily not present as these habitats are favoured particularly by aquatic Coleoptera, Hemiptera, Odonata, and Chironomidae (e.g. Paasivirta et al. 1988; Larson & House 1990; Downie et al. 1998; Mazerolle et al. 2006). Studies of fens often stressed aquatic and semi-aquatic Diptera which form diverse taxocoenoses there (e.g. Rosenberg et al. 1988; Salmela 2004; Salmela & Ilmonen 2005). Stoneflies occur there in very low species richness or they do not occur at all (e.g. Brinck 1949; Danks & Rosenberg 1987; Langheinrich et al. 2004; Suren et al. 2008). However, the Western Carpathian spring fens are quite different types of wetlands than those investigated in above mentioned studies. Although they are similar in hydrological characteristics and in their origin within the area (Rybní čková et al. 2005), they are unique in the variable chemistry of aquifers. The water chemistry influences vegetation that consequently influences the structure and overall quality of the site which is responsible for the complete species composition of taxocoenoses. Together with stable water level of aquifers this environmental heterogeneity is probably responsible for the occurrence of other species in fens than only the typical inhabitants of acid waters and swampy or diffusely groundwater-fed habitats such as Nemurella pictetii , Nemoura cinerea, and Leuctra nigra . The most important gradient in species data reflected the character of substrate of spring fens. This gradient was expressed, on one hand, by the description of grain size of substrate and the proportion of POM, and on the other, by the type of vegetation and the amount of organic carbon which was connected with the quality of food sources and with the spatial configuration of habitats. Mineral richness directly influenced stonefly taxocoenosis only in sites with strong tufa precipitation on the surface of all submerged objects which

62 created habitats with coarse substrate without any vegetation. These sites had very similar values of measured variables and formed one distinctive group. This group had higher values of pH and NO 3 than other groups of sites whose samples exhibited wider range of pH (Table

3). This was reflected by correlation of pH and NO 3 with the first axis. Sites with the high proportion of inorganic substrate, i.e. petrifying fens, naturally had the most distinctive taxocoenosis of stoneflies (the left side of the DCA diagram, Figure 2) consisted of species tolerating (or preferring) hygropetric conditions (Nemoura monticola, N. marginata, and N. cambrica ) with rare occurrence of species preferring fine substrates, organic as well as inorganic (Figure 3). Almost the whole year the stonefly taxocoenosis was dominated by Protonemura aestiva . Its last-instars larvae occurred from half of April to the beginning of July and from half of August to the beginning of October. Sites with rather fine sediments (including fens with weak precipitation of tufa), with high share of POM, and with the representation of plants and brown-mosses were characteristic of high abundance of Leuctra nigra and the presence of Amphinemura standfussi and Nemoura sciurus . The latter was present in some calcareous fens as well as in moderately mineral-rich fens and Sphagnum - fens which is not in correspondence with the statement about the species' evident preference for waters rich in carbonate (Zwick 2004). Swampy habitats with solely fine, predominantly organic sediment including acid Sphagnum -fens had high numbers of euryoec species Nemoura cinerea and Nemurella pictetii . Swampy habitats overgrown by sedges with the presence of Sphagna hosted Nemoura dubitans , a species also inhabiting reedy shores of lakes, epipotamal sections of the Carpathian rivers (Krno 1997), and small muddy torrents in lowlands (Kittel & Wojtas 1988). Contrary to species composition, the number of species and abundance did not change along the gradient. This could indicate that the studied range of environmental conditions was favourable for stoneflies and both ends of the gradient did not present ecological limits for stoneflies.

Acknowledgements

We are very grateful to Markéta Omelková and Vendula K řoupalová for their help during the field research and to Michal Horsák and Nicole Cernohorsky for useful comments on the manuscript. We thank the Czech Grant Agency (projects No. 524/05/H536, 526/09/H025, and 206/06/1133) and the Czech Ministry of Education (project No. MSM 0021622416) for supporting the field research and preparation of the manuscript.

63 References Brinck, P. (1949), ‘Studies on Swedish stoneflies (Plecoptera)’. Opuscula entomologica, Supplementum , 11, 1–250. Coulson, J.C., Butterfield, J.E.L. (1985), ‘The invertebrate communities of peat and upland grasslands in the north of England and some conservation implications’. Biological conservation , 34(3), 197–225. Cragg, J.B. (1961), ‘Some aspects of the ecology of moorland animals’. Journal of ecology , 49(3), 477–506. Danks, H.V., Rosenberg, D.M. (1987), ‘Aquatic insects of peatlands and marshes in Canada: synthesis of information and identification of needs for research’. Memoirs of the Entomological Society of Canada , 140, 163–174. Downie, I.S., Coulson, J.C., Foster, G.N., and Whitfield, D.P. (1998), ‘Distribution of aquatic macroinvertebrates within peatland pool complexes in the Flow Country, Scotland’. Hydrobiologia , 377, 97–105. Erman, D.C., Erman, N.A. (1975), ‘Macroinvertebrate composition and production in some Sierra Nevada minerothrophic peatlands’. Ecology , 56, 591–603. Hájek, M., Hekera, P. (2004), ‘Can seasonal variation in fen water chemistry influence the reliability of vegetation-environment analyses Preslia , 76, 1–14.

Hájek, M., Horsák, M., Hájková, P., and Dít ě, D. (2006), ‘Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies’. Perspectives in Plant Ecology, Evolution and Systematics , 8, 97–114. Holm, S. (1979), ‘A simple sequentially rejective multiple test procedure’. Scandinavian Journal of Statistics , 6, 65–70. Horsák, M., Hájek, M. (2003), ‘Composition and species richness of mollusc communities in relation to vegetation and water chemistry in the Western Carpathian spring fens: the poor-rich gradient’. Journal of Molluscan Studies , 69, 349–357. Horwitz, P. (1997), ‘Comparative endemism and richness of the aquatic invertebrate fauna in peatlands and shrublands of far south-western Australia’. Memoirs of the Museum of Victoria , 56(2), 313–321. Kittel, W., Wojtas, F. (1988), ‘Materiały do poznania widelnic (Plecoptera) Polski’. Acta Universitatis Lodziensis , 3, 225–238.

64 Krno, I. (1997), ‘Zoogeographical studies on Slovakian stoneflies (Plecoptera)’. Biologia, Bratislava , 52, 221–225. Krno, I. (2000), ‘Rozšírenie pošvatiek (Plecoptera) na Slovensku’. Správy Slovenskej zoologickej spolo čnosti , 18, 39–54. Langheinrich, U., Tischew, S., Gersberg, R.M., and Lüderitz, V. (2004), ‘Ditches and canals in management of fens: opportunity or risk? A case study in the Drömling Natural Park, Germany’. Wetlands Ecology and Management , 12, 429–445. Larson, D.J., House, N.L. (1990), ‘Insect communities of Newfoundland bog pools with emphasis on the Odonata’. Cananadian entomologist , 122(5-6), 469–501. Malmer, N. (1986), ‘Vegetational gradients in relation to environmental conditions in northwestern European mires’. Canadian Journal of Botany , 64, 375–383.

Mazerolle, M.J., Poullin, M., La Voie, C., Rochefort, L., Desrochers, A., and Drolet, B. (2006), ‘Animal and vegetation patterns in natural and man-made bog pools: implications for restoration’. Freshwater Biology , 51, 333–350. Opravilová, V., Hájek, M. (2006), ‘The variation of testacean assemblages (Rhizopoda) along the complete base-richness gradient in fens: A case study from the Western Carpathians’. Acta Protozoologica , 45(2), 191–204. Paasivirta, L., Tapani, L., and Perätie, T. (1988), ‘Emergence phenology and ecology of aquatic and semi-terrestrial insects on a boreal raised bog in Central Finland’. Holarctic Ecology , 11, 96–105. Poulí čková, A., Hájek, M., and Rybní ček, K. (eds.) (2005), ‘Ecology and palaeoecology of spring fens in the western part of the Carpathians ’. Olomouc, Czech Republic: Palacký University. Rosenberg, D.M., Danks, H.V. (1987), ‘ Aquatic insects of peatlands and marshes in Canada ’, Memoirs of the Entomological Society of Canada, 140, Ottava: Entomological Society of Canada. Rosenberg, D.M., Wiens, A.P., and Bilyj, B. (1988), ‘Chironomidae (Diptera) of peatlands in northwestern Ontario, Canada’. Holarctic Ecology , 11, 19–31. Rybní čková, E., Hájková, P., and Rybní ček, K. (2005), ‘The origin and development of spring fen vegetation and ecosystems – palaeobotanical results’, in Ecology and Palaeoecology of Spring Fens of the West Carpathians , eds. A. Poulí čková, M. Hájek, K. Rybníček, Olomouc: Palacký University, 29–62.

65 Salmela, J. (2004), ‘Semiaquatic flies (Diptera, Nematocera) of three mires in the southern boreal zone, Finland’. Memoranda Soc. Fauna Flora Fennica , 80, 1-10. Salmela, J., Ilmonen, J. (2005), ‘Cranefly (Diptera: Tipuloidea) fauna of a boreal mire system in relation to mire trophic status: implications for conservation and bioassessment’. Journal of Insect Conservation , 9, 85–94. Suren, A.M., Lambert, P., Image, K., and Sorrell, B.K. (2008), ‘Variation in wetland invertebrate communities in lowland acidic fens and swamps’. Freshwater Biology , 53, 727–744. ter Braak, C.J.F., Šmilauer, P., (2002), ‘ CANOCO Reference manual and canodraw for Windows user’s guide. Software for canonical community ordination (ver. 4.5) ’, Wageningen: Biometris. Zwick, P. (2004), ‘Key to the West Palaearctic genera of stoneflies (Plecoptera) in the larval stage’. Limnologica , 34, 315–358.

66 Figure 1. Map showing the location of the fifteen spring fens studied (circles).

Figure 2. DCA diagram of samples with posteriori plotted explanatory variables. Samples are divided along the first axis into three main groups: diamond, group 1; circle, group 2; triangle, group 3.

Figure 3. Position of species along the first DCA axis.

67 Table 1. List of all recorded species and their number of records/mean dominance/occurrence of imagines within each group of the Western Carpathian fens. Each group contains ten samples.

Name of the species Group1 Group 2 Group 3 Amphinemura standfussi (Ris, 1902) 0 3/4.8/1 0 Brachyptera risi (Morton, 1896) 0 0/0/1 0/0/1 Brachyptera seticornis (Klapálek, 1902) 0/0/1 0 0 Diura bicaudata (Linnaeus, 1758) 0 0/0/1 0 Isoperla oxylepis (Despax, 1936) 0 0/0/1 0 Isoperla sudetica (Kolenati, 1895) 0/0/1 0 0/0/1 Isoperla tripartita Illies, 1954 1/0.1/1 0 0 Leuctra albida Kempny, 1899 0 0/0/1 0/0/1 Leuctra armata Kempny, 1899 0 0/0/1 0/0/1 Leuctra aurita Navás, 1919 0 0/0/1 0 Leuctra braueri Kempny, 1898 7/23.1/1 8/28.5/1 1/0.2/1 Leuctra digitata Kempny, 1899 0 0/0/1 0/0/1 Leuctra fusca (Linnaeus, 1758) 0 0/0/1 0/0/1 Leuctra hippopus Kempny, 1899 0 0/0/1 0/0/1 Leuctra inermis Kempny, 1899 0 0/0/1 0 Leuctra nigra (Olivier, 1811) 4/3.6/1 6/18.9/1 6/27.7/1 Leuctra prima Kempny, 1899 0 0/0/1 0/0/1 Leuctra pseudosignifera Aubert, 1954 0/0/1 0/0/1 0 Leuctra rauscheri Aubert, 1957 0 0/0/1 0 Nemoura cambrica Stephens, 1836 4/2.6/1 3/0.9/1 2/0.6/1 Nemoura carpathica Illies, 1963 0 0 0/0/1 Nemoura cinerea (Retzius, 1783) 1/0.1/1 8/8.9/1 9/39.0/1 Nemoura dubitans Morton, 1894 0 2/1.1/1 1/2.0/1 Nemoura marginata Pictet, 1835 7/9.1/1 9/5.9/1 4/0.5/1 Nemoura monticola Raušer, 1965 1/0.1/1 2/0.9/1 0 Nemoura sciurus Aubert, 1949 3/1.0/1 1/25.8/1 3/6.0/1 Nemurella pictetii Klapálek, 1900 2/1.1/1 8/4.3/1 10/22.7/1 Protonemura aestiva Kis, 1965 10/31.4/1 0 0 Protonemura auberti Illies, 1954 0/0/1 0 0/0/1 Protonemura hrabei Raušer, 1956 0 0/0/1 0 Protonemura intricata (Ris, 1902) 0 0/0/1 0 Siphonoperla neglecta (Rostock, 1881) 0 0/0/1 0 Siphonoperla torrentium (Pictet, 1841) 0 0/0/1 0

68 Table 2. Correlations among explanatory variables and DCA ordination site scores on the first three ordination axes. Values of Spearman correlation coefficient (r s) and significant probabilities (P) are shown.

DCA axis 1 2 3

rs P rs P rs P eigenvalues 0.511 0.250 0.069 pH -0.61 <0.003 -0.02 - 0.28 - temperature 0.25 - 0.05 - 0.33 - conductivity -0.51 - 0.10 - 0.47 - discharge -0.39 - -0.27 - 0.03 - dissolved oxygen -0.26 - -0.03 - 0.33 -

Q50 -0.86 <0.003 -0.04 - 0.28 -

Q75 -0.81 <0.003 -0.05 - 0.44 - POM 0.72 <0.003 0.12 - -0.39 - TOC 0.67 <0.003 0.11 - -0.51 - Ca -0.48 - 0.01 - 0.52 <0.003 Mg -0.37 - 0.05 - 0.36 - Fe 0.58 <0.003 -0.11 - -0.01 -

NO 3 -0.77 <0.003 -0.05 - -0.08 -

PO 4 -0.02 - 0.02 - 0.05 - number of species -0.04 - -0.42 - -0.32 - abundance 0.37 - 0.17 - -0.01 - P (U-test) P (U-test) P (U-test) season - <0.001 - no vegetation <0.001 - - vascular plants <0.05 - - Sphagna <0.05 - -

69 Table 3. Descriptive statistics for variables of particular groups of sites used in the analysis.

Groups of sites Group 1 Group 2 Group 3

Mean Min. Max. Mean Min. Max. Mean Min. Max. pH 8.1 7.7 8.4 7.6 6.4 8.4 6.2 2.8 8.5 Temperature (°C) 10 8 11 10 7 12 11 6 13 Conductivity (µS/cm) 459 356 599 270 66 520 196 42 599 Discharge (ml/s) 315 17 1500 95 17 200 148 17 667 Dissolved oxygen (mg/l) 7.6 1.7 10.1 7.4 3.6 9.9 5.5 2.5 9.7 TOC (g/kg) 5.9 0.5 19.2 102.7 1.0 358.2 126.6 38.5 302.3 POM (%) 4.2 1.9 5.2 19.4 3.8 44.3 35.7 22.5 46.4 Ca (mg/l) 78.4 60.6 103.0 50.1 9.3 112.0 33.8 3.7 107.0 Mg (mg/l) 12.3 2.4 18.6 6.9 1.2 13.6 7.0 0.7 15.5 Fe (mg/l) 113.4 40.0 244.0 883.0 269.0 2620.0 3602.6 46.0 13600.0

NO 3 (mg/l) 10.7 5.6 20.5 1.7 0.2 3.2 0.5 0.1 1.3

PO 4 (mg/l) 0.1 0.0 0.5 0.3 0.2 0.7 0.1 0.0 0.3

Q50 (mm) 4.2 1.5 11.6 0.4 0.1 0.9 0.1 0.1 0.2

Q75 (mm) 11.7 5.4 23.1 1.6 0.2 5.2 0.2 0.2 0.3

70

Část F

Fránková M., Bojková J., Poulí čková A., Hájek M. 2009: The structure and species of the diatom assemblages of the Western Carpathian spring fens along the gradient of mineral richness. Fottea . (v tisku)

71 The structure and species richness of the diatom assemblages of the Western Carpathian spring fens along the gradient of mineral richness

Markéta Fránková 1,2,* , Jind řiška Bojková 1, Aloisie Poulí čková 3 and Michal Hájek 1,2

1 Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlá řská 2, CZ 61137 Brno, Czech Republic 2 Department of Vegetation Ecology, Institute of Botany, Academy of Sciences of the Czech Republic, Po říčí 3b, CZ 603 00 Brno, Czech Republic 3 Department of Botany, Faculty of Science, Palacký University, Svobody Str. 26, CZ 77146 Olomouc, Czech Republic

Abstract Species composition changes along the pH and calcium gradients within wetlands were frequently studied for different groups of organisms, but few data are available for algae. Here we list 188 diatom taxa collected as epibryon and epipelon at 13 spring fens in the Western Carpathians distributed along the gradient of mineral richness. Species richness decreased along the gradient from calcareous fens to mineral-poor Sphagnum -fens. In agreement with fen typology based on higher plants, bryophytes, and molluscs, the same four fen types were identified. For each spring-fen type indicator diatom species were suggested. Conductivity and pH appeared to be the most important environmental factors responsible for the variation in diatom species data. Key words: diatoms, epibryon, epipelon, spring fens, Western Carpathians

Introduction Springs and spring fens are among the most threatened habitats across Europe. Their extinction has been accelerated by human influences such as drainage, eutrophication and changes in agricultural practices especially in the last 60 years. Despite covering a relatively small area in comparison with rivers or lakes, springs and spring fens have recently attracted the attention of biologists and conservationists due to a high share of endangered species and specialists found in their communities (e.g., CANTONATI 1998, PEINTINGER et al. 2003,

WARNER & ASADA 2006, CANTONATI et al. 2006, GROOTJANS et al. 2006, HÁJEK et al. 2006,

2007, PAYNE & MITCHELL 2007). Intact springs provide an opportunity to describe naturally

72 preserved freshwater habitats (WERUM 2001), however these intact springs are becoming increasingly rare. Carpathian spring fens are an excellent model habitat for studies of the variation in bryophytes, vascular plants, testaceans, and mollusc assemblages along a mineral richness gradient from extremely poor acid fens to strongly calcareous spring fens (HORSÁK

& HÁJEK 2003, HÁJEK et al. 2006, OPRAVILOVÁ & HÁJEK 2006). In terms of biomass production, these ecosystems are dominated by bryophytes and vascular plants (HÁJKOVÁ &

HÁJEK 2003), the production of which is limited by phosphorus as compared to wet meadows which are not strongly nutrient-limited (ROZBROJOVÁ & HÁJEK 2008). Although microscopic diatoms are not a major contributor to biomass in spring fens, they are abundant

(POULÍ ČKOVÁ et al. 2004) and play a key role in the ecosystem functioning (BERTUZZI et al.

2006). Diatoms are used as bioindicators of water quality and past climates (STOERMER &

SMOL 1999). Despite their significance, however, many aspects of the biodiversity and ecology of diatoms are poorly understood, mostly due to undersampling as compared to larger organisms

(FOISSNER 2008). For example, in Central Europe, diatoms were studied predominantly in thermal and strongly mineral springs in the northwestern part of Bohemia (e.g., SPRENGER

1930, BRABEZ 1941, LEDERER et al. 1998, KAŠTOVSKÝ & KOMÁREK 2001) and Slovakia (e.g.,

BÍLÝ 1934, HINDÁK & HINDÁKOVÁ 2006, HINDÁK & HINDÁKOVÁ 2007), where specific cyanobacterial and algal assemblages were found. Although cold, moderately mineralized springs are the most common springs in the Czech Republic and Slovakia, our knowledge on their epipelic and epiphytic algae is limited (POULÍ ČKOVÁ et al. 2005). The aim of this study is to enhance our understanding of diatom diversity in spring fens, focussing particularly on (1) comparing the classification of diatom species data to the habitat typology based on vegetation data to see if they are in agreement (2) completing fen characterization using diatom data by providing the information on taxa diversity, occurrence of endangered and rare taxa, proportion of living and dead cells, and indicator species for each fen type, (3) determining the main environmental variables influencing the distribution of diatom assemblages, and (4) understanding differences between assemblages inhabiting different substrata (epibryon vs. epipelon).

Material and Methods Study area and sites The study area is located on the western margin of the Western Carpathians. It stretches along the border between the Czech Republic and Slovakia, including the White Carpathian Mts. in

73 the south and the Beskydy Mts. and the Turzovská vrchovina Mts. in the north. This region forms a part of the flysch belt, in which sandstone and clay of variable calcium content alternate. The chemical composition of groundwater reflects the bedrock chemistry, varying from carbonatogenic waters rich in calcium, sodium and potassium and supporting travertine (tufa) formation in the south of the study area, to acidic waters rich in iron, silica, and sulphates and poor in all other elements in the northernmost part of the study area. The geological structure and chemical characteristics of the area studied were described in detail by HÁJEK et al. (2002). Water chemistry substantially influences the spring fen biota, thus mineral richness is the most important ecological gradient in these habitats (the poor-rich gradient sensu MALMER 1986). Along this gradient, four habitat types based on vegetation were identified: (1) calcareous fens with tufa formation (petrifying springs), (2) extremely mineral-rich fens without tufa formation, (3) moderately rich and rich Sphagnum -fens, and (4) mineral-poor acid Sphagnum -fens (HÁJEK et al 2006). On the basis of previous studies set in Western Carpathian spring fens we chose 13 sites differing in water chemistry. Nine sites were selected within spring fens with a different degree of calcium carbonate precipitation and four within Sphagnum -fens in order to obtain a representative set of habitat types (Fig. 1).

Sampling and laboratory methods Algal samples were collected at two main microhabitat types: epibryon (26 samples) and epipelon (13 samples) in May 2006. Epilithon was found in only 5 out of the 13 sites, therefore it was not included in this study. Altogether three samples were collected at each site: 1 sample of epipelon (1.5 ml) taken with a pipette and 2 samples of different bryophyte tufts taken by cutting with scissors. In the laboratory, each bryophyte sample was weighed, then washed in 20 ml of distilled water and thoroughly squeezed. Each algal sample was fixed with 4% formaldehyde and stored in a container. After drying, bryophytes were weighed again. The water content was estimated as the mass difference between the dry and the fresh bryophyte matter following the method used by POULÍ ČKOVÁ et al. (2005). To assess relative representation of all algal groups (including Cyanoprokaryota), 400 individuals from each sample were counted in the CYRUS I counting chamber. In the course of counting, living (containing protoplast) and dead (empty frustule) diatom cells were distinguished. Subsequently, permanent slides of diatoms were prepared following the hydrogen peroxide method (ETTL 1978). Samples were treated with 30% H 2O2 and HCl in order to clean diatom frustules and to remove CaCO 3. Diatom frustules were mounted in Pleurax. In each permanent slide 400 diatom valves were counted using the Nikon E 400 Eclipse microscope.

74 Diatoms were identified mainly according to KRAMMER & LANGE -BERTALOT (1986, 1988,

1991 a,b), along with KRAMMER (2000, 2002), LANGE -BERTALOT (2000) and WERUM &

LANGE -BERTALOT (2004). Photomicrography was carried out using the Zeiss Axi oimager with the Zeiss Axiocam HRc digital camera (Carl Zeiss, Jena). Images were captured and managed using the Zeiss Axiovision Version 4.5 imaging software. Differential interference contrast (DIC) optics was used at ×100 (planapochromat lens, nominal numerical aperture 1.4 and 0.95). Water conductivity and pH were measured in situ by portable instruments (WTW Multi 340i/SET). For characterizing each site one-shot samples of water were taken in October 2006. Water samples were collected in autumn due to relative stability of water chemistry (HÁJEK et al. 2002). The concentrations of major ions (Tab. 5) were measured in an accredited laboratory (for details see HÁJEK & HEKERA 2004).

Statistical analyses The species abundance (n) was log-transformed as Y = log (n+1) and classified by the cluster analysis using Group average (UPGMA) and Euclidean distance. Indicator species analysis based on this classification was computed. For cluster analyses and indicator species analyses the PC-ORD package (MCCUNE & MEFFORD 1999) was used. Detrended Correspondence Analysis (DCA) was used to study relationships between species composition and measured variables. Spearman rank correlation (r s) and Mann-Whitney U test were used to examine possible relationships between explanatory variables and site scores on the first three ordination axes. Bonferroni corrections of the significance level were used for multiple comparisons of environmental variables (HOLM 1979). The CANOCO 4.5 package (TER

BRAAK & ŠMILAUER 2002) was used for DCA techniques and STATISTICA 8 (HILL &

LEWICKI 2007) for the other (uni-dimensional) analyses.

Results Altogether 188 diatom taxa mostly belonging to pennate diatoms were found (Tab. 1, Figs 6, 7). The only centric species, Aulacoseira distans, appeared at one site only. One third of the taxa identified (61 taxa) are cited in the Red List of freshwater diatoms of Germany (LANGE -

BERTALOT 1996) under various categories: endangered (5 taxa), vulnerable (10 taxa), susceptible (8 taxa), and near threatened (24 taxa). Rare species mostly occurred in very small abundance in samples; nevertheless Eunotia steineckei was very abundant in three samples. Most of the rare species were present in only one fen type (see below), but some of them,

75 such as Diploneis petersenii , Encyonema lunatum agg., Eunotia cf inflata , E. tetraodon , E. steineckei , Navicula tridentula , Placoneis ignorata , Rossithidium petersenii , and Stauroneis acuta , occurred in two or more fen types. On the basis of cluster analysis based on relative frequencies of diatoms in samples, the samples were classified into four groups (Fig. 2). The first cluster consisted solely of samples from extremely mineral-rich fens with tufa formation (calcareous fens). In total, 114 taxa were found at these sites, the median number of taxa per sample was 35 (Tab 2). Achnanthidium minutissimum agg. was the most abundant diatom in this cluster. Eucocconeis laevis , the species with the highest indicator value within the tufa fens (Tab. 3), occurred only in this fen type. One of the typical genera of these high productive calcareous fens, Cymbella s.l., achieved the highest abundance and diversity along the whole poor-rich gradient. The following rare species were present: Campylodiscus hibernicus , Cocconeis cf neodiminuta , Navicula pseudobryophila , N. pseudokotschyi , Stauroneis tackei , Surirella helvetica , and S. spiralis . The second cluster included mineral-rich brown-moss fens. Diatom assemblages were also very diverse, with composition similar to the previous fen type. Altogether 107 taxa were found and the median number of taxa per sample was 34. The most abundant taxon Planothidium lanceolatum agg. was the indicator with the highest indicator value. In this cluster, the araphid diatoms Fragilaria sp. div. were the most abundant and diverse within the gradient of mineral richness. Rare and interesting taxa were represented by Cavinula cocconeiformis , Decussata placenta , Gomphonema lagerheimii , Pinnularia brandeliformis , Psammothidium ventrale , and Stauroneis gracillima . The third cluster represented a rare spring fen type, mineral-rich Sphagnum -fens. The total number of taxa recorded (48 taxa) was lower than in the following type of Sphagnum -fens, however the median number of taxa per sample was higher (28 taxa). The total number of taxa may be underestimated because the number of samples in this cluster was very low. Chamaepinnularia mediocris had the highest indicator value. The rare species Naviculadicta digitulus occurred in this fen type. The fourth cluster consisted of mineral-poor acid Sphagnum -fens which were inhabited by species poor diatom assemblages. Sixty-two taxa were recorded and the median number of taxa per sample was 18. The most abundant species Eunotia exigua var. tenella was found in all samples, as was Eunotia incisa. Both species were good indicators for the biotope of Sphagnum -fens. The following rare species were present: Eunotia monodon , E. nymanniana , Neidium bisulcatum , N. hercynicum , and Stenopterobia delicatissima . Diatoms dominated in all algal samples collected in all types of fens. The highest proportion of diatoms was found in calcareous fens (Fig. 3). The percentage of living diatom

76 cells was at least 50% in all samples. The lowest proportions of dead diatom cells were recorded in samples from mineral-poor Sphagnum -fens (Tab. 2). The DCA revealed a continuous change of the diatom assemblages along the first ordination axis from extremely mineral-rich fens to poor acid fens (Fig. 4). Of the three ordination axes, the first explained 14% of the variation in the species data, while the second explained 5%, and the third explained only 3.3%. These results were in accordance with the result of the cluster analysis (Fig. 2) and with the correlations of explanatory variables with 2+ - the sample scores. The variables describing the poor-rich gradient (i.e. pH, Ca , Fe, Si, NO 3 , and conductivity) were significantly correlated (P<0.004) with the position of samples along the first ordination axis (Tables 4, 5). The position of individual diatom species in the DCA diagram reflected the relation of species to pH. On the left side there were alkalibiont and alkaliphilous species and on the right side there were acidobiont and acidophilous species. In the middle of the scatter there were common ( Achnanthidium minutissimum agg., Gomphonema clavatum agg., G. parvulum , Meridion circulare , Navicula cryptocephala , N. cryptotenella , Planothidium lanceolatum agg., and Sellaphora pupula ) and euryvalent (Adlafia minuscula , Gomphonema angustatum agg., and Eunotia minor ) species (Fig. 5). The number of species decreased significantly from mineral-rich to mineral-poor sites. The first ordination axis was also correlated with mean depth of water measured in the centre of each spring fen site. The second ordination axis separated bryophyte samples from tufa-forming fens (the lower part of the diagram) and other samples, including epipelon samples from tufa- forming fens and both epipelon and bryophyte samples from all remaining spring fen types. This dissimilarity of epibryon of calcareous fens resulted in significant difference (Mann- Whitney U test; P<0.05) between epipelon and epibryon on the second ordination axis. The sample scores on the third ordination axis were correlated with the mean discharge. Water content in samples, shading of spring fens, and water temperature did not display any significant correlation.

Discussion The typology of the central European spring fens based on the species composition of the vegetation reflects water chemistry of spring water (HÁJEK et al. 2006). This classification can be used across various regions and scales. Analogous changes in species composition along the poor-rich gradient have also been observed in molluscan (HORSÁK & HÁJEK 2003), fungal (VAŠUTOVÁ 2005), testacean (OPRAVILOVÁ & HÁJEK 2006), and algal (POULÍ ČKOVÁ et al. 2003) assemblages. In the previous research focused on spring fen algae (POULÍ ČKOVÁ et

77 al. 2003), however, samples of epiphytic diatoms were classified only according to phytosociological classification and no numerical classification was done on the diatom species data (POULÍ ČKOVÁ et al. 2003). Our results based directly on diatom data showed the same pattern as the results of the phytosociological approach. The variability of diatom assemblages was governed by a strong environmental gradient of pH, calcium, and conductivity. These geochemical factors were also found to be the most important environmental variables influencing the structure and composition of diatom assemblages in various types of springs and small wetlands occurring along spring brooks (e.g., CANTONATI

1998, CANTONATI et al. 2006, KAPETANOVIC & HAFNER 2007). The samples used for this study were collected during spring which is considered to be the season of the highest diatom diversity (e.g., CANTONATI 1998, HAFNER 2008). The species richness of diatoms was high in extreme mineral-rich tufa-forming spring fens and decreased towards acid mineral-poor fens. The same pattern has already been observed in studies focused on vascular plants, bryophytes, and molluscs of spring fens (HÁJEK et al. 2002,

HÁJKOVÁ & HÁJEK 2003, HORSÁK & HÁJEK 2003, TAHVANAINEN 2004). On the other hand, no correlation of species richness with the poor-rich gradient has been documented on aquatic invertebrates (stoneflies and testaceans) and fungi (V AŠUTOVÁ 2005, OPRAVILOVÁ & HÁJEK

2006, BOJKOVÁ & HELEŠIC in press). Tufa-forming spring fens recorded the highest number of taxa and hosted very diverse diatom assemblages which consisted not only of alcaliphilous and alcalibiont taxa (e.g., Amphora normannii , Gomphonema angustum , and Caloneis constans , typical inhabitants of sites with strong tufa precipitation), but also several halophilous (e.g., Navicula phyllepta and Nitzschia dubia ) and xerotolerant species. The presence of halophilous species in this habitat was observed in mollusc and vascular plants communities as well (COOPER 1995, HORSÁK 2006, DÍT Ě et al. 2007). The calcareous spring fens and salt-rich wetlands share several attributes, such as high alkalinity, high mineral richness, and high concentration of sulphate salts. The latter is typical of the Bílé Karpaty Mts., where high concentration of sulphates is caused by the oxidation of pyrite contained in the bedrock claystones (HÁJEK & HEKERA 2005). As the content of silica in spring fen water increased along the poor-rich gradient, diatom frustules in samples from petrifying spring fens were often poorly silicified, which made identification difficult at times. Although silica is crucial for building diatom frustules, its concentrations in calcareous fens were not as low to limit diatom development. High species richness of vegetation in mineral-rich sites has been explained by a large calcicole species pool resulting from historical and evolutionary processes (PÄRTEL 2002, CHYTRÝ et al. 2003). Historical processes connected with species

78 pool evolution in relation to historical habitat commonness (HÁJEK et al. 2007) thus override the physiological effects inherent to particular groups of organisms. This finding may also help to understand patterns in other organisms where physiological and historical effects are shared. Molluscan assemblages, for example, display steep increase in species richness towards calcium-rich habitats (HORSÁK & CERNOHORSKY 2008), which is most often explained by physiological demands. On the opposite end of the gradient, mineral-poor Sphagnum -fens were inhabited by species-poor assemblages characterized by a high share of green algae in samples. Low species richness was also reported by authors who studied diatoms of peat bogs (e.g.,

LEDERER et al. 1998, LEDERER 1999) or epiphytic diatoms on different Sphagnum -species

(e.g., NOVÁKOVÁ & POULÍ ČKOVÁ 2004, BUCZKÓ 2006). In the most extreme acidic sites diatoms were not even present at all (BUCZKÓ 2006). Brachysira brebissonii , Eunotia incisa , E. paludosa , E. steineckei , E. exigua var. tenella , Chamaepinnularia mediocris , Kobayasiella spp., Pinnularia subcapitata , and Tabellaria flocculosa often recorded in mire habitats (e.g.,

VAN DE VIJVER & BEYENS 1997, BUCZKÓ 2003, 2006, POULÍ ČKOVÁ et al. 2004, KAPETANOVIC

& HAFNER 2007) were frequent and abundant in Sphagnum -fens. Comparing with other groups of spring fens, the assemblages of Sphagnum -fens comprised a lower share of dead diatoms. It might be caused by the dissolution of empty frustules at very low pH, which was already observed for testate amoebae shells (MITCHELL et al. 2008). Along the gradient of mineral richness several taxa exhibiting high morphological variation were recorded. Furthermore, identification was difficult for transitional types between particular species (e.g., E. exigua /E. exigua var. tenella , Eunotia implicata /E. minor , and Gomphonema tergestinum /Reimeria sinuata ). In such problematic cases geometric morphometrics should be used as a helpful tool in distinguishing diatom morphospecies (e.g.,

FRÁNKOVÁ et al. 2009). There were also aggregates (heterogenous complexes) containing several to many entities that may be regarded as semicryptic or cryptic species (see also

MANN et al. 2004, LUNDHOLM et al. 2006). For example, Achnanthidium minutissimum agg. occurred along the whole gradient. The differences in the structure of diatom assemblages between two main microhabitats, i.e. sediment and bryophytes, were observed only in tufa-forming spring fens. Sediment was preferred mostly by diatoms with larger frustules (e.g., Nitzschia dubia , N. linearis , and Ulnaria ulna ), whereas bryophyte tufts, especially those with small water content, often hosted xerotolerant species (e.g., Caloneis tenuis and Encyonopsis cesatii ). Distinct dissimilarity of epibryon of calcareous fens was probably related to the structural

79 features of these sites, which were shallow and bryophytes were not as waterlogged as in peat-forming fens. Although we sampled three microhabitats differing in moisture (measured as water content), it did not have a significant influence. This was probably due to the fact that water chemistry was responsible for majority of the variation in species richness and composition on a larger scale, and thus heterogeneity of moisture then seems to be more important at the within-site scale. The Western Carpathian spring fens are unique biotopes harbouring a diverse and species-rich diatom flora with extraordinary high portion of oligotraphentic species and “Red List taxa”. The proportion of Red List taxa (32% of 188 taxa recorded) was identical to

German and Swiss springs (WERUM & LANGE -BERTALOT 2004, TAXBÖCK & PREISIG 2007); higher proportion of threatened taxa (up to 70%) was found in springs and mires of the Alps

(CANTONATI 1998, 2006, CANTONATI & SPITALE 2009). The value of these habitats is also underlined by the absence of invasive species, such as Didymosphenia geminata (Lyngbye)

M. Schmidt which is widespread in the running waters of the Beskydy Mts (GÁGYOROVÁ &

MARVAN 2002).

Acknowledgements We are very thankful to RNDr. Petr Marvan, CSc. for his help, support and advice. We would also like to thank Ms. Elizabeth Jane Hundey for language corrections and the anonymous reviewer for valuable comments on the manuscript. This research was performed within the long-term research plans of the Masaryk University (no. MSM0021622416), the Botanical Institute of the Czech Academy of Sciences (no. AVZ0Z60050516) and the research project of GA ČR (no. 526/09/H025).

References

BERTUZZI , E, CANTONATI , M., ANGELI , N. & ROTT , E. (2006): Use of diatoms for monitoring springs. – In: Abstract book of the 6th International Symposium Use of Algae for

Monitoring Rivers, Balatonfüred, .

BÍLÝ , J. (1934): Píš ťanské rozsivky. Práce Mor. Přírodov. Spole č. Brno, 9: 1-17.

BOJKOVÁ J. & HELEŠIC J., in press: Spring fens as a unique biotope of stonefly larvae (Plecoptera): species richness and species composition gradients. – Aquatic Insects 31, Supplement 1.

BRABEZ , R. (1941): Zur Kenntnis der Algenflora des Franzensbader und Sooser Thermalenbereiches. Beitr. Bot. Centralbl., Dresden, 61: 137-236.

80 BUCZKÓ , K. (2006): Bryophytic diatoms from Hungary. – In: WITKOWSKI , A. (ed.): Eighteenth International Diatom Symposium 2004, Miedzyzdroje, . – Biopress Limited, Bristol.

BUCZKÓ , K. (2003): Tözegmohalápok diatómái (Adatok a Nyírjes-tó diatómaflórájához). – Acta Acad. Paed. Agriensis, Sectio Biologiae XXIV (2003): 147-158.

CANTONATI , M. (1998): Diatom communities of springs in the Southern Alps. – Diatom Research 13: 201-220.

CANTONATI , M. (2006): Diatoms from the mires of Danta (Site of Community Importance, Cadore, South-Eastern Alps, . – In: 20. Treffen der deutschsprachigen Diatomologen

mit internationaler Beteilung, T řebo ň, Czech Republic.

CANTONATI , M., GERECKE , R. & BERTUZZI , E. (2006): Springs of the Alps, sensitive ecosystems to environmental change: From biodiversity assessment to long-term studies.

– In: LAMI , A. & BOGGERO , A. (eds.): Developments of Hydrobiology, Ecology of high altitude aquatic systems in the Alps. – Hydrobiologia 562: 59-96.

CANTONATI , M., SPITALE , D. (2009): The role of environmental variables in structuring epiphytic and epilithic diatom assemblages in springs and streams of the Dolomiti Bellunesi National Park (south-eastern Alps). – Fundamental and Applied Limnology 174(2): 117-133.

CHYTRÝ , M., TICHÝ , L. & ROLE ČEK , J. (2003): Local and regional patterns of species richness in Central European vegetation types along the pH/calcium gradient. – Folia Geobotanica 38: 429-442.

COOPER , D. (1995): Water and soil chemistry floristics, and phytosociology of the extreme rich High Creek fen, in South Park, Colorado, U.S.A. – Canadian Journal of Botany 74: 1801-1811.

DÍT Ě, D., HÁJEK , M. & HÁJKOVÁ , P. (2007): Formal definitions of Slovakian mire plant associations and their aplications in regional research. – Biologia, Bratislava 62/4: 400-

408.

ETTL , H. (1978): Metódy laboratorného štúdia rias. – In: In: HINDÁK , F. (ed.): Sladkovodné riasy, p. 180, Slovenské pedagogické nakladate ľstvo, Bratislava.

FOISSNER , W. (2008): Protists diversity and distribution: some basic considerations. – Biodiversity and Conservation 17: 235-242.

FRÁNKOVÁ , M., POULÍ ČKOVÁ , A., NEUSTUPA , J., PICHRTOVÁ , M. & MARVAN , P. (2009): Geometric morphometrics – a sensitive method to distinguish diatom morphospecies: a case study on the sympatric populatons of Reimeria sinuata and Gomphonema

81 tergestinum (Bacillaryophyceae) from the River Be čva, Czech Republic. – Nova

Hedwigia 88 (1-2): 81-95.

GÁGYOROVÁ , K. & MARVAN , P. (2002): Didymosphenia geminata a Gomphonema ventricosum (Bacillariophyceae) v Moravskoslezských Beskydech. – Czech Phycology 2: 61-68.

GROOTJANS A.P., ADEMA E.B., BLEUTEN W., JOOSTEN H., MADARAS M. & JANÁKOVÁ M.

(2006): Hydrological landscape settings of base-rich fen mires and fen meadows: an overview. – Applied Vegetation Science 9: 175-184.

HAFNER , D. (2008): Diatoms in the karstic springs of Herzegovina. – In: Abstract book of the 2nd Central European Diatom Meeting, Trento, Italy.

HÁJEK , M., HEKERA , P. (2004): Can seasonal variation in fen water chemistry influence the reliability of vegetation-environment analyses? – Preslia 76: 1-14.

HÁJEK , M. & HEKERA , P. (2005): The study area and its geochemical characteristics. – In:

POULÍ ČKOVÁ , A., HÁJEK , M. & RYBNÍ ČEK , K. (eds.): Ecology and palaeoecology of spring fens of the West Carpathians, Monography, p. 105-130, Palacký University, Olomouc.

HÁJEK , M., HEKERA , P. & HÁJKOVÁ , P. (2002): Spring Fen Vegetation and Water Chemistry in the Western Carpathian Flysch Zone. – Folia Geobotanica 37: 205-224.

HÁJEK , M., HORSÁK , M., HÁJKOVÁ , P. & DÍT Ě, D. (2006): Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies. – Perspectives in Plant Ecology, Evolution and

Systematics 8: 97-114.

HÁJEK , M., TICHÝ , L., SCHAMP , S., ZELENÝ , D., ROLE ČEK , J., HÁJKOVÁ , P., APOSTOLOVA , I. &

DÍT Ě, D. (2007): Testing the species pool hypothesis for mire vegetation: exploring the influence of pH specialists and habitat history. – Oikos 116: 1311-1322.

HÁJKOVÁ , P. & HÁJEK , M. (2003): Species richness and above-ground biomass of poor and calcareous spring fens in the flysh West Carpathians and their relationship to water and soil chemistry. – Preslia 75: 271-287.

HILL , T. & LEWICKI , P. (2007): STATISTICS Methods and Applications. – StatSoft, Tulsa, OK. (http://www.statsoft.com/textbook/stathome.html).

HINDÁK , F. & HINDÁKOVÁ , A. (2006): Cyanobaktérie a riasy termálnych vôd v Pieš ťanoch (záp. Slovensko). – Bull. Slov. Bot. Spolo čn. 28: 21-30.

HINDÁK , F. & HINDÁKOVÁ , A. (2007): Cyanobaktérie a rozsievky termálnych vôd v Sklenych Tepliciach (stredné Slovensko). – Bull. Slov. Bot. Spolo čn. 29: 10-16.

82 HOLM , S. (1979): A Simple Sequentially Rejective Multiple Test Procedure. – Scandinavian Journal of Statistics 6: 65-70.

HORSÁK , M. (2006): Mollusc community patterns and species response curves along a mineral richness gradient: a case study in fens. – Journal of Biogeography 33: 98-107.

HORSÁK , M. & CERNOHORSKY , N. (2008): Mollusc diveristy patterns in Central European fens: hotspots and conservation priorities. – Journal of Biogeography 35: 1215-1225.

HORSÁK , M. & HÁJEK , M. (2003): Composition and species richness of mollusc communities in relation to vegetation and water chemistry in the Western Carpathian spring fens: the poor-rich gradient. – Journal of Molluscan Studies 69: 349-357.

KAPETANOVIC , T. & HAFNER , D. (2007): Diatoms of wet habitats in the subalpine belt of Mt. Vranica () – In: Proceedings of the 1st Central European Diatom Meeting 2007, Berlin, Germany.

KAŠTOVSKÝ , J. & KOMÁREK , J. (2001): Phototrophic microvegetation of thermal springs in

Karlovy Vary, Czech Republic. – In: ELSTER , J., SECKBACH , J., VINCENT , W.F. &

LHOTSKÝ O. (eds.): Algae and extreme environments. – Nova Hedwigia 123: 107-119.

KRAMMER , K. (2000): The genus Pinnularia . – In: LANGE -BERTALOT , H. (ed.): Diatoms of

Europe 1. – Ruggell.

KRAMMER, K. (2002): Cymbella . – In: LANGE -BERTALOT , H. (ed.): Diatoms of Europe 3. – Ruggell.

KRAMMER , K. & LANGE -BERTALOT , H. (1986): Bacillariophyceae. 1. Teil: Naviculaceae – In:

ETTL , H., GERLOFF , J., HEYNIG , H. & MOLLENHAUER , D. (eds.): Süsswasserflora von

Mitteleuropa 2/1, G. Fischer Verlag, Stuttgart.

KRAMMER , K. & LANGE -BERTALOT , H. (1988): Bacillariophyceae. 2. Teil: Bacillariaceae,

Epithemiaceae, Surirellaceae. – In: ETTL , H., GERLOFF , J., HEYNIG , H. & MOLLENHAUER ,

D. (eds.): Süsswasserflora von Mitteleuropa 2/2, G. Fischer Verlag, Stuttgart.

KRAMMER , K. & LANGE -BERTALOT , H. (1991a): Bacillariophyceae. 3. Teil: Centrales,

Fragilariaceae, Eunotiaceae – In: ETTL , H., GERLOFF , J., HEYNIG , H. & MOLLENHAUER , D.

(eds.): Süsswasserflora von Mitteleuropa 2/3, G. Fischer Verlag, Stuttgart.

KRAMMER , K. & LANGE -BERTALOT , H. (1991b): Bacillariophyceae. 4. Teil: Achnanthaceae,

Kritische Ergänzungen zu Navicula (Lineolate) und Gomphonema . – In: ETTL , H.,

GERLOFF , J., HEYNIG , H. & MOLLENHAUER , D. (eds.): Süsswasserflora von Mitteleuropa

2/4, G. Fischer Verlag, Stuttgart.

LANGE -BERTALOT , H. (1996): Rote Liste der limnischen Kieselalgen (Bacillariophyceae) Deutschlands. – Schriften-reihe für Vegetationskunde 28: 633-677.

83 LANGE -BERTALOT , H. (2000): Navicula sensu stricto; 10 genera separated from Navicula

sensu stricto; Frustulia . – In: LANGE -BERTALOT , H. (ed.): Diatoms of Europe 2. – Ruggell.

LEDERER , F. (1999): Algal flora of the Červené blato peat bog (T řebo ň basin, Czech

Republic). – Preslia 70: 303-311.

LEDERER, F., GARDAVSKÝ , A., LUKEŠOVÁ , A., KUBE ČKOVÁ , K., ČÁPOVÁ , R., LODROVÁ , E. &

TROJÁNKOVÁ , K. (1998): Biodiverzita a ekologie sinic a řas minerálních pramen ů a

rašeliniš ť na území NPR Soos a v okolí Františkových a Mariánských Lázní. In: LEDERER ,

F. & CHOCHOLOUŠKOVÁ , Z. (eds.): Flóra a vegetace minerálních pramen ů a rašeliniš ť NPR Soos, Sborník katedry biologie, p. 14-58, Západo česká Univerzita Plze ň.

LUNDHOLM , N., MOESTRUP , O., KOTAKI , Y., HOEF -EMDEN , K., SCHOLIN , C. & MILLER , P.

(2006): Inter- and intraspecific variation of the Pseudo-nitzschia delicatissima complex (Bacillariophyceae) illustrated by rRNA probes, morphological data and phylogenetic

analyses. – J. Phycol. 42: 464-481.

MALMER , N. (1986): Vegetational gradients in relation to environmental conditions in northwestern European mires. – Canadian Journal of Botany 64: 375-383.

MANN , D.G., MCDONALD , S.M., BAYER , M.M., DROOP , S.J.M., CHEPURNOV , V.A., LOKE ,

R.E., CIOBANU , A. & HANS DU BUF , J.M. (2004): The Sellaphora pupula species complex (Bacillariophyceae): morphometric analysis, ultrastructure and mating data provide evidence for five new species. – Phycologia 43: 459-482.

MCCUNE , B. & MEFFORD , M.J. (1999): PC-ORD. Multivariate analysis of ecological data. Version 4.0 – MjM Software Design, Gleneden Beach, Oregon, USA.

MITCHELL , E.A.D., PAYNE , R.J. & LAMENTOWICZ , M. (2008): Potential implications of differential preservation of testate amoebae shells for paleoenvironmental reconstructiono

in peatlands. – J Paleolimnol 40: 603-618.

NOVÁKOVÁ , J. & POULÍ ČKOVÁ , A. (2004): Moss diatom (Bacillariophyceae) flora of the Nature Reserve Adršpašsko-Teplické Rocks (Czech Republic). – Czech Phycology 4: 75- 86.

OPRAVILOVÁ , V. & HÁJEK , M. (2006): The Variation of Testacean Assemblages (Rhizopoda) Along the Complete Base-Richness Gradient in Fens: A Case Study from the Western

Carpathians. – Acta Protozoologica 45: 191-204.

PÄRTEL , M. (2002): Local plant diversity patterns and evolutionary history at the regional scale. – Ecology 83: 2361-2366.

84 PAYNE R.J., & MITCHELL , E.A.D. (2007): Ecology of Testate Amoebae from Mires in the Central Rhodope Mountains, Greece and Development of a Transfer Function for Palaeohydrological Reconstruction. – Protist 158: 159-171.

PEINTINGER M., BERGAMINI , A. & SCHMID , B. (2003): Species-area relationships and nestedness of four taxonomic groups in fragmented wetlands. – Basic and Applied Ecology 4: 385-394.

POULÍ ČKOVÁ , A., BOGDANOVÁ , K., HEKERA , P. & HÁJKOVÁ , P (2003): Epiphytic diatoms of the spring fens in the flysh area of the Western Carpathians. – Biologia, Bratislava 58/4:

749-757.

POULÍ ČKOVÁ , A., HÁJKOVÁ , P., KŘENKOVÁ , P. & HÁJEK , M. (2004): Distribution of diatoms and bryophytes on linear transects through spring fens. – Nova Hedwigia 78(3-4): 411- 424.

POULÍ ČKOVÁ , A., HAŠLER , P. & KITNER ., M (2005): Cyanobacteria and algae. – In:

POULÍ ČKOVÁ , A., HÁJEK , M. & RYBNÍ ČEK , K. (eds.): Ecology and palaeoecology of spring fens of the West Carpathians, Monography, p. 105-130, Palacký University, Olomouc.

ROZBROJOVÁ , Z. & HÁJEK , M. (2008): Changes in nutrient limitation of spring fen vegetation along environmental gradiensts in the West Carpathians. – Journal of Vegetation Science 19: 613-620.

SPRENGER , E. (1930): Bacillariales aus den Thermen und der Umgebung von Karlsbad. – Archiv für Protistenkunde 71(3): 502-542.

STOERMER , E.F. & SMOL , J.P. (1999): The diatoms: applications for the enviromental and earth sciences. Cambridge University Press, Cambridge.

TAHVANAINEN , T. (2004): Water chemistry of mires in relation to the poor-rich vegetation gradient and contrasting geochemical zones of northeastern fennoscandian Shield. – Folia Geobotanica 39: 353-369.

TAXBÖCK , L. & PREISIG , H. (2007): The diatom communities in Swiss springs: A first approach. – In: Proceedings of the 1 st Central European Diatom Meeting, Berlin, Germany.

TER BRAAK , C.J.F. & ŠMILAUER , P. (2002): CANOCO Reference manual and Canodraw for Windows user’s guide. Software for canonical community ordination (ver. 4.5). – Biometris Wageningen.

VAN DE VIJVER , B. & BEYENS , L. (1997): The epiphytic diatom flora of mosses from Stromness Bay area, South Georgia. – Polar biology 176: 492-501.

85 VAŠUTOVÁ , M. (2005): Macrofungi. – In: POULÍ ČKOVÁ , A., HÁJEK , M. & RYBNÍ ČEK , K. (eds.): Ecology and palaeoecology of spring fens of the West Carpathians, p. 131-150, Palacký University, Olomouc.

WARNER , B.G. & ASADA , T. (2006): Biological diversity of peatlands in Canada. – Aquatic Sciences 68: 240-253.

WERUM , M. (2001): Die Kieselalgen in Quellen: Abhängigkeit von Geologie und antropogener Beeinflussung in Hessen (Bundesrepublik Deutschland) . – Wiesbaden.

WERUM , M. & LANGE -BERTALOT , H. (2004): Diatoms in springs from Central Europe and elsewhere under the influence of hydrogeology and anthropogenic impacts. – Iconographia Diatomologica 13: 1-417.

86 Fig. 1. Map of studied sites.

Fig. 2. Cluster analysis of diatom assemblages based on relative frequence data (log- transformation, Euclidean distance, Group average (UPGMA). Numbers of samples in each cluster are given in parentheses. Spring fen types: 1 – calcareous fens; 2 – brown-moss fens; 3 – mineral-rich Sphagnum -fens; 4 – mineral-poor Sphagnum -fens.

Fig. 3. Relative abundance of individuals of algal groups found in four groups of fens: 1 – calcareous fens; 2 – brown-moss fens; 3 – mineral-rich Sphagnum -fens; 4 – mineral-poor Sphagnum -fens.

87 Fig. 4. DCA diagram of samples on the first two ordination axes with posteriori plotted explanatory variables; only those significantly correlated with the first two ordination axes were used (see Table 2). Following symbols were used: calcareous fens – rectangle, brown- moss fens – circle, mineral-rich Sphagnum -fens – triangle, mineral-poor Sphagnum -fens – diamond; black symbols – epibryon; white symbols - epipelon.

Fig. 5. DCA diagram of species on the first two ordination axes. Abbreviations: Achmin Achnanthidium minutissimum agg., Adlmin Adlafia minuscula , Brabre Brachysira brebissonii , Calbac Caloneis bacillum , Calten C. tenuis , Dipova Diploneis ovalis agg., Encces Encyonopsis cesatii , Eunevt Eunotia exigua var. tenella , Eunimp E. implicata , Euninc E. incisa , Eunpal E. paludosa , Eunste E. steineckii , Gomana Gomphonema angustatum agg., Gomanu G. angustum , Gomcla G. clavatum agg, Gomgra G. gracile , Gompar G. parvulum , Kobmic Kobayasiella cf micropunctata , Mercir Meridon circulare , Navcrc Navicula cryptocephala , Navcrt N. cryptotenella , Nithan Nitzschia hantzschiana , Nitlin N. linearis , Nitpal N. palea , Pinvir Pinnularia viridis agg., Plalan Planothidium lanceolatum agg., Psasub Psammothidium subatomoides , Tabflo Tabellaria flocculosa agg .

88 Fig. 6. a – Cymbella affinis , b – Decussata placenta , c – Surirella helvetica , d – Neidium hercynicum , e – Placoneis ignorata , f – Navicula seibigiana , g, h – Pinnularia subcapitata , i – Gomphonema productum , j – Cavinula cocconeiformis , k. l. – Amphora montana , m – Encyonema minutum , n – Cymbella amphicephala , o – Delicata delicatula , p – Fragilaria virescens , q – Chamaepinnularia mediocris , r – Eucocconeis laevis , s – Neidium binodeforme .

89 Fig. 7. a – Eunotia soleirolii , b, c – E. incisa , d – E. steineckei , e – E. minor , f, n – Stenopterobia delicatissima , g – Gomphonema cf hebridense , h – Eunotia soleirolii , i – E. cf inflata , j – E. tetraodon , k – E. bilunaris , l – Frustulia crassinervia , m – Stenopterobia cf curvula , o, p – Eunotia exigua var. tenella , q – Tabellaria cf. ventricosa , r – Brachysira sp., s – Kobayasiella cf micropunctata , t – Navicula cryptotenella , u – Meridion constrictum , v – Diploneis petersenii , w – Reimeria sinuata .

90 Table 1. List of all recorded diatom taxa and their distribution within four main groups of fens: 1 – calcareous fens (14 samples); 2 – brown-moss fens (12 samples); 3 – mineral-rich Sphagnum -fens (3 samples); 4 – mineral-poor Sphagnum -fens (9 samples). The total number of individuals of particular species in samples/the number of its occurrence within each group are given.

Groups of fens Taxon Comments 1 2 3 4 Achnanthidium minutissimum agg. 2875/14 774/12 252/3 151/6 Achnanthes sp. 1 5/4 102/10 12/1 2/1 Achnanthes sp. 2 6/2 13/2 1/1 Achnanthes sp. 3 1/1 Achnanthes sp. 4 1/1 Achnanthes sp. 5 1/1 Achnanthes sp. 6 7/1 Achnanthes sp. 7 1/1 Achnanthes sp. 8 4/1 Achnanthes sp. 9 24/1 Adlafia aquaeductae (Krasske) Moser, Lange-Bert. et Metzeltin 6/1 Adlafia minuscula (Grunow) Lange-Bertalot 39/13 38/4 18/3 5/2 Amphipleura pellucida Kützing 7/2 Amphora copulata (Kützing) Schoeman et Archibald 9/3 6/3 Amphora montana Krasske 24/3 Amphora normannii Rabenhorst 2/2 Amphora ovalis (Kützing) Kützing 1/1 Amphora pediculus (Kützing) Grunow 30/1 1/1 1/1 Amphora sp. 1 2/1 Aulacoseira distans (Ehr.) Simonsen 95/3 Brachysira sp. 1/1 168/6 Brachysira sp. 2/1 Brachysira vitrea (Grunow) Ross in Hartley 1/1 27/3 Caloneis alpestris (Grunow) Cleve 11/6 Caloneis bacillum (Grunow) Cleve Some individuals resembled Caloneis constans Reichardt. 32/10 23/6 1/1 Caloneis tenuis (Gregory) Krammer 223/7 2/2 4/2 5/2 Campylodiscus hibernicus Ehrenberg 4/2 Cavinula cocconeiformis (Gregory ex Greville) Mann et Stickle 7/3 Chamaepinnularia mediocris (Krasske) Lange- Bertalot 122/2 209/3 39/8 Cocconeis cf neodiminuta Krammer 2/2 Cocconeis placentula C.G. Ehrenberg including varieties euglypta, lineata, and placentula 15/9 3/2 1/1 Cymbella affinis Kützing 18/8 3/1 Cymbella amphicephala Naegeli 30/7 5/2 3/1 1/1 including Cymbopleura austriaca (Grunow) Cymbella austriaca Grunow in A. Schmidt et al. nov. comb. and Cymbopleura subaustriaca (Grunow) Krammer 28/9 Cymbella laevis Naegeli 4/1 Cymbella lanceolata (Agardh) Agardh 1/1 1/1 Cymbella subaequalis Grunow 30/9 6/3 Decussata placenta (Ehrenberg) H. Lange-Bertalot 9/3 Delicata delicatula (Kützing) Krammer 67/8 Denticula tenuis Kützing 93/7 1/1 Diadesmis sp. 1 12/4 2/2 Diatoma anceps (Ehrenberg) Kirchner 5/2 1/1

91 Diploneis elliptica (Kützing) Cleve 3/2 3/1 Diatoma hyemalis agg. including Diatoma hyemalis (Roth) Heiberg and D. mesodon (Ehrenberg) Kützing 1/1 4/2 Diploneis oblongella (Naegeli) Cleve-Euler 36/11 26/5 3/1 including Diploneis fontanella Lange-Bertalot, D. fontium Reichardt et Lange-Bertalot and Diploneis ovalis agg. D. krammeri Lange-Bertalot et Reichardt 19/8 44/10 3/1 4/3 Diploneis petersenii Hustedt 10/4 5/3 1/1 3/2

Encyonema lunatum agg. including Encyonema neogracile Krammer and E. lunatum (W. Smith) Van Heurck 8/4 3/2 18/5

including E. minutum (Hilse in Rabenhorst) Encyonema minutum agg. D.G. Mann, E.silesiacum (Bleisch ex Rabenh.) D. G. Mann in Round, Crawford & Mann , and E.ventricosum Kützing 2/2 94/7 7/1 1/1 Encyonopsis cesatii (Rabenhorst) Krammer 177/11 6/1 23/2 Encyonopsis microcephala (Grunow) Krammer 16/6 Eucocconeis laevis (Kützing) Meister 29/11 Eunotia bilunaris (Ehrenberg) Mills var. bilunaris 2/1 11/4 1/5 Eunotia exigua (Brebisson ex Kützing) Rabenhorst var. exigua 10/4

Eunotia exigua var. tenella (Grunow) Nörpel et Alles 3/3 12/3 1266/9 Eunotia glacialis Meister 2/1 1/1 Eunotia implicata Nörpel, Lange-Bertalot et Alles 89/5 3/1 32/4 Eunotia incisa Gregory Some individuals resembled E. boreoalpina Lange-Bertalot et Nörpel-Schempp. 2/2 400/9 Eunotia cf inflata (Grunow) Nörpel-Schempp et Lange-Bertalot 1/1 5/4 3/1 26/3 Eunotia minor (Kützing) Grunow in Van Heurck 64/5 8/2 1/1 Eunotia monodon C.G. Ehrenberg 3/2 Eunotia nymanniana Grunow in Van Heurck 26/3 Eunotia paludosa Grunow 3/2 141/9 Eunotia soleirolii (Kützing) Rabenhorst 7/2 Eunotia sp. 1 1/1 Eunotia sp. 2 1/1 Eunotia steineckei Petersen 186/6 337/3 43/8 Eunotia tetraodon Ehrenberg 1/1 3/3 Fallacia insociabilis (Krasske) D.G. Mann 4/2 2/1 Fragilaria acus (Kützing) Lange-Bertalot 1/1 Fragilaria capucina Desmaziéres 8/4 1/1 Fragilaria gracilis Østrup 5/1 3/1 31/1 Fragilaria sp.1 3/1 Fragilaria sp.2 2/1 Fragilaria sp.3 1/1 Fragilaria sp.4 3/1 Fragilariforma virescens (Ralfs) D.M. Williams et Round 2/2 Frustulia crassinervia (Breb.) Lange-Bertalot et Krammer 67/8

Frustulia saxonica Rabenhorst 1/1 7/4 Frustulia sp. 1 1/1 Frustulia vulgaris (Thwaites) De Toni 9/7 22/7 including G. micropus Kützing and G. Gomphonema angustatum agg. productum (Grunow) Lange-Bertalot et Reichardt 185/14 114/12 11/2

Gomphonema angustum Agardh 188/11 including Gomphonema clavatum Ehrenberg, G. montanum Schuman and G. subclavatum Gomphonema clavatum agg. Grunow 15/5 55/11 3/2 6/2 Some individuals resembled G. acidoclinatum Gomphonema gracile Ehrenberg Lange-Bertalot et Reichardt and G. hebridense Gregory 52/7 52/7 10/3 28/6

92 Gomphonema lagerheimii A.Cleve 1/1 Gomphonema parvulum (Kützing) Kützing 168/10 76/12 12/3 11/4 Gomphonema sp. 1 1/1 Gomphonema sp. 2 1/1 There occurred intermediary morphotypes Gomphonema tergestinum Fricke resembling Reimeria sinuata . 5/4

Gyrosigma attenuatum (Kützing) Rabenhorst 2/1 Hantzschia amphioxys (Ehr.) Grunow in Cleve et Grunow 8/4 13/4 Hippodonta capitata (Ehr.) Lange-Bert., Metzeltin et Witkowski 1/1 Kobayasiella cf micropunctata (Germain) Lange-Bertalot 23/4 90/6 65/3 387/6 including Meridon circulare (Greville) Agardh Meridon circulare agg. and Meridion constrictum Ralfs 15/6 286/10 23/3

Navicula cryptocephala Kützing 38/8 109/11 8/2 Navicula cryptotenella Lange-Bertalot 104/14 68/10 4/2 11/1 Naviculadicta digitulus (Hustedt) Lange-Bertalot 20/1 Navicula lanceolata (Agardh) Ehrenberg sensu Lange-Bertalot 4/1 Navicula menisculus Schumann 13/4 3/1 Navicula phyllepta Kützing 2/1 Navicula pseudobryophila Hustedt 3/2 Navicula pseudokotschyi Lange-Bertalot 3/2 Navicula radiosa Kützing 2/1 Navicula recens (Lange-Bertalot) Lange-Bertalot 1/1 Navicula rhynchocephala Kützing sensu Lange-Bertalot 6/3 Navicula seibigiana Lange-Bertalot 29/4 Navicula sp. 1 1/1 Navicula sp. 2 1/1 Navicula sp. 3 1/1 Navicula sp. 4 2/1 Navicula sp. 5 7/1 Navicula sp. 6 6/1 Navicula sp. 7 1/1 Navicula sp. 8 1/1 Navicula sp. 9 1/1 Navicula tridentula Krasske 8/3 2/2 Navicula tripunctata (O.F.Müller) Bory 1/1 Navicula trivialis Lange-Bertalot 6/2 Navicula veneta Kützing 8/3 2/2 Neidium affine (Ehrenb.) Pfitzer var. affine 1/1 Neidium binodeforme Krammer 8/5 Neidium bisulcatum (Lagerstedt) Cleve 6/1 Neidium hercynicum A. Mayer 19/6 Neidium iridis (Ehrenberg) Cleve 4/2 Neidium sp.1 1/1 Nitzschia amphibia Grunow 44/7 Nitzschia archibaldii Lange-Bertalot 85/1 Nitzschia debilis Pantocsek 1/1 Nitzschia dissipata (Kützing) Grunow 37/5 2/1 Nitzschia dubia W. Smith 27/1 Nitzschia hantzschiana Rabenhorst 31/7 122/8 35/2 19/2 Nitzschia linearis (Agardh) W. Smith 253/13 189/7 1/1 Nitzschia palea (Kützing) W.Smith 174/13 124/6 29/3 11/3 Nitzschia perminuta (Grunow) M.Peragallo 69/4 Nitzschia semirobusta Lange-Bertalot 2/1

93 Nitzschia sinuata (Thwaites) Grunow 3/2 Nitzschia sp. 1 7/1 Nupela sp. 1 1/1 Nupela sp. 2 1/1 Nupela sp. 3 3/1 Pinnularia appendiculata (Agardh) Cleve 19/5 1/1 19/5 Pinnularia borealis Ehrenberg 3/1 4/4 1/1 Pinnularia brandeliformis Krammer 1/1 Pinnularia divergens W. Smith 1/1 Pinnularia major (Kützing) Rabenhorst 10/2 Pinnularia microstauron (C.G. Ehrenberg) P.T. Cleve 1/1 1/1 Pinnularia nodosa ( Ehrenberg) W.Smith 5/1 Pinnularia obscura Krasske 6/4 6/3 1/1 Pinnularia rupestris Hantzsch in Rabenhorst 5/2 9/2 1/1 1/1 Pinnularia sp. 1 4/1 Pinnularia sp. 2 1/1 Pinnularia sp. 3 2/1 Pinnularia sp. 4 1/1 Pinnularia sp. 5 4/1 Pinnularia stomatophora (Grunow) Cleve 5/4 1/1 2/2 Some individuals resembled P. sinistra Pinnularia subcapitata Gregory Krammer. 48/8 5/3 141/9

Pinnularia viridis agg. 15/8 37/11 3/1 65/6 Placoneis elginensis (Greg.) Cox 7/5 20/6 Placoneis ignorata (Schimanski) Lange-Bertalot 2/2 23/6 including P. lanceolatum (Brébisson ex Kützing) Lange-Bertalot and Planothidium lanceolatum agg. P. frequentissimum (Lange-Bertalot) Lange- Bertalot 42/10 931/12 5/2

Psammothidium subatomoides (Hustedt) Bukht. et Round 26/9 236/11 11/2 21/1

Psammothidium ventrale (Krasske) Bukht. et Round 1/1 Reimeria sinuata (Gregory) Kociolek et Stoermer 3/3 1/1 Rhoicosphenia abbreviata (Agardh) Lange-Bertalot 1/1 Rhopalodia gibba (Ehrenberg) O.Müller var. gibba 22/3 Rossithidium petersenii (Hustedt) F.E. Round et Bukhtiyarova 1/1 24/1

Sellaphora pupula (Kützing) Mereschkowksy 12/6 19/6 2/1 Stauroneis acuta W. Smith 4/1 1/1 Stauroneis anceps Ehrenberg 5/3 6/2 1/1 Stauroneis gracillima Hustedt 4/2 Stauroneis kriegeri Patrick 1/1 Stauroneis smithii Grunow 16/8 1/1 Stauroneis cf subgracilis Lange-Bertalot et Krammer 2/1 12/4 Stauroneis tackei (Hustedt) Krammer et Lange- Bertalot 3/1

Staurosira mutabilis (W. Smith) Grunow 124/2 Stenopterobia delicatissima (Lewis) Brebisson ex Van Heurck 19/3

Surirella angusta Kützing 17/5 12/3 Surirella brebissonii Krammer et Lange-Bertalot 27/11 2/2 Surirella helvetica Brun 5/1 Surirella linearis W.M.Smith 1/1 Surirella cf minuta Brebisson 3/2 1/1 Surirella spiralis Kützing 6/3

94 Surirella tenera Gregory 13/3 Synedrella parasitica (W. Smith) Round et Maidana 2/1 Tabellaria fenestrata (Lyngbye) Kützing 2/1 19/1 including Tabellaria flocculosa (Roth) Kützing Tabellaria flocculosa agg. and Tabellaria ventricosa Kützing 1/1 4/2 3/1 170/7

Ulnaria ulna (Nitzsch) Compère 7/4 2/1

Table 2. Number of taxa recorded in individual fen types and median number of proportions (%) of dead cells.

Group 1 Group 2 Group 3 Group 4 Total number of taxa recorded 114 107 48 62 Median number of taxa per sample 35 34 28 18 Median number of proportions of dead 27 30 17 16 cells per sample

Table 3. Results of indicator species analysis (1 – calcareous fens; 2 – brown-moss fens; 3 – mineral-rich Sphagnum -fens; 4 – mineral-poor Sphagnum -fens). Indicator value (Ind. val.) and p-value (** P<0.01; * P<0.05) are shown. Only taxa with Indicator value higher than 40 are shown.

Group 1 Group 2 Group 3 Group 4 Calcareous fens Brown-moss fens Mineral-rich Sphagnum -fens Acid Sphagnum -fens Taxon Ind. val. Taxon Ind. val. Taxon Ind. val. Taxon Ind. val. Planothidium Eucocconeis laevis 79** lanceolatum agg. 66** Chamaepinnularia mediocris 72** Eunotia incisa 92** Gomphonema clavatum Gomphonema angustum 79** agg. 62** Eunotia steineckei 66** Frustulia crassinervia 89** Surirella brebissonii 69** Navicula cryptocephala 58** Adlafia aquaeductae 55** Eunotia paludosa 83** Psammothidium Eunotia exigua var. Cymbella austriaca 64** subatomoides 50** tenella 77** Delicata delicatula 57** Diploneis ovalis 47** Neidium hercynicum 67** Encyonopsis Tabellaria flocculosa Nitzschia linearis 55** microcephala 59* agg . 67** Nitzschia amphibia 50** Placoneis ignorata 44* Brachysira brebissonii 65** Gomphonema angustatum agg. 43** Pinnularia subcapitata 51* Achnanthidium minutissimum 40** Cymbella affinis 46* Encyonopsis cesatii 55* Cymbella subaequalis 49* Denticula tenuis 47* Cocconeis placentula 47* Caloneis alpestris 43* Encyonopsis microcephala 43* Amphora pediculus 42* Navicula cryptotenella 41* Stauroneis smithii 41*

95 Table 4. Relationships between all variables and sample scores on the first three ordination axes. Significant values of Spearman rank correlations (r s) and their probabilities (P) are given. After using Bonferroni corrections the current cut level was P = 0.004.

DCA axis 1 2 3 r P r P r P s s s pH -0.95 <0.004 -0.24 - 0.07 -

Conductivity -0.86 <0.004 -0.33 - -0.09 -

Average discharge -0.39 - -0.11 - 0.52 <0.004

Water depth 0.70 <0.004 0.52 <0.004 -0.07 -

Si 0.54 <0.004 0.14 - -0.01 -

Water content 0.27 - 0.43 - -0.6 -

Shading 0.41 - 0.37 - -0.08 -

Ca 2+ -0.89 <0.004 -0.13 - 0.06 -

Fe 0.47 <0.004 0.53 <0.004 0.08 -

- NO 3 -0.72 <0.004 -0.20 - 0.13 - Temperature 0.13 - 0.29 - 0.13 -

Number of taxa -0.51 <0.004 -0.03 - -0.02 -

Table 5. Physical-chemical characteristics of particular groups of sites.

Group 1 Group 2 Group 3 Group 4 Calcareous fens Brown-moss fens Mineral-rich Sphagnum -fens Acid Sphagnum -fens Mean Min Max Mean Min Max Mean Min Max Mean Min Max pH 8.0 6.5 8.8 7.0 5.8 8.5 6.3 5.3 6.9 5.3 2.8 8.1 temperature (°C) 10.9 5.0 17.0 11.1 7.0 19.0 12.1 9 .0 16.0 12.6 6.0 25.0 conductivity (µS/cm) 439 252 634 142 48 354 84 67 150 55 30 114 dissolved oxygen (mg/l) 7.7 1.7 12.7 6.1 0.3 9.8 5.9 3.5 8.1 4.8 0.1 9.7 discharge (ml/s) 265 33 1000 72 17 200 89 50 167 146 17 500 3- PO 4 (mg/l) 0.1 0.1 0.5 0.2 0.1 0.7 0.2 0.1 0.4 0.2 0.1 0.4 2- SO 4 (mg/l) 34.8 16.4 50.2 13.8 3.5 21.4 11.3 5.9 13.8 7.3 5.7 11.0 - NO 3 (mg/l) 6.5 0.1 12.7 1.2 0.1 3.2 2.3 0.2 5.5 0.3 0.1 0.6 Si (mg/l) 6.9 5.5 8.3 10.7 6.9 13.8 11.0 9.8 15.6 12.3 9.6 15.6 Fe (µg/l) 207 29 816 1482 69 6340 2570 540 4750 947 46 2090 Mn (µg/l) 31 2 167 82 4 278 75 24 163 55 20 158 Ca (mg/l) 83.6 60.6 112.0 24.0 8.6 50.0 6.4 2.9 9.0 4.0 2.1 5.4 Mg (mg/l) 10.0 2.4 17.0 6.8 1.2 15.5 1.8 1.0 2.5 1.6 0.7 3.1 Na (mg/l) 10.3 3.8 22.6 7.8 2.0 17.7 5.2 1.1 11.5 6.8 2.8 11.0 K (mg/l) 4.1 1.0 8.7 3.3 0.5 8.3 3.4 1.0 9.7 2.7 1.1 4.4

96

Část G

Bojková J., Schenková J., Horsák M., Hájek M.: Species richness and composition patterns of clitellate (Annelida) assemblages in the treeless spring fens: the effect of water chemistry and substrate. (zasláno do Freshwater biology)

97 Species richness and composition patterns of clitellate (Annelida) assemblages in the treeless spring fens: the effect of water chemistry and substrate

JIND ŘIŠKA BOJKOVÁ 1, *, JANA SCHENKOVÁ 1, MICHAL HORSÁK 1, MICHAL HÁJEK 1,2

1 Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlá řská 2, CZ-61137 Brno, Czech Republic 2 Department of Vegetation Ecology, Institute of Botany, Academy of Sciences of the Czech Republic, Po říčí 3b, CZ-603 00 Brno, Czech Republic *Corresponding author, e-mail: [email protected]

Keywords: spring fens, Oligochaeta, Hirudinida, poor-rich gradient, diversity pattern, compositional changes

SUMMARY 1. We explored responses of clitellate assemblages to the mineral-richness gradient which primarily determines the habitat diversity of the minerotrophic mires and is known to tightly control distributional patterns of phylogenetically diverse groups of organisms. Using data collected in the Western Carpathian spring fens, which covered a broad range of mineral richness (water conductivity varied between 30 and 600 µS.cm -1), we analyzed patterns of species richness and composition of clitellate assemblages of 34 treeless fen habitats sampled in 17 isolated sites. 2. The existence of two independent gradients in species data clearly showed the importance of base-richness, substrate parameters, and nutrient availability in constituting the clitellate assemblages. Species richness increased with decreasing mineral richness and increasing organic matter content. The main species composition turnover, associated with these two factors, can be viewed as a change of species traits filtered by substrate parameters. The gradual change from assemblages dominated by a stygophilous species Trichodrilus strandi , through the increase of semiaquatic sediment burrowers, to aquatic sediment burrowers and surface-active species dominance was observed towards mineral poor sites rich in organic matter. The second gradient of species composition can be explained as an increase of ubiquitous species towards fen sites with higher nutrient availability.

98 3. Exclusive importance of both water chemistry (mainly conductivity) and substrate characteristics (mainly moisture), found as proportions of an independent variation explained by these factors in species data variance, were significant and mutually comparable. However, a high amount of shared variation, being even higher that the pure effects clearly indicated that both parameters were tightly correlated, particularly due to tufa precipitation and vegetation changes along the mineral-richness gradient. 4. Our results suggest that even though clitellates are not directly dependent on mineral richness in wetlands, their species richness and compositional changes mirror this environmental gradient due to covariance with structural characteristic of the habitat. The species richness pattern along the gradient of mineral richness was, however, opposite to that of other groups of organisms explored in the study fens so far.

Introduction To identify and explain non-random patterns of species richness and composition is one of the key points how to understand underlying processes in community ecology. However, obtained patterns can vary among studied habitats, depending also on the length of the gradient involved in the study and, of course, among studied groups of organisms. Thus, it is not possible to apply results conducted at one type of habitats or taxonomical group to another one. Knowledge of community ecology of particular taxonomical group is often highly uneven across different habitat types. One of that group are aquatic and semi-aquatic oligochaetes (sensu oligochaetous Clitellata, Erséus 2005) and leeches (Hirudinida) which have been studied in detail in various types of running waters, lakes, and artificial ditches (e.g. Šporka 1998; Verdonschot 2001; Nijboer et al. 2004; Dumnicka et al. 2007; Dumnicka & Boggero 2007). However, only few works have been done in wetlands, especially in mires. Oligochaetes have been studied only in ombrotrophic or slightly minerotrophic bogs and moorlands (van Duinen et al. 2006; Cragg 1961; Svendsen 1957a, b) and bog streams (Smith 1986; Smith & Kaster 1986), which showed to have very low species richness. The only species Cognettia sphagnetorum inhabiting ombrotrophic bogs (van Duinen et al. 2006) was thoroughly studied in terms of growth, survival, and feeding habits (e.g. Springett & Latter 1977; Latter & Howson 1978). More species rich assemblages were associated with habitats influenced by minerotrophic alkaline water (lagg zones, transitional mires, and bog brooklets) due to higher nutrient availability (van Duinen et al. 2006). In spite of it, there is only sketchy information on clitellates of minerotrophic mires. Available studies deal with the production

99 of soil oligochaetes (Erman & Erman 1975) and species composition of assemblages in degraded fenland area in the Netherlands affected by eutrophication (Verdonschot 1984) and in ditches and canals of drained fens in Germany (Langheinrich et al. 2004). Clitellates of undisturbed, nutrient-limited fens have never been studied. The habitat diversity of well- preserved minerotrophic fens is primarily determined by the chemistry of groundwater supplying the fens, mostly base-richness and pH. A sharp gradient from acid mineral-poor fens to extremely mineral-rich calcareous fens has been described originally for vegetation as the poor-rich gradient (e.g. du Rietz 1949; Malmer 1986; Hájek et al. 2006). Four vegetation types distinguished along the gradient (poor Sphagnum -fens, moderately rich and rich Sphagnum -fens, peat-forming brown moss fens, and tufa-forming fens) clearly describe the diversity of fens (Hájek et al. 2006). Beside the vegetation, the conspicuous changes in species richness and composition along this gradient have also been observed in molluscan (Horsák & Hájek 2003), algal (Poulí čková et al. 2003; Fránková et al. 2009), and testacean (Opravilová & Hájek 2006) assemblages. However, the question whether aquatic macroinvertebrate assemblages response significantly to this ecological gradient has not been discussed yet, since most ecological studies did not cover the entire length of the gradient (e.g. Erman & Erman 1975; van Duinen et al. 2006; Suren et al. 2008). Therefore, in these studies the variation in macroinvertebrate assemblages was governed by both physical habitat attributes displayed at a within-site scale and by basic ecological differences among particular wetland types included in individual studies. The only reference to possible influence of mineral richness and pH on aquatic macroinvertebrates in groundwater-fed freshwater habitats in general was the disputation of Glazier (1991) concerning different assemblage structure in hard-water and soft-water springs. Non-insect taxa highly dominated in macroinvertebrate assemblages of hard-water springs and insect taxa dominated in soft-water springs, whereas insects usually prevailed in other lotic habitats regardless of their pH or alkalinity (Glazier & Gooch 1987; Glazier 1991). As a possible explanation, Glazier (1991) proposed a complex influence of adverse effects of low pH and alkalinity on crustaceans and molluscs and the physical constancy of studied habitats favouring a non-emergent life-style and high population densities. Following researches confirmed the importance of habitat stability especially in term of flow and temperature fluctuations (Barquín & Death 2004) and proved weak association of aquatic insects to spring water chemistry, which determined insect assemblages only in hard-water springs (Virtanen et al. 2009) and tufa-forming spring fens (Bojková & Helešic 2009). However, the influence of water chemistry on permanent fauna of spring habitats has not been studied so far.

100 To fill this apparent gap in ecological knowledge on freshwater clitellates, we have primarily chosen a suitable model area, the Western Carpathian flysch zone (Czech Republic and Slovakia), where particular spring fens vary from calcium-poor acid fens tending to ombrotrophy (about 2 mg.l -1 of calcium) to extremely calcium-rich petrifying fens (up to 300 mg.l -1 of calcium). The objectives of this study were to reveal species distribution patterns along main environmental gradients and to provide the first quantitative data on aquatic and semi-aquatic oligochaetes and leeches of this unique type of wetlands.

Material and methods Study area and sites The study area was located on the western margin of the Western Carpathians (48°56’- 49°32’N, 17°44’-18°51’E), in the border region between the Czech Republic and Slovakia. It has been chosen due to the variable chemistry of aquifers and inherently also groundwater supplying the wetlands as well as the similarities in both the hydrological characteristics and the origin and age of spring fens within the area (Rybní čková et al. 2005). The bedrock of this area is formed by alternating claystone and sandstone with variable chemistry, especially particularly differing in calcium and magnesium contents. Marls, claystone, limestone, and calcareous sandstone prevail in the south-western part of the study area, where groundwater is extremely rich in calcium and magnesium, which causes formation of cold water travertine (tufa) in most cases. Towards the north-east the groundwater is still rich in calcium, but has lower content of magnesium and higher contents of sodium, potassium and iron. The northern part of the study area is formed by decalcified, iron-cemented sandstone. The calcium concentration is the lowest within the entire study area there (Rapant et al. 1996; Hájek et al. 2002). Seventeen sites of treeless, mostly sloping spring fens covering complete poor-rich gradient were chosen for this study. The sites were selected on the basis of previous comprehensive studies of spring fen vegetation in order to cover all main vegetation types that mirror main ecological types of spring fen habitats (Hájek et al. 2006). To obtain a balance set of these structural habitat types, six sites were selected within calcareous fens with different degree of calcium carbonate precipitation, six within peat-forming mineral-rich fens without calcium carbonate precipitation, and five sites within Sphagnum -fens of different mineral richness and acidity of groundwater. The altitudes of the studied fens vary from 450 m to 750 m a.s.l.

101 Field sampling and explanatory variables Samples of clitellates were collected three times a year (in May, July, and September 2006), from seventeen sites in two different habitats (altogether 102 samples), i.e. the most flowing part of the spring fen and the part with slow-flowing or almost standing water. For statistical analyses samples from individual seasons were merged obtaining 34 samples from two habitats of 17 sites. Each sample was a plot delimited by a metal frame of 25x25 cm 2 where vegetation and upper bottom layer were gathered to the depth of five centimetres. Sampled substrate was elutriated through the net of 250 m mesh size and kept in 4% formaldehyde solution. Clitellates were extracted by hand-sorting under a stereomicroscope in the laboratory. Oligochaetes were permanently mounted on microscope slides. The keys of Hrab ě (1954, 1981), Nielsen & Christensen (1959, 1961, 1963), Timm (1999), and Timm & Veldhijzen van Zanten (2002) were used for identification of oligochaetes. Hirudinida were identified according to Neubert & Nesemann (1999) and Košel (2001). Species nomenclature follows Siddal et al. (2001), Erséus (2005), and Erséus et al. (2008). Water conductivity, temperature, dissolved oxygen, and pH were measured in situ by portable instruments (WTW Multi 340i/SET). At each sampling date 100 ml of substrate were extracted next to all sampling plots for the measuring of total organic carbon (Shimadzu

TOC-VCPH ). For characterising each site a one-shot sample of substrate and water was taken in August 2006. Substrate samples were sampled from a plot of 25x25 cm 2 to the depth of five centimetres. These plots always lied next to the places where samples of clitellates were taken and reflected the same structural microhabitat type. Particulate organic matter (POM) was elutriated from these samples, dried at 80 °C, sorted to types according to the origin (Sphagnum , brown mosses, vascular plants, and wood/leaves) and weighted. Remaining inorganic substrate was dried at 80 °C and used for grain size analysis. Median of particle diameters (Q 50 ) was used for describing the substrate particle size ( Giere 1993 ). Water samples were collected in autumn due to relative stability of water chemistry (Hájek & 2+ 2+ - 3- Hekera 2004) and the content of ions Ca , Mg , Fe, NO 3 and PO4 were measured (Tab. 1). Two environment characteristics of sites (moisture and nutrients) were estimated based on the vegetation composition using the Ellenberg indicator values (EIV) in the JUICE program (Tichý 2002). The species composition of the vascular plants was recorded in the 16 m 2 (4x4 m) plots placed in the central part of each site. The cover of each plant species was estimated using the Braun-Blanquet nine-grade scale (van der Maarel 1979). The resulting Ellenberg value of a studied characteristic in each sampling plot is the average of EIV of plant species recorded within the plot. The EIV were proved to be very useful in studies of animal ecology,

102 yielding accurate estimates of variables difficult to measure directly in the field (Horsák et al. 2007).

Statistical analyses The species abundance data were log-transformed as Y = log (n+1) to reduce the undue influence of dominant species. Detrended Correspondence Analysis (DCA) was used to study relationships between species composition and measured variables. Spearman rank correlations (r s) and Mann-Whitney U test were used to examine possible relationships between explanatory variables and site scores on the first three ordination axes. Bonferroni corrections of the significance level were used for multiple comparisons of environmental variables (Holm 1979). The variation partitioning approach (Økland 1999) was used to determine the relative amount of variation in clitellate data explained by two different constraining groups of variables (water chemistry and substrate characteristics) in separated CCAs by using the forward selection procedure and Monte Carlo test with 1999 permutations (Lepš & Šmilauer 2003). Since explained variation is also influenced by the number of explanatory variables (Peres-Neto et al. 2006), we used only variables that were significant in partial CCAs (Table 3) and the explained variation was further corrected using the formula suggested by Peres-Neto et al. (2006). The CANOCO 4.5 package (ter Braak & Šmilauer 2002) was used for ordination techniques and STATISTICA 8 (www.statsoft.com) for the other (uni-dimensional) analyses.

Results A total of 34 taxa of clitellates and 7,299 specimens were found in the studied fens (Tab. 2). Numbers of taxa per sample ranged from 3 to 15 and per site from 6 to 27, the median number of species per sample and site was 7 and 15, respectively. The clitellate assemblages consisted mostly of taxa belonging to families Enchytraeidae (14 taxa) and Naididae sensu Erséus et al . (2008) (former Tubificidae and Naididae together, 11 taxa). Both Lumbriculidae and Lumbricidae were represented by three taxa and Haplotaxidae by a single species. Two species of Hirudinida were recorded. Dominant oligochaete species, Trichodrilus strandi and Stylodrilus heringianus (both Lumbriculidae), represented 31.7% and 28.7%, respectively, of all specimens recorded (Tab. 2). The first DCA axis accounted for 22.4%, the second for 8.2% and the third for 5.6% of the total variance of the species data. The DCA revealed two major gradients in species data, which reflected the influence of the mineral richness and the substrate characteristics on the

103 composition of clitellate assemblages. The first DCA axis showed the shift in species composition from calcareous fens with different degree of tufa precipitation towards Sphagnum -fens and, in several cases, towards mineral-rich brown moss fens (Fig. 1). This gradient represented compound effect of the poor-rich gradient and the substrate character. According to the position of individual species on the first DCA axis (Fig. 2), a stygophilous species T. strandi was the only species with a strong affinity to petrifying spring fens. In the middle part of the axis, semiaquatic taxa Fridericia spp., Eiseniella tetraedra , Mesenchytraeus armatus , and Cognettia sphagnetorum and a crenophilous species Rhyacodrilus falciformis were present. Common aquatic oligochaete species, as well as a leech Erpobdella vilnensis reached the highest score on the first axis. The second ordination axis expressed the gradient of moisture and nutrients. Along this gradient the group of Sphagnum -fens (upper part of the diagram) and mineral-rich brown-moss fens (lower part of the diagram) were clearly separated (Fig. 1). Analogically a group of acidophilous and acidotolerant species had higher scores on the second axis than species not tolerating low pH and ubiquitous species (Fig. 2). Number of taxa was associated with species turnover as it significantly correlated with sites scores on the first DCA axis (Tab. 3). Abundance did not significantly vary along both axes. Species richness significantly increased with decreasing conductivity (r = -0.57, P < 0.001) and with the increasing values of total organic carbon (r = 0.60, P < 0.001). The number of taxa was the lowest on calcareous fens and increased towards mineral-rich Sphagnum -fens. Number of specimens per sample significantly correlated with moisture (r = 0.54, P < 0.001). The position of samples taken in two different habitats along both ordination axes differed only in case of tufa-forming fens. Sample scores of the first axis significantly differed between two habitats studied on the tufa-forming fens (Mann-Whitney U test, P < 0.05); samples collected in the most flowing habitats were situated on the left part of the DCA diagram. These samples were the most species poor (highly dominated by T. strandi ), as the forming of tufa were the strongest in these habitats. Samples taken in slow- flowing habitat had a high portion of enchytraeids and therefore they were placed along the first axis close to samples from brown-moss fens. Variables displaying significant correlation (P < 0.0025) with the site scores on the first DCA axis were characteristics of the bottom substrate (i.e. Q 50 , TOC, proportions of POM and wood/leaves in substrate sample) and variables describing chemistry of spring fen - 2- 2+ 2+ water (i.e. pH, conductivity, NO 3 , SO 4 , Ca , and Mg ) (Tab. 3). Positions of clitellate samples along the second axis were correlated with moisture and nutrients expressed by 3- Ellenberg values and the proportion of sphagna in substrate sample. The content of PO 4 was

104 not significant on first three ordination axes despite of its significance in CCAs. The variation partitioning revealed that water chemistry explained slightly more variability in species data than the characteristics of substrate did (Fig. 3). The majority of its independent variability 3- (10%) was explained by conductivity and PO 4 . Moisture and total organic carbon were responsible for a preponderance of the variability (9%) explained by substrate characteristics (13%). The amount of shared variability (18%) was higher than each of pure effect showing a strong connection of the bottom substrate character with the gradient of mineral richness. Conductivity, that directly reflects the mineral richness of groundwater, was significantly correlated with TOC (r s = -0.73, P < 0.001), Q 50 (r s = 0.62, P < 0.001), and proportions of wood/leaves and sphagna in the substrate sample (r s = 0.64 and r s = -0.67, P < 0.001) Conductivity, moisture, and proportion of POM originated from vascular plants were the variables that explained the most variability (30%) in the CCA model with both substrate and chemistry variables (Tab. 3).

Discussion Our results suggest the existence of two important ecological factors governing the species richness and composition of clitellate assemblages in the Western Carpathian spring fens. The assemblages were primarily controlled by the combined affect of substratum and water chemistry due to direct as well as indirect influence of base-richness on particular substrate characteristics. The precipitation of tufa on all submerged objects directly changes the environment creating harsh conditions for clitellates, thus the sites with the strongest tufa formation were the most species poor. Indirect effect of mineral richness was mediated by vegetation whose structure and composition strongly depend on this factor (Hájek et al. 2002, Rozbrojová & Hájek 2008). Along the major mineral richness gradient both share and quality of organic matter in the fen substrate changed which created different habitat conditions for species strongly preferring specific substrates. The species composition turnover was clearly reflected in the traits of species that dominated particular assemblages along the mineral richness gradient – stygophilous species – semiaquatic sediment burrowers – aquatic sediment burrowers and surface active species. Stygophilous species occurred exclusively on tufa- forming fens which are in direct contact with groundwater due to a weak formation of peat and vegetation sensitivity to the water table decrease (Hájková et al. 2004). Very rare stygophilous species Trichodrilus strandi reached a high abundance also in sites with strong tufa precipitation that limited other species occurrence. Due to its adaptations for living in narrow interstitial spaces by small flexible body and thin body wall, it is capable to

105 successfully colonise fine porous substrates with many inert organic particles created by tufa precipitation on their surface. Until now, T. strandi was known only from the spring outflow of an ice cave in the Tatra Mts in Slovakia, approximately 150 km far from the study area (Hrab ě 1942) and from several scattered records from karstic or flysh areas in France (Giani 1979; Juget & Dumnicka 1986), Yugoslavia (Karaman 1987), and Italy (Brinkhurst 1963). Along the gradient of decreasing calcium content, the absence of tufa formation entailed the change of assemblage composition towards the species preferring or commonly inhabiting deeper layers of sediments, mostly Enchytraeidae. These sediment-burrowing species adapted to such environment by a thick integument were reported from various freshwater and terrestrial habitats as well. For example Cognettia sphagnetorum occurs in coniferous forest soils (e.g. Lundkvist 1982; Schlaghamerský 2002), as well as aquatic habitats in ombrotrophic and slightly minerotrophic mires (e.g. Erman & Erman 1975; van Duinen et al. 2006). It often dominated the assemblages from middle substratum layer in aquatic habitats (Dumnická & Galas 1997) and upper horizons in soil (Lundkvist 1982; Graefe & Schmelz 1999; Schlaghamerský 2002). Another characteristic species, Rhyacodrilus falciformis inhabited different waters including hyporheal, springs, and karstic streams (Juget 1987), but there were also several records from terrestrial habitats - moist soils in grasslands, meadows, and deciduous forests which were not permanently waterlogged (Graefe & Schmelz 1999; Schlaghamerský & Kobeti čová 2005) . The end of the main gradient was characterized by aquatic sediment burrowers (e.g. oligochaetes Limnodrilus hoffmeisteri , Tubifex tubifex , Stylodrilus heringianus ) and surface active species (e.g. a leech Erpobdella vilnensis ) which were not recorded on previous fen types or were scarce there. Different habitat types presented at the end of the main mineral-richness gradient ( Sphagnum -fens and some brown- moss fens) was distinguished along the second ordination axis, where samples were arranged according to moisture and fertility of the substrate. Nutrient-poor sites were associated with the presence of sphagna and with low water pH, thus their assemblages were characterised by acidotolerant species Cognettia sphagnetorum , C. glandulosa , and Lumbriculus variegatus - the only clitellates that can reach high densities in extreme conditions of bogs and moorlands (van Duinen et al. 2006; Springett & Latter 1977). These species are reproducing asexually by fragmentation (we did not observed mature individuals in our samples), since the lack of minerals inhibits productions of cocoons and juveniles (Vos et al. 2000). Nutrient-rich sites were dominated by ubiquitous aquatic species, such as L. hoffmeisteri, T. tubifex , and E. vilnensis . This pattern showed the importance of major nutrients (N, P, K) availability within pristine sites where different nutrient content is connected either with eutrophication due to

106 the vicinity of fertilised land or with the stability of water level. The seasonal decrease of water level and desiccation of the upper soil layer causes nutrients to mineralise. The species composition of the vegetation shifts from sedge-moss dominated to forb-rich vegetation with more nutrient-requiring plant species (Hájek et al. 2006; Rozbrojová & Hájek 2008). Consequently, the formation of peat is lower and the structure of organic sediments is different in nutrient-enriched sites which were chiefly characterized by ubiquitous aquatic species. The decrease of fen specialists and their simultaneous replacement by ubiquitous species has been observed in plant as well as in mollusc assemblages (Hájek et al. 2006). Nevertheless, the structure and composition of clitellate assemblage was fairly variable, as it embraced also many species inhabiting other fen habitats studied, even though in low abundance. These species differed markedly from those recorded in fens degraded by peat extraction and cattle farming, where the composition of oligochaete assemblages was completely changed (Verdonschot 1984). Degraded fens studied by Verdonschot (1984) were consisted solely of ubiquitous species including many species often occurring in eutrophic waters and its composition was controlled by phosphate, ammonium, and nitrate concentrations, water depth, and the development of vegetation. Putting aside pronounced effects of pollution on clitellates studied in detail particularly (e.g. Brinkhurst & Cook 1974; Uzunov et al. 1988; Lang 1998), main factors controlling the species richness and composition of clitellate assemblages in different freshwater habitats are linked with substrate composition, organic matter content, food quality of the organic component and, consequently, current velocity (e.g. Montanholi-Martins & Takeda 1999; Verdonschot 1999, 2001; Dumnicka 2006; Syrovátka et al. 2009). However, in our studied fens the effect of water chemistry itself was roughly equivalent to the effect of substrate characteristics. There are only two studies on the importance of mineral richness of water for clitellate assemblages conducted so far (Martínez-Ansemil & Collado 1996; Schenková et al. 2001). They report a significant influence of water mineral richness on clitellate assemblages on a large geographical scale covering several geographical units. The reported patterns thus illustrated different regional diversity of clitellates, partly interfering with different geology, rather than real effect of water chemistry. Both studies doubted about the direct effect of this environmental factor on aquatic clitellate assemblages, also taking into account the fact that their data did not cover the whole gradient of the mineral richness. In the spring fens, clitellates as a major component of macroinvertebrate permanent fauna, reflected the base- richness and also the influence of different hydrological regime and productivity of fen habitats. Comparing with similar data of insect larvae (Plecoptera) from identical sites and

107 samples, a different response of the assemblage to environmental variables measured was observed. Insect larvae were not dependent on water chemistry at all; the structure and composition of assemblages were controlled by the substrate structure (grain size diameter and proportion of POM in substrate) and its quality (TOC and the character of vegetation forming dead organic matter, mainly vascular plants vs. sphagna) (Bojková & Helešic 2009). Different patterns in clitellates and stoneflies could be related with the feeding habits and the attachment to substrate. Stonefly larvae inhabit the surface of debris, leaves or fine sediments, usually staying on the top of the substrate (sprawling and walking larvae) (Graf et al. 2009), in contrast to clitellates which live inside the substrate (burrowing/boring locomotion type). Therefore, not only particle size and amount of organic matter in substratum, but also character of interstitial spaces determine the occurrence of oligochaete species in particular substrate type. While stoneflies dwelling in spring fens are mostly shredders and partly deposit feeders depending on the amount and size structure of particulate organic matter (Bojková & Helešic 2009; Graf et al. 2009), oligochaetes are deposit feeders which comprise many taxa known to be able to selectively feed on certain food items or size classes (e.g. Lazim & Learner 1987; Smith & Kaster 1986). They are influenced by food quality in terms of the abundance and species composition of bacteria, algae, and fungi growing on organic matter (e.g. Springett & Latter 1977; Moore 1978; McMurtry et al. 1983; Rodriguez et al. 2001). Since the gradient of mineral richness strongly governs the variability of vegetation, algae, and fungi (Poulí čková et al. 2005; Hájek et al. 2006) it could vicariously influence also clitellates. Since the effect of mineral richness on clitellates is indirect contrary to higher plants, molluscs or algae, which are influenced directly due to the various physiological reasons (e.g. Poulí čková et al. 2005; Horsák 2006; Rozbrojová & Hájek 2008), the influence of the gradient on clitellate seems to be weaker. However, the species richness is significantly dependent on conductivity, which was proved to be temporally stable variable in mires (Vitt et al. 1995; Hájek & Hekera 2004; Hájková et al. 2004). The species richness of clitellates exhibited inverse pattern than organisms strongly responding to the mineral richness. Species richness of vascular plants, diatoms, and molluscs increases towards mineral-rich fens (Hájek et al. 2002; Horsák & Hájek 2003; Fránková et al. 2009); although a small decrease was observed in the extremely mineral-rich salt travertine sites (not included in this study) being more distinct in mollusc assemblages (Horsák 2006). Comparing with plants and diatoms, molluscs also displayed a steep decrease towards the mineral-poor and acid fens (Horsák 2006). Clitellates expressed clearly different pattern of species richness as they were species poor at sites where above mentioned organisms reach their high or maximal species diversity.

108 Optima of most clitellate species were shifted towards mineral-rich Sphagnum -fens and thus the resulting pattern was a continual decrease with the increasing site basicity. However, it should be stressed that this study did not include extremely mineral-poor and permanently acid ombrotrophic sites, simply because they are not present in the study area. These types of acidic mires are known to be the most species-poor due to low nutrient availability for clitellates (van Duinen et al. 2006). Therefore, a skewed unimodal response towards Sphagnum -dominated mires could be expected, as the extremes of the poor-rich gradient were proved to limit the occurrence of many clitellate species.

Acknowledgements This study was supported by the Grant Agency of the Czech Republic (526/09/H025) and the Ministry of Education of the Czech Republic (MSM 0021622416).

References Barquín J. & Death R.G. (2004) Patterns of invertebrate diversity in streams and freshwater springs in Northern . Archiv für Hydrobiologie , 161 , 329–349. Bojková J. & Helešic J. (2009) Spring fens as a unique biotope of stonefly larvae (Plecoptera): species richness and species composition gradients. Aquatic Insects , in press. Brinkhurst R.O. (1963) The aquatic Oligochaeta recorded from lake Maggiore with notes on species known from Italy. Memorie del Istituto Italiano di Idrobiologia, 16 , 137–150. Brinkhurst R.O. & Cook D.G. (1974) Aquatic Earthworms (Annelida: Oligochaeta) In: Pollution ecology of freshwater invertebrates (Eds C.W. Hart, Jr. & S.L.H Fuller), pp. 143–156. Academic Press, New York and London. Cragg J.B. (1961) Some aspects of the ecology of moorland animals. Journal of Ecology , 49 , 477–506. Dumnicka E. (2006) Composition and abundance of oligochaetes (Annelida: Oligochaeta) in springs of Kraków-Cz ęstochowa Upland (Southern Poland): Effect of spring encasing and environmental factors. Polish Journal of Ecology , 54 , 231–242.

Dumnicka E. & Boggero A. (2007) Freshwater Oligochaeta in two mountain ranges in Europe: the Tatra Mountains (Poland) and the Alps (Italy). Fundamental and Applied Limnology/Archiv für Hydrobiologie , 168 , 231–242.

Dumnicka E. & Galas J. (1997) The relationship between Oligochaeta, particulate organic matter and environmental conditions in epigean and hypogean parts of a mountain stream in Poland. Mémoires de Biospéleologie , 24 , 9–14.

109 Dumnicka E., Galas J. & Koperski P. (2007) Benthic invertebrates in karst springs: Does substratum or location define communities? International Review of Hydrobiology , 92 , 452–464. du Rietz G.E. (1949) Huvudenheter och huvudgränser i svensk myrvegetation. Svensk Botanisk Tidskrift, 43 , 274–309. Erman D.C. & Erman N.A. (1975) Macroinvertebrate composition and production in some Sierra Nevada minerotrophic peatlands. Ecology , 56 , 591–603. Erséus C. (2005) Phylogeny of oligochaetous Clitellata. Hydrobiologia 535/536 , 357–372. Erséus C., Wetzel M.J. & Gustavson L. (2008) ICZN rules – a farewell to Tubificidae (Annelida, Clitellata). Zootaxa , 1744 , 66–68.

Fránková M., Bojková J., Poulí čková A. & Hájek M. (2009) The structure and species richness of the diatom assemblages of the Western Carpathian spring fens along the gradient of mineral richness. Fottea , in press. Giani N. (1979) Les oligochètes du Sud-Ouest de la France (2e. Note). Bull. Soc. Hist. Nat. Toulouse , 115 , 347–358. Giere O. (1993) Meiobenthology, the microscopic fauna in aquatic sediments. Springer Verlag, Berlin. Glazier D.S. (1991) The fauna of North American temperate cold springs: patterns and hypotheses. Freshwater Biology , 26 , 527–542. Glazier D.S. & Gooch J.L. (1987) Macroinvertebrate assemblages in Pennsylvania (USA) springs. Hydrobiologia , 150 , 33–43. Graefe U. & Schmelz R.M. (1999) Indicator values, strategy, types and life forms of terrestrial Echytraeidae and other microannelids. Newsletter on Enchytraeidae , 6, 59–67. Graf W., Lorenz A.W., Tierno de Figueroa J.M., Lucke S., Lopez-Rodriguez M.J. & Davies C. (2009) Plecoptera. In: Distribution and ecological preferences of European freshwater organisms , volume 2 (Eds A. Schmidt-Kloiber & D. Hering), pp. 262. Pensoft Publishers, Sofia. Hájek M. & Hekera P. (2004) Can seasonal variation in fen water chemistry influence the reliability of vegetation-environment analyses. Preslia , 76 , 1–14.

Hájek M., Hekera P. & Hájková P. (2002) Spring fen vegetation and water chemistry in the Western Carpathian flysch zone. Folia Geobotanica , 37 , 205–224.

Hájek M., Horsák M., Hájková P. & Dít ě D. (2006) Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in

110 ecological studies. Perspectives in Plant Ecology, Evolution and Systematics, 8, 97–114.

Hájková P., Wolf P. & Hájek M. (2004) Environmental factors and Carpathian spring fen vegetation: the importance of scale and temporal variation. Annales Botanici Fennici , 41 , 249–262. Holm S. (1979) A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics , 6, 65–70. Horsák M. (2006) Mollusc community patterns and species response curves along a mineral richness gradient: a case study in fens. Journal of Biogeography , 33 , 98–107. Horsák M. & Hájek M. (2003) Composition and species richness of mollusc communities in relation to vegetation and water chemistry in the Western Carpathian spring fens: the poor-rich gradient. Journal of Molluscan Studies , 69 , 349–357. Horsák M., Hájek M., Tichý L. & Ju řičková L. (2007) Plant indicator values as a tool for land mollusc autecology assessment. Acta Oecologica , 32 , 161–171. Hrab ě S. (1942) Poznámky o zví řen ě ze studní a pramen ů na Slovensku. Sborník Přírodov ědeckého klubu v Brn ě, 24 , 23-30. Hrab ě S. (1954) Klí č k ur čování zví řeny ČSR . Vol. 1. ČSAV, Praha. Hrab ě S. (1981) Vodní málošt ětinatci (Oligochaeta) Československa. Acta Universitatis Carolinae, Biologia , 1979 , 1–168. Juget J. (1987) Contribution to the study of the Rhyacodrilinae (Tubificidae, Oligochaeta), with description of two new stygobiont species from the alluvial plain of the French upper Rhone, Rhyacodrilus amphigenus , sp. n. and Rhizodriloides phreaticola , g. n., sp. n. Hydrobiologia , 155 , 107–188. Juget J. & Dumnicka E. (1986) Oligochaeta (Incl. Aphanoneura) des eaux souterraines continentales. In: Stygofauna Mundi (Ed Botosaneanu L.)., pp. 234–243. E.J.Brill/Dr.W. Backhuys, Leiden. Karaman S. (1987) Trichodrilus strandi (Oligochaeta, Lumbriculidae) a new element in the fauna of Yugoslavia. Biološki Vestnik , 35 , 27–30. Košel V. (2001) Hirudinológia pre hydrobiológov v praxi. In: Zborník z hydrobiologického kurzu 2001 (Ed. J. Makovinská & L. Tóthová), pp. 37–54. Rajecké Teplice, Slovaka 26– 30 March 2001. Lang C. (1998) Contrasting responses of oligochaetes (Annelida) and chironomids (Diptera) to the abatement of eutrophication in Lake Neuchâtel. Aquatic Sciences , 61 , 206–214.

111 Langheinrich U., Tischew S., Gersberg R.M. & Lüderitz V. (2004) Ditches and canals in management of fens: opportunity or risk? A case study in the Drömling Natural Park, Germany. Wetland Ecology and Management , 12 , 429–445. Latter P.M. & Howson G. (1978) Studies on the microfauna of blanket bog with particular reference to enchytraeidae. II. Growth and survival of Cognettia sphagnetorum on various substrates. Journal of Animal Ecology , 47 , 425–448. Lazim M.N. & Learner M.A. (1987) The influence of sediment composition and leaf litter on the distribution of tubificid worms (Oligochaeta). A field and laboratory study. Oecologia , 72 , 131–136. Lepš J. & Šmilauer P. (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge. Lundkvist H. (1982) Population dynamics of Cognettia sphagnetorum (Enchytraeidae) in a Scots pine forest soil in Central Sweden. Pedobiologia , 23 , 21–41. Malmer N. (1986) Vegetational gradients in relation to environmental conditions in north western European mires. Canadian Journal of Botany , 64 , 375-383. Martínez-Ansemil E. & Collado R. (1996) Distribution patterns of aquatic oligochaetes inhabiting watercourses in the Northwestern Iberian Peninsula. Hydrobiologia , 334 , 73– 83. McMurtry M.J., Rapport D.J. & Chua K.E. (1983) Substrate selection by tubificid oligochaetes. Canadian Journal of Fishery and Aquatic Sciences , 40 , 1639–1646. Montanholi-Martins M.C. & Takeda A.M. (1999) Communities of benthic oligochaetes in relation to sediment structure in the upper Paraná River, Brazil. Studies on Neotropical Fauna and Environment , 34 , 52–58. Moore J.W. (1978) Importance of algae in the diet of the oligochaetes Lumbriculus variegatus (Müller) and Rhyacodrilus sodalis (Eisen). Oecologia , 35 , 357–363. Nielsen C.O. & Christensen B. (1959) The Enchytraeidae – critical revision and of European species (studies on Enchytraeidae VII). Natura Jutlandica , 8–9, 1–160. Nielsen C.O. & Christensen B. (1961) The Enchytraeidae – critical revision and taxonomy of European species. Natura Jutlandica , Suppl. 1, 1–23. Nielsen C.O. & Christensen B. (1963) The Enchytraeidae – critical revision and taxonomy of European species. Natura Jutlandica , Suppl. 2, 1–19. Neubert E. & Nesemann H. (1999) Annelida, Clitellata; Branchiobdellida, Acanthobdellea, Hirudinea. Süsswasserfauna von Mitteleuropa, Band 6/2. Spektrum Academischer Verlag, Berlin.

112 Nijboer R.C., Wetzel M.J. & Verdonschot P.F.M. (2004) Diversity and distribution of Tubificidae, Naididae, and Lumbriculidae (Annelida: Oligochaeta) in the Netherlands: an evaluation of twenty years of monitoring data. Hydrobiologia , 520 , 127–141.

Opravilová V. & Hájek M. (2006) The variation of testacean assemblages (Rhizopoda) along the complete base-richness gradient in fens: A case study from the Western Carpathians.

Acta Protozoologica , 45 , 191 –204. Økland R.H. (1999) On the variation explained by ordination and constrained ordination axes. Journal of Vegetation Sciences , 10 , 131–136. Peres-Neto P.R., Legendre P., Dray S. & Borcard D. (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology , 87 , 2614–2625.

Poulí čková A., Bogdanová K., Hekera P. & Hájková P. (2003) Epiphytic diatoms of the

spring fens in the flysh area of the Western Carpathians. Biologia, 58 , 749 –757. Poulí čková A., Hájek M. & Rybní ček, K. (eds.) 2005. Ecology and palaeoecology of spring fens in the western part of the Carpathians. Palacký University, Olomouc. Rapant S., Vrana K. & Bodiš D. (1996) Geochemical Atlas of Slovakia. Part Groundwater. GSSR, Bratislava. Rodriguez P., Martinez-Madrid M., Arrate J.A. & Navarro E. (2001) Selective feeding by the aquatic oligochaete Tubifex tubifex (Tubificidae, Clitellata). Hydrobiologia , 463 , 133–140. Rozbrojová Z. & Hájek M. 2008. Changes in nutrient limitation of spring fen vegetation across environmental gradients in the West Carpathians. Journal of Vegetation Science , 19 , 613-620. Rybní čková E., Hájková P. & Rybní ček K. (2005) The origin and development of spring fen vegetation and ecosystems – palaeobotanical results. In: Ecology and Palaeoecology of Spring Fens of the West Carpathians (Eds A. Poulí čková, M. Hájek, K. Rybní ček), pp. 29–62. Palacký University, Olomouc. Schenková J., Komárek O. & Zahrádková S. (2001) Oligochaeta of the Morava and Odra River basins (Czech Republic): species distribution and community composition. Hydrobiologia , 463 , 235–246. Schlaghamerský J. (2002) The Enchytraeidae of spruce forest plots of different exposure and acid deposition in a German mountain range. European Journal of Soil Biology , 38 , 305– 309. Schlaghamerský J. & Kobeti čová K. (2005) A small annelid community (Enchytraeidae, Tubificidae, Aeolosomatidae) during meadow restoration on arable land and in a nearby

113 well-preserved meadow. Proceedings of the Estonian Academy of Sciences: Biology, Ecology , 54 , 323–330. Siddall M.E., Apakupakul K., Burreson E.M., Coates K.A., Erséus C., Gelder S., Källersjö M. & Trapido-Rosenthal H. (2001) Validating Livanow: molecular data agree that leeches, branchiobdellidans, and Acanthobdella peledina form a monphyletic group of oligochaetes. Molecular Phylogenetics and Evolution , 21 , 346–351. Smith M.E. (1986) Ecology of Naididae (Oligochaeta) from an alkaline bog stream: life history patterns and community structure. Hydrobiologia , 133 , 79–90. Smith M.E. & Kaster J.R. (1986) Feeding habits and dietary overlap of Naididae (Oligochaeta) form a bog stream. Hydrobiologia , 137 , 193–201. Springett J.A. & Latter P.M. (1977) Studies on the micro-fauna of blanket bog with particular reference to enchytraeidae. I. Field and laboratory test of micro-organisms as food. Journal of Animal Ecology , 46 , 959–974. Suren A.M., Lambert P., Image K. & Sorrell B.K. (2008) Variation in wetland invertebrate communities in lowland acidic fens and swamps. Freshwater Biology , 53 , 727–744. Svendsen J.A. (1975a) The distribution of Lumbricidae in an area of Pennine moorland. Journal of Animal Ecology , 26 , 411–421. Svendsen J.A. (1975b) The behaviour of lumbricids under moorland conditions. Journal of Animal Ecology , 26 , 423–439. Syrovátka V., Schenková J. & Brabec K. (2009) The distribution of chironomid larvae and oligochaetes within a stony-bottomed river stretch: the role of substrate and hydraulic characteristics. Fundamental and Applied Limnology/Archiv für Hydrobiologie , 173 , 43– 62. Šporka F. (1998) Thy typology of floodplain water bodies of the Middle Danube (Slovakia) on the basis of the superficial polychaete and oligochaete fauna. Hydrobiologia , 386 , 55–62. ter Braak C.J.F. & Šmilauer P. (2002) ‘ CANOCO Reference manual and canodraw for Windows user’s guide. Software for canonical community ordination (ver. 4.5) ’, Wageningen: Biometris. Tichý L. (2002) JUICE, software for vegetation classification. Journal of Vegetation Science , 13 , 451–453. Timm T. (1999) A guide to the Estonian Annelida. Estonian Academy Publishers, Tartu– Tallinn.

114 Timm T. & Veldhijzen van Zanten H.H. (2002) Freshwater Oligochaeta of North–West Europe. CD–ROM. Center for Taxonomic Identification (ETI) and University of Amsterdam, the Netherlands. Uzunov V., Košel V. & Sláde ček V. (1988) Indicator value of freshwater Oligochaeta. Acta Hydrochimica et Hydrobiologica , 16 , 173–186. van der Maarel E. (1979) Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio , 39 , 97–114. van Duinen G.A., Timm T., Smolders A.J.P., Brock A.M.T. & Verberk W.C.E.P. (2006) Differential response of aquatic oligochaete species to increased nutrient availability – a comparative study between Estonian and Dutch raised bogs. Hydrobiologia , 564 , 143– 155. Verdonschot P.F.M. (1984) The distribution of aquatic oligochaetes on the fenland area of N.W. Overijssel (The Netherlands). Hydrobiologia , 115 , 215–222. Verdonschot P.F.M. (1999) Micro-distribution of oligochaetes in a soft-bottomed lowland stream (Elsbeek; The Netherlands). Hydrobiologia , 406 , 149–163. Verdonschot P.F.M. (2001) Hydrology and substrates: determinants of oligochaete distribution in lowland streams (The Netherlands). Hydrobiologia , 463 , 249–262. Virtanen R., Ilmonen J., Paasivirta L. & Muotka T. (2009) Community concordance between bryophyte and insect assemblages in boreal springs: a broad-scale study in isolated habitats. Freshwater Biology , 54 , 1651–1662. Vitt, D.H., Bayley, S.E. & Jin, T.L. (1995) Seasonal variation in water chemistry over a bog- rich fen gradient in Continental Western Canada. Canadian Journal of Fisheries and Aquatic Sciences , 52 , 587–606. Vos J.H., Ooijevaar M.A.G., Postma J.F. & Adrmiraal W. (2002) Interaction between food availability and food quality during growth of early instar of chironomid larvae. Journal of the North American Benthological Society , 19 , 158–168.

115 Table 1. Descriptive statistics for the variables used in the analyses.

Calcareous fens Brown-moss fens Sphagnum -fens MEAN MAX MIN SD MEAN MAX MIN SD MEAN MAX MIN SD pH 7.9 8.2 7.3 0.3 7.3 8.4 6.3 0.6 5.4 6.9 2.8 1.1 T (°C) 10.6 16.0 7.0 2.1 12.8 19.0 8.0 2.9 12.3 25.0 6.3 3.4 conductivity (µS/cm) 485.8 600.0 406.0 60.3 288.3 599.0 48.0 169.8 62.9 114.0 30.0 19.5 DO (mg/l) 8.7 12.7 5.3 2.2 6.1 9.8 2.2 2.4 5.1 8.5 1.0 2.3 discharge (ml/s) 188.3 533.3 46.7 162.5 78.9 130.0 43.3 30.7 120.0 433.3 23.3 157.7 TOC (g/kg) 18.9 65.8 0.0 18.0 103.0 271.8 18.4 68.8 214.6 319.0 76.3 81.0 3- PO 4 (mg/l) 0.1 0.5 0.0 0.2 0.2 0.3 0.0 0.1 0.3 0.7 0.0 0.3 - NO 3 (mg/l) 9.3 20.5 0.2 6.2 1.0 2.5 0.1 0.9 0.5 1.3 0.1 0.4 Fe (µg/l) 305.7 816.0 40.0 280.3 2925.5 3600.0 169.0 846.4 1400.4 3660.0 46.0 2327.6 Ca (mg/l) 88.8 112.0 60.6 19.8 48.7 107.0 9.3 33.2 6.0 9.2 3.7 1.9 Mg (mg/l) 11.7 18.6 2.4 5.8 9.3 15.5 1.2 5.5 1.9 3.1 0.7 0.9 Na (mg/l) 9.3 16.3 3.8 4.8 12.0 22.6 3.8 6.3 9.3 11.5 3.8 2.8 K (mg/l) 4.1 8.7 1.0 3.0 4.8 8.6 0.7 2.9 5.0 9.7 1.1 2.8

Q50 (mm) 3.4 11.6 0.2 3.8 0.3 0.9 0.1 0.3 0.1 0.1 0.1 0.0 POM (%) 9.8 42.1 0.2 11.1 28.0 82.2 1.6 24.4 58.3 99.1 30.2 19.0 leaves/wood (%) 58.8 100.0 20.0 36.3 46.5 90.0 3.0 43.5 0.0 0.0 0.0 0.0 plants (%) 18.0 24.0 14.0 4.3 48.8 72.0 6.0 25.3 54.0 80.0 24.0 23.0 mosses (%) 64.3 80.0 55.0 11.1 48.0 94.0 10 28.5 14.0 26.0 2.0 12.0 sphagna (%) 0.0 0.0 0.0 0.0 24.0 24.0 24.0 0.0 62.0 100 18.0 28.7

116 Table 2. List of recorded taxa. The average abundance per sample/the frequency in samples are given. Numbers of samples are given in parenthesis.

Calcareous Brown-moss Sphagnum Names of taxa fens (12) fens (12) fens (10) Oligochaeta Enchytraeidae Buchholzia sp. 0 0 0.02/1 Cernosvitoviella sp. 0.21/1 0.05/1 0.09/4 Cognettia glandulosa (Michaelsen, 1888) 0.09/1 0.56/3 2.71/7 Cognettia sphagnetorum (Vejdovský, 1878) 1.03/3 7.67/5 10.03/10 Enchytraeus albidus Henle, 1837 0 0.05/1 0 Enchytraeus cf. buchholzi Vejdovský, 1879 0.15/1 0 0 Enchytraeus spp. 0.96/3 0.38/1 0.19/4 Fridericia spp. 10.22/7 3.19/8 2.91/7 Henlea spp. 1.09/5 0.12/2 0 Marionina argentea (Michaelsen, 1889) 0.04/1 0 0 Marionina sp. 0.10/2 0.27/2 0 Mesenchytraeus armatus (Levinsen, 1884) 0.31/3 1.86/4 0.48/5 Mesenchytraeus sp. 0 0 0.03/5 Stercutus niveus Michaelsen, 1888 0.17/1 0 0 Naidiae (sensu Erséus et al. 2008) Aulodrilus limnobius Bretscher, 1899 0 0.18/1 0 Limnodrilus udekemianus Claparède, 1862 0.05/1 0.88/4 0.14/2 Limnodrilus hoffmeisteri Claparède, 1862 0 1.10/5 0.66/3 Nais communis Piguet, 1906 0 0.34/4 1.26/3 Pristina bilobata (Bretscher, 1903) 0 0.23/2 0.43/4 Pristina rosea (Piguet, 1906) 0 0 0.02/1 Rhyacodrilus coccineus (Vejdovský, 1875) 0 0 0.05/1 Rhyacodrilus falciformis Bretscher, 1901 0.26/2 1.54/6 0.09/3 Tubifex ignotus (Štolc, 1886) 0 0.05/1 0 Tubifex tubifex (Müller, 1774) 0.38/3 0.95/1 1.71/3 Tubificidae juv. 0.39/3 1.64/3 1.35/5 Lumbriculidae Lumbriculus variegatus (Müller, 1774) 0 4.09/3 12.77/7 Stylodrilus heringianus Claparède, 1862 0.09/1 13.64/8 59.88/10 Trichodrilus strandi Hrab ě, 1936 77.55/12 8.13/2 0 Lumbricidae Eisenia fetida (Savigny, 1826) 0 0 0.07/1 Eiseniella tetraedra (Savigny, 1826) 6.41/12 22.67/12 1.52/6 Lumbricidae juv. 0 0 0.06/2 Haplotaxidae Haplotaxis gordioides (Hartmann, 1821) 0.50/2 0.38/1 0 Hirudinida Erpobdlellidae Erpobdella vilnensis (Liskiewicz, 1925) 0 29.62/8 3.54/4 Trochaeta bykowski Örley, 1886 0 0.40/2 0

117 Table 3. A: Spearman correlations between explanatory variables and site scores on the first three ordination axes are shown. Significant correlations at the level of P < 0.05 are mark by asterisk and those significant after Bonferroni correction (P < 0.0025) are in bold. B: Percentage of species data variance explained by each group of variables in separated CCAs. C: Percentage of species data variance explained by all variables. Order of variable selection in forward selection and the significance (Monte Carlo test) are given in sections B and C.

A B C DCA 1 DCA 2 DCA 3 Order in Explained variation Order in Explained variation forw. sel. forw. sel. rs rs rs % P % P WATER CHEMISTRY pH -0.780 -0.500* -0.411 5. 4% <0.05 6. 4% n.s. conductivity -0.837 -0.390 -0.376 1. 17% <0.01 1. 17% <0.001 Fe 0.424 0.104 0.014 7. 3% n.s. 12. 2% n.s. Ca 2+ -0.750 -0.447* -0.316 6. 3% n.s. 8. 4% n.s. Mg 2+ -0.512* -0.498* -0.386 2. 6% <0.01 9. 3% n.s. - NO 3 -0.612 -0.309 -0.053 3. 5% <0.01 7. 3% n.s. 3- PO 4 0.062 0.191 0.395 4. 4% <0.05 5. 4% <0.05 SUBSTRATE CHARACTERISTICS TOC 0.610 0.410 0.346 4. 5% <0.05 4. 5% <0.05 moisture 0.195 0.532 0.013 3. 4% <0.05 2. 6% <0.01 nutrients -0.279 -0.610 -0.209 8. 2% n.s. 10. 3% n.s.

Q50 -0.649 -0.347 -0.110 9. 2% n.s. 14. 4% n.s. POM 0.623 0.372 0.123 7. 3% n.s. 11. 3% n.s. leaves/wood -0.795 -0.164 -0.035 1. 15% <0.01 15. 1% n.s. vascular plants 0.371 -0.304 -0.061 5. 3% n.s. 3. 7% <0.01 brown-mosses 0.166 -0.075 -0.043 6. 3% n.s. 16. 1% n.s. Sphagna 0.501* 0.702 0.108 2. 7% <0.01 13. 2% n.s. OTHERS average discharge -0.165 -0.438 -0.461* number of species 0.660 0.200 0.247 number of specimens 0.084 0.41 -0.271

118 Figure 1. DCA ordination plot of samples on the first two ordination axes. Variables that significantly correlated with the first and the second ordination axes were posteriori plotted. Classification of investigated sites was based on the vegetation units: rectangles, calcareous fens; circles. peat-forming brown-moss fens; triangles, Sphagnum -fens.

Figure 2. Position of species along the first two ordination axes. Species with the highest fit on the first axis were selected.

119 Figure 3. Variation partitioning. Independent and share variability of water chemistry and substrate characteristics were expressed as percentages of the total inertia in partial CCAs. Only significant variables were included (see Table 2). Significance of independent variability explained was tested (Monte Carlo test): * < 0.05, ** < 0.01, *** < 0.001.

120 3. Literatura

BLADES D.C.A. & MARSHALL S.A. 1994. Terrestrial arthropodes of Canadian peatlands: synopsis of pan trap collections at four southern Ontario peatlands. Memoirs of the Entomological Society of Canada , 169: 221–284.

BOUKAL D.S. 2005. Psephenidae, p. 458. In: FARKA Č J., KRÁL D. & ŠKORPÍK M. (eds): Červený seznam ohrožených druh ů České republiky. Bezobratlí. 760 pp. Agentura ochrany p řírody a krajiny ČR, Praha.

BOUKAL D.S., BOUKAL M., FIKÁ ČEK M., HÁJEK J., KLE ČKA J., SKALICKÝ S., ŠŤASTNÝ J. &

TRÁVNÍ ČEK D. 2007. Katalog vodních brouk ů České republiky. Catalogue of water beetles of the Czech Republic (Coleoptera: Sphaeriusidae, Gyrinidae, Haliplidae, Noteridae, Hygrobiidae, Dytiscidae, Helophoridae, Georissidae, Hydrochidae, Spercheidae, Hydrophilidae, Hydraenidae, Scirtidae, Elmidae, Dryopidae, Limnichidae, Heteroceridae, Psephenidae). Klapalekiana , 43 (Suppl.), 289pp.

CZACHOROWSKI S. 1994. Classification of small water bodies on the basis of the presence of caddisflies. Ekologia Polska , 42: 41–59.

DOWNIE I.S., COULSON J.C., FOSTER G.N. & WHITFIELD D.P. 1998. Distribution of aquatic macroinvertebrates within peatland pool complexes in the Flow Country, Scotland. Hydrobiologia , 377: 97–105.

FLANNAGAN J.F. & MACDONALD S.R. 1987. Ephemeroptera and Trichoptera of peatlands and marshes in Canada. Memoirs of the Entomological Society of Canada , 140: 47–56.

HÁJEK M. & HÁJKOVÁ P. 2007. Hlavní typy rašeliniš ť ve st řední Evrop ě z botanického hlediska. Zprávy Čes. Bot. Spole č., Praha, 42, Mater. 22: 19-28.

HÁJEK M. HEKERA P. 2004. Can seasonal variation in fen water chemistry influence the reliability of vegetation-environment analyses? Preslia , 76: 1–14.

HÁJEK M., HEKERA P. & HÁJKOVÁ P. 2002. Spring fen vegetation and water chemistry in the Western Carpathian flysch zone. Folia Geobotanica , 37: 205 –224.

HÁJEK M., HORSÁK M., HÁJKOVÁ P. & DÍT Ě D. 2006. Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies. Perspectives in Plant Ecology, Evolution and Systematics , 8: 97–114.

HÁJEK M., HORSÁK M., POULÍ ČKOVÁ A., VAŠUTOVÁ M. & HÁJKOVÁ P. 2005. Ohrožená pestrost života na karpatských lu čních prameništích. Actaea, Rožnov pod Radhošt ěm, 86 pp.

121 HÁJKOVÁ P., HÁJEK M. & KINTROVÁ K. 2009. How can we effectively restore species richness and natural composition of a Molinia -invaded fen? Journal of Applied Ecology , 46(2): 417–425.

HÁJKOVÁ P., WOLF P. & HÁJEK M. 2004. Environmental factors and Carpathian spring fen vegetation: the importance of scale and temporal variation. Annales Botanici Fennici , 41: 249–262.

HORSÁK M. & CERNOHORSKY N. 2008. Mollusc diversity patterns in Central European fens: hotspots and conservation priorities. Journal of Biogeography , 35: 1215–1225.

HORSÁK M. & HÁJEK M. 2003. Composition and species richness of mollusc communities in relation to vegetation and water chemistry in the Western Carpathian spring fens: the poor-rich gradient. Journal of Molluscan Studies , 69: 349–357.

HORSÁK M., HÁJEK M., DÍT Ě D. & TICHÝ L. 2007a. Modern distribution patterns of snails and plants in the Western Carpathian spring fens: is it a result of historical development? Journal of Molluscan Studies , 73: 53–60.

HORSÁK M., HÁJEK M., TICHÝ L. & JUŘIČKOVÁ L. 2007b. Plant indicator values as a tool for land mollusc autecology assessment. Acta Oecologica , 32: 161–171.

HORSÁK M. & HÁJKOVÁ P. 2005. The historical development of the White Carpathian spring fens based on palaeomalacological data, pp. 63-68. In: Poulí čková A., Hájek M. & Rybní ček K. (eds), Ecology and palaeoecology of spring fens in the western part of the Carpathians, Palacký University, Olomouc.

HRIVNÁK R., HÁJEK M., BLANÁR D., KOCHJAROVÁ J. & HÁJKOVÁ P. 2008. Mire vegetation of the Muránska planina Mts - formalised classification, ecology, main environmental gradient and influence of geographical position. Biologia , 63: 368–77.

CHVOJKA P., NOVÁK K. & SEDLÁK E. 2005. Trichoptera (chrostíci), pp. 168-171. In: FARKA Č

J., KRÁL D. & ŠKORPÍK M. (eds): Červený seznam ohrožených druh ů České republiky. Bezobratlí. 760 pp. Agentura ochrany p řírody a krajiny ČR, Praha.

CHVOJKA P. & KOMZÁK P. 2009. New faunistic records of Trichoptera (Insecta) from the Czech Republic, III. Acta Musei Moraviae, Scientiae biologicae (Brno) , in press.

JEŽEK , J. 2005: Psychodidae (koutulovití), pp. 259–261. In: FARKA Č J., KRÁL D. & ŠKORPÍK M. (eds): Červený seznam ohrožených druh ů České republiky. Bezobratlí. 760 pp. Agentura ochrany p řírody a krajiny ČR, Praha.

JONGEPIEROVÁ I. (ed.) 2009: Louky Bílých Karpat. ZO ČSOP Bílé Karpaty, Veselí nad Moravou, 461 pp.

122 JOOSTEN H. & CLARKE D. 2002. Wise use of peatlands. International Mire Conservation Group, International Peat Society, Jyväskylä, FI., 304 pp.

LAMERS L.P.M., SMOLDERS A.J.P. & ROELOFS J.G.M. 2002. The restoration of fens in the Netherlands. Hydrobiologia , 478: 107–130.

LANGE -BERTALOT H. 1996. Rote Liste der limnischen Kieselalgen (Bacillariophyceae) Deutschlands. Schriften-reihe für Vegetationskunde , 28: 633–677.

LANGHEINRICH U., TISCHEW S., GERSBERG R.M. & LÜDERITZ V. 2004. Ditches and canals in management of fens: opportunity or risk? A case study in the Drömling Natural Park, Germany. Wetlands Ecology and Management , 12: 429-445.

LARSON D.J. & HOUSE N.L. 1990. Insect communities of Newfoundland bog pools with emphasis on the Odonata. Canadian Entomologist , 122 : 469–501.

MALMER N. 1986. Vegetational gradients in relation to environmental conditions in north western European mires. Canadian Journal of Botany , 64: 375–383.

MCMURTRY M.J., RAPPORT D.J. & CHUA K.E. 1983. Substrate selection by tubificid oligochaetes. Canadian Journal of Fishery and Aquatic Sciences , 40: 1639–1646.

MOORE J. W. 1978. Importance of algae in the diet of the oligochaetes Lumbriculus variegatus (Müller) and Rhyacodrilus sodalis (Eisen). Oecologia , 35: 357–363.

NOVAK K. & SEHNAL F. 1963. The development cycle of some species of the genus Limnephilus . Časopis Československé spole čnosti entomologické , 60: 68–80.

OMELKOVÁ M. & JEŽEK J. 2007. Faunistic records from Czech Republic and Slovakia – Psychodidae. Acta Zoologica Universitatis Comenianae , 47(2): 250–253.

OMELKOVÁ M., JEŽEK J., STARÝ J., ROHÁ ČEK J. & HOLINKA J. 2009. Dvouk řídlí (Diptera), pp. 289-293. In: Jongepierová I. (ed.), Louky Bílých Karpat. ZO ČSOP Bílé Karpaty, Veselí nad Moravou.

OMESOVÁ M. & HELEŠIC J. 2004. On the processing of freeze-core samples with notes on the impact of sample size. Scripta Fac. sci. nat. Univ. Masaryk. Brun., Biol. , 29: 59-66:

OPRAVILOVÁ V. & HÁJEK M. 2006. The variation of testacean assemblages (Rhizopoda) along the complete base-richness gradient in fens: a case study from the Western Carpathians. Acta Protozoologica , 45: 191–204.

PAASIVIRTA L., TAPANI L. & PERÄTIE T. 1988. Emergence phenology and ecology of aquatic and semi-terrestrial insects on a boreal raised bog in Central Finland. Holarctic Ecology , 11: 96–105.

POULÍ ČKOVÁ A., HÁJEK M. & RYBNÍ ČEK , K. (eds.) 2005. Ecology and palaeoecology of spring fens in the western part of the Carpathians. Palacký University, Olomouc., 209 pp.

123 RAPANT S., VRANA K. & BODIŠ D. 1997. Geochemical atlas of Slovakia. Part Grounwater. - Slovak Geol. Mag ., 3: 9-26.

RODRIGUEZ P., MARTINEZ -MADRID M., ARRATE J.A. & NAVARRO E. 2001. Selective feeding by the aquatic oligochaete Tubifex tubifex (Tubificidae, Clitellata). Hydrobiologia , 463: 133–140.

ROSENBERG D.M. & DANKS H.V. 1987. Aquatic insects of peatlands and marshes in Canada. Memoirs of the Entomological Society of Canada, 140. Entomological Society of Canada, Ottava, 174 pp.

ROSENBERG D.M., WIENS A.P. & BILYJ B. 1988. Chironomidae (Diptera) of peatlands in northwestern Ontario, Canada. Holarctic Ecology , 11: 19–31.

ROZBROJOVÁ Z. & HÁJEK M. 2008. Changes in nutrient limitation of spring fen vegetation along environmental gradiensts in the West Carpathians. Journal of Vegetation Science , 19: 613–620.

RYBNÍ ČEK K. & RYBNÍ ČKOVÁ E. 2003. Vegetation history of the Upper Orava Region in the last 11000 years. Acta Palaeobotanica , 42: 153–170.

SALMELA J. 2004. Semiaquatic flies Diptera, Nematocera of three mires in the southern boreal zone, Finland. Memoranda Soc. Fauna Flora Fennica , 80: 1–10.

SALMELA J. & ILMONEN J. 2005. Cranefly Diptera: Tipuloidea fauna of a boreal mire system in relation to mire trophic status: implications for conservation and bioassessment. Journal of Insect Conservation , 9: 85–94.

SPRINGETT J.A. & LATTER P.M. 1977. Studies on the micro-fauna of blanket bog with particular reference to enchytraeidae. I. Field and laboratory test of micro-organisms as food. Journal of Animal Ecology , 46: 959–974.

STARÝ J. 2007. Faunistic records from Czech Republic and Slovakia – Limoniidae. Acta Zoologica Universitatis Comenianae , 47(2): 247–248.

SUREN A.M., LAMBERT P., IMAGE K. & SORRELL B.K. 2008. Variation in wetland invertebrate communities in lowland acidic fens and swamps. Freshwater Biology , 53: 727–744.

VAILLANT F. 1978. 9d. Psychodidae – Psychodinae, pp. 207–238. In: LINDNER E. (ed.), Die Fliegen der palaearktischen Region, Stuttgart.

VAN DUINEN , G.A., BROCK , A.M.T., KUPER J.T., LEUVEN R.S.E.W., PEETERS T.M.J.,

ROELOFS J.G.M., VAN DER VELDE G., VERBERK , W.C.E.P. & ESSELINK H. 2003. Do restoration measures rehabilitate fauna diversity in raised bogs? A comparative study on aquatic macroinvertebrates. Wetlands Ecology and Management , 11: 447–459.

124 VAN DUINEN , G.A., TIMM , T., SMOLDERS , A.J.P., BROCK, A.M.T. & VERBERK , W.C.E.P. 2006. Differential response of aquatic oligochaete species to increased nutrient availability – a comparative study between Estonian and Dutch raised bogs. Hydrobiologia , 564: 143– 155.

WALLACE I.D., WALLACE B. & PHILIPSON G.N. 2003. Keys to the case-bearing caddis larvae of Britain and Ireland. Freshwater Biological Association. Scientific Publication No. 61, 259 pp.

125 4. Publikace autorky

Recenzované články v mezinárodních časopisech: Pa řil P., Špa ček J., Helešic J. & Bojková J. , 2008: Ecology of Leuctra geniculata Stephens, 1836 (Plecoptera, Leuctridae), an Atlantomediterranean species on the north-eastern border of its area. Biologia , 63(4): 574–581. Horsák M., Bojková J ., Zahrádková S., Omesová M. & Helešic J., 2009: Impact of reservoirs and channelization on lowland river macroinvertebrates: a case study from Central Europe. Limnologica , 39: 140–151. Bojková J. & Helešic J., in press: Spring fens as a unique biotope of stonefly larvae (Plecoptera): species richness and species composition gradients. Aquatic Insects . Bojková J., in press: Revision of the stonefly collections (Plecoptera) by E. K řelinová and J. Raušer from the Czech Republic. Aquatic Insects . Fránková M., Bojková J. , Poulí čková A. Hájek M., in press: The structure and species of the diatom assemblages of the Western Carpathian spring fens along the gradient of mineral richness. Fottea . Zahrádková S., Soldán T., Bojková J ., Helešic J., Janovská H. & Sroka P., in press: Distribution and biology of mayflies (Ephemeroptera) of the Czech Republic: present status and perspectives. Aquatic Insects.

Recenzované články v domácích časopisech: Bojková J. & Špa ček J., 2006: New and interesting records of Plecoptera (Insecta) from the Czech Republic. Acta Musei Moraviae, Scientiae Biologicae (Brno) , 91: 1-6. Komzák P., Kro ča J. & Bojková J. , 2006: Faunisticky zajímavé nálezy chrostík ů (Insecta: Trichoptera) Moravskoslezských Beskyd. Časopis Slezského Muzea Opava (A) , 55: 73- 76.

Populárn ě-vědecké články: Soldán T., Zahrádková S., Bojková J. , 2008: Rozmanitost a bohatství sv ěta hmyzu v šumavských vodách. Šumava , 4/08: 16–19.

Abstrakta a krátká sd ělení: Bojková J. , K řoupalová V., Horsák M., 2006: Druhová skladba a struktura spole čenstva makrozoobentosu flyšových prameniš ť. Sborník p řísp ěvk ů 14. konference České limnologické spole čnosti a Slovenskej Limnologickej Spole čnosti. ČLS, Praha: 32.

126 Bojková J. , Omelková M., Helešic J. & Horsák M., 2007: Structure and species richness of benthic macroinvertebrate assemblages in the Western Carpathian spring fens. SEFS-5 programme and abstracts. EFFS, Palermo: 44. Omelková M., Bojková J. , Rozkošný R., Horsák M. & Helešic J., 2007: The Diptera taxocoenoses in the Western Carpathian spring fens: preliminary results. SEFS-5 programme and abstracts. EFFS, Palermo: 234. Řezní čková P., Pa řil P., Soldán T., Zahrádková S. & Bojková J. , 2007: The mayfly (Insecta, Ephemeroptera) taxocoene under varying hydrologic conditions - a Central European case study. Handbook of 6th International Symposium on Ecohydraulics. Conference Inovators LTD, Christchurch: 49-51. Bojková J. , 2008: Collections of the Czech Republic stoneflies by E. K řelinová and J. Raušer. International Joint Meeting on Ephemeroptera and Plecoptera, Programme and Abstract book: 71. Bojková J. & Helešic J., 2008: Spring fens as a unique biotope of stonefly larvae. International Joint Meeting on Ephemeroptera and Plecoptera, Programme and Abstract book: 83 Fránková M., Poulí čková A., Marvan P., Bojková J. & Hájková P., 2008: Diatoms along a pH/calcium gradient in Western Carpathian spring fens. In: Cantonati M., Scalfi A. & Bertuzzi E. (Eds): Abstract Book of the 2nd Central European Diatom Meeting: 15. Fránková M., Poulí čková A., Marvan P., Bojková J. & Hájková P., 2008: Diatom Assemblages of Western Carpathian Spring Fens along the poor-rich (pH/calcium) gradient. In: N. Jasprica, A. Car & M. Čali ć (Eds), Abstract Book of the 20th International Diatom Symposium: 134. Zahrádková S., Bojková J. , Helešic J. & Soldán T., 2008: International Joint Meeting on Ephemeroptera and Plecoptera, Programme and Abstract book: 70. Bojková J. , Schenková J., Opravilová V., Fránková M., Horsák M. & Helešic J., 2009: Variabilita vodních organism ů v závislosti na minerální bohatosti západokarpatských slatiniš ť. In: L. Kröpfelová & J. Šulcová (Eds), Sborník p řísp ěvk ů 15. konference České limnologické spole čnosti a Slovenskej limnologickej spolo čnosti: 24. Křoupalová V., Bojková J. , Pa řil P., Schenková J. & Horsák M., 2009: Prostorová distribuce makrozoobentosu na malé škále: srovnání dvou mineráln ě odlišných slatiniš ť. In: L. Kröpfelová & J. Šulcová (Eds), Sborník p řísp ěvk ů 15. konference České limnologické spole čnosti a Slovenskej limnologickej spolo čnosti: 159.

127 Křoupalová V., Bojková J. , Rádková V., Horsák M., 2009: Diversity of Diptera larvae in the Western Carpathian spring fens. Abstract book of the 1st International Conference on Diptera and their juvenile stages in aquatic and semiaquatic ecosystems in Europe. Gustav Stresemann Institut, Bad Bevensen: 11-15. Kubošová K., Jarkovský J., Brabec K., Zahrádková S., Bojková J. & Bartušek P., 2009: Srovnání r ůzných statistických metod pro hodnocení vazby vodních organism ů k parametr ům prost ředí. In: L. Kröpfelová & J. Šulcová (Eds), Sborník p řísp ěvk ů 15. konference České limnologické spole čnosti a Slovenskej limnologickej spolo čnosti: 161- 162. Pa řil P., K řoupalová V., Bojková J. , Horsák M. & Helešic J., 2009: Chironomid larvae in two types of Western Carpathian spring fens differing in mineral richness. Abstract book of the 1st International Conference on Diptera and their juvenile stages in aquatic and semiaquatic ecosystems in Europe. Gustav Stresemann Institut, Bad Bevensen: 28-31.

Aktivní ú čast na konferencích: Bojková J., K řoupalová V., Horsák M., 2006: Druhová skladba a struktura spole čenstva makrozoobentosu flyšových prameniš ť. 14. konference České limnologické spole čnosti a Slovenskej limnologickej spolo čnosti, Ne čtiny (p řednáška). Bojková J., Omelková M., Helešic J. & Horsák M., 2007: Structure and species richness of benthic macroinvertebrate assemblages in the Western Carpathian spring fens. Symposium for European Freshwater Science, Palermo (p řednáška). Bojková J. & Helešic J., 2008: Spring fens as a unique biotope of stonefly larvae. International Joint Meeting on Ephemeroptera and Plecoptera, Stuttgart (poster). Bojková J., Schenková J., Opravilová V., Fránková M., Horsák M. & Helešic J., 2009: Variabilita vodních organism ů v závislosti na minerální bohatosti západokarpatských slatiniš ť. 15. konference České limnologické spole čnosti a Slovenskej limnologickej spolo čnosti, T řebo ň (p řednáška).

128