Syntactic Structure

Total Page:16

File Type:pdf, Size:1020Kb

Syntactic Structure Syntactic Structure Dr. Mark Lee [email protected] Colourless green ideas sleep furiously Introduction The previous lecture gave an overview of language. You will recall that natural languages all share certain aspects, the most important being that they are driven by intentional behaviour, rely on convention and are used to categorise the world. As the last lecture showed, language understand- ing is a difficult task which we take for granted because we are naturally language users. A first step in language understanding is structural (or syntactic) analysis. This is the topic for this week. A simple programming problem Suppose we have a large text file which contains payroll information. For example here’s an extract: Page 26 Dr. Mark Lee Age 29 0121 414 4765 Room 110 Mr. Mike Leigh Age 43 0121 428 2394 <deleted user account> Ms. Sue Smith Age 21 .... And we’d like to extract the names, ages, phone numbers & locations and put them into a data- base. How could we do this? Regular expressions Regular expressions are a feature of many programming languages such as Java, Perl & are part of most operating systems (most notably Unix/Linux) and are used to match text strings. The follow- ing is based on Perl syntax. \w Any alphabetic character \d Any since numerical character \b One blank space + one or more of the proceeding symbol. * zero or more of the proceeding symbol | “or” (i.e. \w|\d means either a letter or a digit) n.b. You should know what regular expressions are but you are not expected to learn regular expressions for this module. However you will encounter regular expressions throughout your module (and especially in the web technology module next term). Using regular expressions we could match the name, age etc. and easily add this information to our database. There are two concerns. Under generation: Does the expression miss any valid example. Over generation: Does the expression include any non-valid example. More structured language All languages have a syntax. That is there are general rules governing how words can be fit together to form valid sentences. A language’s syntax can be described using a grammar. We can formally describe a grammar as follows. G=(Vt,Vn,P,S) where Vt is a finite set of terminals Vn is a finite set of non-terminals P is a set of production rules S is an element of Vn which is distinguished as the starting non-terminal. Elements of P are all of the form V -> (Vt U Vn)* We can add various constraints to the production rules in P (of which more later). Below is a sim- ple grammar of English: S -> NP VP Det->[the] NP -> Det N N->[telescope] NP -> NP PP N->[boy] VP -> V NP N->[girl] VP -> V NP PP V->[saw] PP -> P NP V->[gave] V-> [played] P->[with] N->[dress] Adj->[yellow] Questions Using this grammar can you prove that “The boy saw the girl with the telescope” is a valid sen- tence? Using a grammar to analyze a sentence is called parsing. What other sentences are allowed? Are there any non-grammatical sentences allowed in this grammar? Notice that the grammar has potentially the same issues of over-generation and under-generation as the regular expressions we designed earlier. Expressive power The grammar above is technically a context free grammar. This is because according to the grammar, regardless of context it is always possible to replace the left hand side with the right hand side. Other grammars are possible if we are more or less strict about the restrictions of the production rules. For example. suppose we insist that the only legal production rules are of the following form: P -> NT TT or P-> TT That is, every production rule must have one terminal symbol and one other non-terminal symbol. This type of grammar is a regular grammar. In fact a regular grammar has exactly the same expressive power as a regular expression (i.e. if you can construct a regular expression to capture the structure of a given sentence then you can also construct a regular grammar to do the same. Levels of grammar In addition to context free and regular grammars there are far more types of grammar. The most famous form the Chomsky hierarchy. Table 1: Chomsky Hierarchy Type Grammar Restriction on rules Type 0 Unrestricted unrestricted Type 1 Context Sensitive aXb -> aYb where X & Y are sets of NT & TT Type 2 Context Free NT -> NT NT Type 3 Regular NT -> NT TT or NT -> TT The hierarchy was originally designed to describe natural language grammars but is now used far more in theoretical computer science and in particular principles of programming languages and compiler design. It’s an interesting question how powerful (i.e. expressive) a grammar we need for natural lan- guage. It’s easy to show that a regular grammar is not enough but there is some controversy above how much natural language can be captured using a context free grammar. It has been shown that (at least) some aspects of verb noun agreement in Swiss German require a more powerful gram- mar. As is the artificial language anbncn (but can be dealt with a cfg and a stack i.e. an indexed grammar). Parsing Parsing is the process of analysing a sentence using a grammar. We’ve already done parsing infor- mally but more formally there are two main methods “top down” and “bottom up”. Top-down Parsing Start with S symbol Consume constituent of input if matches current symbol. If not, rewrite current symbol using grammar rule Repeat 1. Pros: Won’t look for things where they can’t happen. Cons: Can build (and rebuild) lots of useless structure Falls down on looping left-recursive rules (X->Xy) Predictive ability (“garden path sentences”) Bottom-up Parsing Start with Input Sentence Consume constituent(s) of input which match rhs of rule If completes rule then repeat with new constituent Otherwise match next constituent and return to 2 Otherwise invoke new rule with next constituent then try 3 Pros: Avoids futile structure building but must look at all categories for every word Cons:Can wander off endlessly given empty productions (X-[]) Those of you doing AI will notice that parsing is essentially a form of “search” that is the gram- mar formalizes a “search space” of possible sentences and the parsing algorithm searches the space for the particular sentence. What makes a good grammar a good grammar? Any finite set of sentences can be described by an infinite number of grammars. Therefore there has to be some criteria for choosing a good grammar. • Empirical Criteria Does it under-generate? Does it over-generate? Does it assign appropriate structures to the strings it generates? • Heuristics Simplicity (number of rules/number of non-terminals) Generality (does an English grammar look a bit like a French/Swedish one?) • Mathematical criteria Expressive ability to capture all legal sentences Tractability of parsing (that is could a computer programme assign structure in reasonable time) It’s worth commenting on how ambiguous natural language is. The verbmobil corpus (which is a collection of English, German and Japanese text) reveals that the average sentence length is 14 words and has 3245 possible parses using a decent grammar. This is why context free grammars are commonly used: they are computationally tractable (in fact they are of polynomial complexity but that is a advanced topic). Grammars of course can be used to model non-natural languages such as programming languages. Most programming languages are based on context free gram- mars. Summary Today we’ve looked at syntax and how grammars can be used to capture syntax. We’ve looked at different types of grammar but most notably context free grammars and discussed various algo- rithms for analysing sentences using grammars. This process is called parsing. A puzzle to ponder for Thursday There is a village in Germany where there is a male barber who shaves all and only those men who don’t shave themselves. Does he shave himself?.
Recommended publications
  • The Mathematics of Syntactic Structure: Trees and Their Logics
    Computational Linguistics Volume 26, Number 2 The Mathematics of Syntactic Structure: Trees and their Logics Hans-Peter Kolb and Uwe MÈonnich (editors) (Eberhard-Karls-UniversitÈat Tubingen) È Berlin: Mouton de Gruyter (Studies in Generative Grammar, edited by Jan Koster and Henk van Riemsdijk, volume 44), 1999, 347 pp; hardbound, ISBN 3-11-016273-3, $127.75, DM 198.00 Reviewed by Gerald Penn Bell Laboratories, Lucent Technologies Regular languages correspond exactly to those languages that can be recognized by a ®nite-state automaton. Add a stack to that automaton, and one obtains the context- free languages, and so on. Probably all of us learned at some point in our univer- sity studies about the Chomsky hierarchy of formal languages and the duality be- tween the form of their rewriting systems and the automata or computational re- sources necessary to recognize them. What is perhaps less well known is that yet another way of characterizing formal languages is provided by mathematical logic, namely in terms of the kind and number of variables, quanti®ers, and operators that a logical language requires in order to de®ne another formal language. This mode of characterization, which is subsumed by an area of research called descrip- tive complexity theory, is at once more declarative than an automaton or rewriting system, more ¯exible in terms of the primitive relations or concepts that it can pro- vide resort to, and less wedded to the tacit, not at all unproblematic, assumption that the right way to view any language, including natural language, is as a set of strings.
    [Show full text]
  • Hierarchy and Interpretability in Neural Models of Language Processing ILLC Dissertation Series DS-2020-06
    Hierarchy and interpretability in neural models of language processing ILLC Dissertation Series DS-2020-06 For further information about ILLC-publications, please contact Institute for Logic, Language and Computation Universiteit van Amsterdam Science Park 107 1098 XG Amsterdam phone: +31-20-525 6051 e-mail: [email protected] homepage: http://www.illc.uva.nl/ The investigations were supported by the Netherlands Organization for Scientific Research (NWO), through a Gravitation Grant 024.001.006 to the Language in Interaction Consortium. Copyright © 2019 by Dieuwke Hupkes Publisher: Boekengilde Printed and bound by printenbind.nl ISBN: 90{6402{222-1 Hierarchy and interpretability in neural models of language processing Academisch Proefschrift ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus prof. dr. ir. K.I.J. Maex ten overstaan van een door het College voor Promoties ingestelde commissie, in het openbaar te verdedigen op woensdag 17 juni 2020, te 13 uur door Dieuwke Hupkes geboren te Wageningen Promotiecommisie Promotores: Dr. W.H. Zuidema Universiteit van Amsterdam Prof. Dr. L.W.M. Bod Universiteit van Amsterdam Overige leden: Dr. A. Bisazza Rijksuniversiteit Groningen Dr. R. Fern´andezRovira Universiteit van Amsterdam Prof. Dr. M. van Lambalgen Universiteit van Amsterdam Prof. Dr. P. Monaghan Lancaster University Prof. Dr. K. Sima'an Universiteit van Amsterdam Faculteit der Natuurwetenschappen, Wiskunde en Informatica to my parents Aukje and Michiel v Contents Acknowledgments xiii 1 Introduction 1 1.1 My original plan . .1 1.2 Neural networks as explanatory models . .2 1.2.1 Architectural similarity . .3 1.2.2 Behavioural similarity .
    [Show full text]
  • The Complexity of Narrow Syntax : Minimalism, Representational
    Erschienen in: Measuring Grammatical Complexity / Frederick J. Newmeyer ... (Hrsg.). - Oxford : Oxford University Press, 2014. - S. 128-147. - ISBN 978-0-19-968530-1 The complexity of narrow syntax: Minimalism, representational economy, and simplest Merge ANDREAS TROTZKE AND JAN-WOUTER ZWART 7.1 Introduction The issue of linguistic complexity has recently received much attention by linguists working within typological-functional frameworks (e.g. Miestamo, Sinnemäki, and Karlsson 2008; Sampson, Gil, and Trudgill 2009). In formal linguistics, the most prominent measure of linguistic complexity is the Chomsky hierarchy of formal languages (Chomsky 1956), including the distinction between a finite-state grammar (FSG) and more complicated types of phrase-structure grammar (PSG). This dis- tinction has played a crucial role in the recent biolinguistic literature on recursive complexity (Sauerland and Trotzke 2011). In this chapter, we consider the question of formal complexity measurement within linguistic minimalism (cf. also Biberauer et al., this volume, chapter 6; Progovac, this volume, chapter 5) and argue that our minimalist approach to complexity of derivations and representations shows simi- larities with that of alternative theoretical perspectives represented in this volume (Culicover, this volume, chapter 8; Jackendoff and Wittenberg, this volume, chapter 4). In particular, we agree that information structure properties should not be encoded in narrow syntax as features triggering movement, suggesting that the relevant information is established at the interfaces. Also, we argue for a minimalist model of grammar in which complexity arises out of the cyclic interaction of subderivations, a model we take to be compatible with Construction Grammar approaches. We claim that this model allows one to revisit the question of the formal complexity of a generative grammar, rephrasing it such that a different answer to the question of formal complexity is forthcoming depending on whether we consider the grammar as a whole, or just narrow syntax.
    [Show full text]
  • What Was Wrong with the Chomsky Hierarchy?
    What Was Wrong with the Chomsky Hierarchy? Makoto Kanazawa Hosei University Chomsky Hierarchy of Formal Languages recursively enumerable context- sensitive context- free regular Enduring impact of Chomsky’s work on theoretical computer science. 15 pages devoted to the Chomsky hierarchy. Hopcroft and Ullman 1979 No mention of the Chomsky hierarchy. 450 INDEX The same with the latest edition of Carmichael, R. D., 444 CNF-formula, 302 Cartesian product, 6, 46 Co-Turing-recognizableHopcroft, language, 209 Motwani, and Ullman (2006). CD-ROM, 349 Cobham, Alan, 444 Certificate, 293 Coefficient, 183 CFG, see Context-free grammar Coin-flip step, 396 CFL, see Context-free language Complement operation, 4 Chaitin, Gregory J., 264 Completed rule, 140 Chandra, Ashok, 444 Complexity class Characteristic sequence, 206 ASPACE(f(n)),410 Checkers, game of, 348 ATIME(t(n)),410 Chernoff bound, 398 BPP,397 Chess, game of, 348 coNL,354 Chinese remainder theorem, 401 coNP,297 Chomsky normal form, 108–111, 158, EXPSPACE,368 198, 291 EXPTIME,336 Chomsky, Noam, 444 IP,417 Church, Alonzo, 3, 183, 255 L,349 Church–Turing thesis, 183–184, 281 NC,430 CIRCUIT-SAT,386 NL,349 Circuit-satisfiability problem, 386 NP,292–298 CIRCUIT-VALUE,432 NPSPACE,336 Circular definition, 65 NSPACE(f(n)),332 Clause, 302 NTIME(f(n)),295 Clique, 28, 296 P,284–291,297–298 CLIQUE,296 PH,414 Sipser 2013Closed under, 45 PSPACE,336 Closure under complementation RP,403 context-free languages, non-, 154 SPACE(f(n)),332 deterministic context-free TIME(f(n)),279 languages, 133 ZPP,439 P,322 Complexity
    [Show full text]
  • Reflection in the Chomsky Hierarchy
    Journal of Automata, Languages and Combinatorics 18 (2013) 1, 53–60 c Otto-von-Guericke-Universit¨at Magdeburg REFLECTION IN THE CHOMSKY HIERARCHY Henk Barendregt Institute of Computing and Information Science, Radboud University, Nijmegen, The Netherlands e-mail: [email protected] Venanzio Capretta School of Computer Science, University of Nottingham, United Kingdom e-mail: [email protected] and Dexter Kozen Computer Science Department, Cornell University, Ithaca, New York 14853, USA e-mail: [email protected] ABSTRACT The class of regular languages can be generated from the regular expressions. These regular expressions, however, do not themselves form a regular language, as can be seen using the pumping lemma. On the other hand, the class of enumerable languages can be enumerated by a universal language that is one of its elements. We say that the enumerable languages are reflexive. In this paper we investigate what other classes of the Chomsky Hierarchy are re- flexive in this sense. To make this precise we require that the decoding function is itself specified by a member of the same class. Could it be that the regular languages are reflexive, by using a different collection of codes? It turns out that this is impossi- ble: the collection of regular languages is not reflexive. Similarly the collections of the context-free, context-sensitive, and computable languages are not reflexive. Therefore the class of enumerable languages is the only reflexive one in the Chomsky Hierarchy. In honor of Roel de Vrijer on the occasion of his sixtieth birthday 1. Introduction Let (Σ∗) be a class of languages over an alphabet Σ.
    [Show full text]
  • Noam Chomsky
    Noam Chomsky “If you’re teaching today what you were teaching five years ago, either the field is dead or you are.” Background ▪ Jewish American born to Ukranian and Belarussian immigrants. ▪ Attended a non-competitive elementary school. ▪ Considered dropping out of UPenn and moving to British Palestine. ▪ Life changed when introduced to linguist Zellig Harris. Contributions to Cognitive Science • Deemed the “father of modern linguistics” • One of the founders of Cognitive Science o Linguistics: Syntactic Structures (1957) o Universal Grammar Theory o Generative Grammar Theory o Minimalist Program o Computer Science: Chomsky Hierarchy o Philosophy: Philosophy of Mind; Philosophy of Language o Psychology: Critical of Behaviorism Transformational Grammar – 1955 Syntactic Structures - 1957 ▪ Made him well-known within the ▪ Big Idea: Given the grammar, linguistics community you should be able to construct various expressions in the ▪ Revolutionized the study of natural language with prior language knowledge. ▪ Describes generative grammars – an explicit statement of what the classes of linguistic expressions in a language are and what kind of structures they have. Universal Grammar Theory ▪ Credited with uncovering ▪ Every sentence has a deep structure universal properties of natural that is mapped onto the surface human languages. structure according to rules. ▪ Key ideas: Humans have an ▪ Language similarities: innate neural capacity for – Deep Structure: Pattern in the mind generating a system of rules. – Surface Structure: Spoken utterances – There is a universal grammar that – Rules: Transformations underlies ALL languages Chomsky Hierarchy ▪ Hierarchy of classes of formal grammars ▪ Focuses on structure of classes and relationship between grammars ▪ Typically used in Computer Science and Linguistics Minimalist Program – 1993 ▪ Program NOT theory ▪ Provides conceptual framework to guide development of linguistic theory.
    [Show full text]
  • The Evolution of the Faculty of Language from a Chomskyan Perspective: Bridging Linguistics and Biology
    doi 10.4436/JASS.91011 JASs Invited Reviews e-pub ahead of print Journal of Anthropological Sciences Vol. 91 (2013), pp. 1-48 The evolution of the Faculty of Language from a Chomskyan perspective: bridging linguistics and biology Víctor M. Longa Area of General Linguistics, Faculty of Philology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain e-mail: [email protected] Summary - While language was traditionally considered a purely cultural trait, the advent of Noam Chomsky’s Generative Grammar in the second half of the twentieth century dramatically challenged that view. According to that theory, language is an innate feature, part of the human biological endowment. If language is indeed innate, it had to biologically evolve. This review has two main objectives: firstly, it characterizes from a Chomskyan perspective the evolutionary processes by which language could have come into being. Secondly, it proposes a new method for interpreting the archaeological record that radically differs from the usual types of evidence Paleoanthropology has concentrated on when dealing with language evolution: while archaeological remains have usually been regarded from the view of the behavior they could be associated with, the paper will consider archaeological remains from the view of the computational processes and capabilities at work for their production. This computational approach, illustrated with a computational analysis of prehistoric geometric engravings, will be used to challenge the usual generative thinking on language evolution, based on the high specificity of language. The paper argues that the biological machinery of language is neither specifically linguistic nor specifically human, although language itself can still be considered a species-specific innate trait.
    [Show full text]
  • Complexity of Natural Languages
    Complexity of natural languages Computational complexity: the expressive power of (and the resources needed in order to process) classes of languages Linguistic complexity: what makes individual constructions or sentences more difficult to understand This is the dog, that worried the cat, that killed the rat, that ate the malt, that lay in the house that Jack built. This is the malt that the rat that the cat that the dog worried killed ate. The Chomsky hierarchy of languages A hierarchy of classes of languages, viewed as sets of strings, ordered by their “complexity”. The higher the language is in the hierarchy, the more “complex” it is. In particular, the class of languages in one class properly includes the languages in lower classes. There exists a correspondence between the class of languages and the format of phrase-structure rules necessary for generating all its languages. The more restricted the rules are, the lower in the hierarchy the languages they generate are. The Chomsky hierarchy of languages Recursively enumerable languages Context-sensitive languages Context-free languages Regular languages The Chomsky hierarchy of languages Regular (type-3) languages: Grammar: right-linear or left-linear grammars Rule form: A → α where A ∈ V and α ∈ Σ∗ · V ∪ {}. Computational device: finite-state automata The Chomsky hierarchy of languages Context-free (type-2) languages: Grammar: context-free grammars Rule form: A → α where A ∈ V and α ∈ (V ∪ Σ)∗ Computational device: push-down automata The Chomsky hierarchy of languages Context-sensitive
    [Show full text]
  • Representations and Characterizations of Languages in Chomsky Hierarchy by Means of Insertion-Deletion Systems
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by idUS. Depósito de Investigación Universidad de Sevilla Representations and Characterizations of Languages in Chomsky Hierarchy by Means of Insertion-Deletion Systems Gheorghe P˘aun(A,B) Mario J. P´erez-Jim´enez(B,C) Takashi Yokomori(D) (A)Institute of Mathematics of the Romanian Academy PO Box 1-764 – 014700 Bucharest – Romania [email protected], [email protected] (B)Department of Computer Science and Artificial Intelligence Univ. of Sevilla – Avda Reina Mercedes s/n – 41012 Sevilla – Spain [email protected] (D)Department of Mathematics Faculty of Education and Integrated Arts and Sciences Waseda University – 1-6-1 Nishiwaseda – Shinjyuku-ku Tokyo 169-8050 – Japan [email protected] Abstract. Insertion-deletion operations are much investigated in lin- guistics and in DNA computing and several characterizations of Turing computability were obtained in this framework. In this note we contribute to this research direction with a new characterization of this type, as well as with representations of regular and context-free languages, mainly starting from context-free insertion systems of as small as possible complexity. For instance, each recur- sively enumerable language L can be represented in a way similar to the celebrated Chomsky-Sch¨utzenberger representation of context-free lan- guages, i.e., in the form L = h(L(γ) ∩ D), where γ is an insertion system of weight (3, 0) (at most three symbols are inserted in a context of length zero), h is a projection, and D is a Dyck language. A similar represen- tation can be obtained for regular languages, involving insertion systems of weight (2,0) and star languages, as well as for context-free languages – this time using insertion systems of weight (3, 0) and star languages.
    [Show full text]
  • Bounded Languages Described by GF(2)-Grammars
    Bounded languages described by GF(2)-grammars Vladislav Makarov∗ February 17, 2021 Abstract GF(2)-grammars are a recently introduced grammar family that have some un- usual algebraic properties and are closely connected to unambiguous grammars. By using the method of formal power series, we establish strong conditions that are nec- essary for subsets of a∗b∗ and a∗b∗c∗ to be described by some GF(2)-grammar. By further applying the established results, we settle the long-standing open question of proving the inherent ambiguity of the language f anbmc` j n 6= m or m 6= ` g, as well as give a new, purely algebraic, proof of the inherent ambiguity of the language f anbmc` j n = m or m = ` g. Keywords: Formal grammars, finite fields, bounded languages, unambiguous grammars, inherent ambiguity. 1 Introduction GF(2)-grammars, recently introduced by Bakinova et al. [3], and further studied by Makarov and Okhotin [15], are a variant of ordinary context-free grammars, in which the disjunction is replaced by exclusive OR, whereas the classical concatenation is replaced by a new operation called GF(2)-concatenation: K L is the set of all strings with an odd number of partitions into a concatenation of a string in K and a string in L. There are several motivating reasons behind studying GF(2)-grammars. The first of them they are a class of grammars with better algebraic properties, compared to ordinary grammars and similar grammar families, because the underlying boolean semiring logic was replaced by a logic of a field with two elements.
    [Show full text]
  • Calibrating Generative Models: the Probabilistic Chomsky-Schutzenberger¨ Hierarchy∗
    Calibrating Generative Models: The Probabilistic Chomsky-Schutzenberger¨ Hierarchy∗ Thomas F. Icard Stanford University [email protected] December 14, 2019 1 Introduction and Motivation Probabilistic computation enjoys a central place in psychological modeling and theory, ranging in application from perception (Knill and Pouget, 2004; Orban´ et al., 2016), at- tention (Vul et al., 2009), and decision making (Busemeyer and Diederich, 2002; Wilson et al., 2014) to the analysis of memory (Ratcliff, 1978; Abbott et al., 2015), categorization (Nosofsky and Palmeri, 1997; Sanborn et al., 2010), causal inference (Denison et al., 2013), and various aspects of language processing (Chater and Manning, 2006). Indeed, much of cognition and behavior is usefully modeled as stochastic, whether this is ultimately due to indeterminacy at the neural level or at some higher level (see, e.g., Glimcher 2005). Ran- dom behavior may even enhance an agent’s cognitive efficiency (see, e.g., Icard 2019). A probabilistic process can be described in two ways. On one hand we can specify a stochastic procedure, which may only implicitly define a distribution on possible out- puts of the process. Familiar examples include well known classes of generative mod- els such as finite Markov processes and probabilistic automata (Miller, 1952; Paz, 1971), Boltzmann machines (Hinton and Sejnowski, 1983), Bayesian networks (Pearl, 1988), topic models (Griffiths et al., 2007), and probabilistic programming languages (Tenenbaum et al., 2011; Goodman and Tenenbaum, 2016). On the other hand we can specify an analytical ex- pression explicitly describing the distribution over outputs. Both styles of description are commonly employed, and it is natural to ask about the relationship between them.
    [Show full text]
  • Learnability and Language Acquisition
    The data Chomsky hierarchy Bottom up Problems Conclusion Expressive power Learnability and Language Acquisition Alexander Clark Department of Computer Science Royal Holloway, University of London Tuesday The data Chomsky hierarchy Bottom up Problems Conclusion Outline The data Chomsky hierarchy Swiss German Bottom up Problems Conclusion (Ed Stabler, Greg Kobele, Makoto Kanazawa) The data Chomsky hierarchy Bottom up Problems Conclusion Outline The data Chomsky hierarchy Swiss German Bottom up Problems Conclusion More precisely, we observe sounds/gestures. • We don’t observe the meanings, but we are aware of • entailment relations between propositions. (or something similar) The sound/meaning relation is not one-to-one, but there is • a lot of structure. (knowing what was said tells you a lot about the meaning!) The data Chomsky hierarchy Bottom up Problems Conclusion What are the linguistic data? We observe sound/meaning pairs. • The data Chomsky hierarchy Bottom up Problems Conclusion What are the linguistic data? We observe sound/meaning pairs. • More precisely, we observe sounds/gestures. • We don’t observe the meanings, but we are aware of • entailment relations between propositions. (or something similar) The sound/meaning relation is not one-to-one, but there is • a lot of structure. (knowing what was said tells you a lot about the meaning!) The data Chomsky hierarchy Bottom up Problems Conclusion Sound/meaning pairs s5 m5 s4 m4 s3 m3 s2 m2 s1 m1 The data Chomsky hierarchy Bottom up Problems Conclusion Structural descriptions Traditional view grammar g SD φ sound/SM meaning/CI The data Chomsky hierarchy Bottom up Problems Conclusion Example Grammar might be a context-free grammar, augmented • with some compositional semantics.
    [Show full text]