Phytochemical Analysis, Phenolic Content, Antioxidant, Antibacterial, Insecticidal and Cytotoxic Activites of Allium Reuterianum Boiss

Total Page:16

File Type:pdf, Size:1020Kb

Phytochemical Analysis, Phenolic Content, Antioxidant, Antibacterial, Insecticidal and Cytotoxic Activites of Allium Reuterianum Boiss Indian Journal of Traditional Knowledge Vol 18 (2), April 2019, pp 290-298 Phytochemical analysis, phenolic content, antioxidant, antibacterial, insecticidal and cytotoxic activites of Allium reuterianum Boiss. extracts Çiğdem Aydin*,1,+ & Ramazan Mammadov1 1Department of Biology, Faculty of Science, Pamukkale University, Denizli, Turkey E-mail: [email protected] Received 04 December 2018; revised 06 February 2019 Dried bulbs and leaves of Allium reuterianum were extracted with different solvents and evaluated for antioxidant, antibacterial, insecticidal, in vitro cytotoxic activities. The obtained results indicated that the highest compound 3, 4-dihidroksi benzoic acid with 166.2 µg/g in extracts. The ethanolic extracts had the highest phenolic content and acetone extracts had the lowest fenolic content. In the β-carotene-linoleic acid test system, bulb methanol (ABM) and leaf methanol (ALM) extracts showed the highest antioxidant activity. The mean antioxidant activity of ABM and ALM were 75.76±1.22% and 73.42±1.03%, respectively. The highest ferric-reducing power of extract (ABM) was determined 12.75±0.010 trolox equivalent (mg/g). Methanolic extract (ALM) exhibited a dose-dependent scavenging of DPPH and ABTS radicals with IC50 values of 0.512±0.003 mg/mL and 0.378±0.002 mg/mL respectively. Very strong reduction of gram-positive Staphylococcus aureus growth were observed during incubation of bacteria in bulb extracts (MIC was 20±1.01 μg/mL). The brine shrimp lethality assay of bulb extract has showed good toxic to brine shrimp nauplii, with LC50 of 3.987 μg/mL. The bulb extract of A. reuterianum showed highest larvicidal activity against Cx. pipiens with value LC50 (6.4129 μg/mL). The results suggest that these plants could be used as a source of natural antioxidant and antibacterial agents. Keywords: Allium reuteriaum, Antibacterial, Antioxidant, Cytotoxicite, HPLC, Insecticidal IPC Code: Int. Cl.19: A01G 13/00, A61P 31/04, A61P 17/18, A61K 39/395, C07C 7/135, A01P 7/04 Extremely diverse and taxonomically difficult genus their precursors12,13. The many biological effects of Allium L. is one of the largest genus in Allium vegetables are mainly associated with Amaryllidaceae1-7. The genus Allium has more than organosulphur compounds. These compounds include 600 species all over the world, among them just a few four γ-glutamyl peptides: γ-l-glutamyl-S-allyl-l- species have been consumed so far as vegetables, cysteine (GSAC), γ-l-glutamyl-S-(trans-1-propenyl)-l- spices or ornamental plants Allium L. which a genus cysteine (GSPC), γ-l-glutamyl-S-methyl-l-cysteine the important of between geophyta is creates a group (GSMC) and γ-glutamyl phenylalanine (γGPA). In of natural antioxidants. Since ancient times, many addition, intermediate compounds in the biosynthesis Allium species, such as onion, garlic, leek and chives, of S-alk(en)yl-l-cysteine sulphoxides (ACSOs) from provided by NOPR View metadata, citation and similar papers at core.ac.uk CORE have been used as foods, spices and herbal remedies γ-glutamyl peptidesbrought to youconsist by of S-alk(en)yl-cysteines in widespread areas of the world, especially in the such as (+)-S-allyl-l-cysteine (SAC) and (+)-S-(trans- northern hemisphere8. Allium species have been used 1-propenyl)-lcysteine (SPC)14. for food and medicine for thousands of years, The species belonging to the Allium family have especially Allium sativum (garlic) and A. cepa been used for a long time as a remedy for the (onion), and recently interest in other species has been prevention and treatment of certain diseases15. A. 9-11 increasing . The Allium genus is one of the major reuterianum is a perennial bulbous plant, originally sources of polypphenolic compunds and the from south-west Turkey. There is no report on antioxidative activity of some Allium’ s species has antioxidant, antimicrobial and cytotoxic potential of been reported and has been mainly attributed to a A. reuterianum in the literature. Therefore, the aims of variety of organo-sulfurous compounds as wells as this study were to study phenolic acid constituent, total phenolic content and flavonoid content ——— antibacterial, antioxidant activity, insecticidal, *Corresponding author AYDIN & MAMMADOV: BIOLOGICAL ACTIVITIES OF A. REUTERIANUM 291 cytotoxic activites of A. reuterianum from Turkey. times and UV absorption spectra with those of pure Separation and quantitative determination of standards. Gallic acid, 3,4-dihydroxy, 4-dihydroxy, individual phenolic compounds was performed using chlorogenic acid, vanilic acid, caffeic acid, high-performance liquid chromatography (HPLC). p-coumaric acid, ferulic acid and cinnamic acid were used as standard. Peaks identified by comparing Materials and methods retention times and UV spectra with authentic Plant material standards. The amount of each phenolic compound Allium reuterianum Boiss (Family: Amaryllidaceae) was expressed as µg/g of the extract. species were collected in the spring 2015 from Kötekli locality, near Muğla province, in Turkey. The fresh Total phenolic content assay bulbs and leaves of the plants samples were cleaned The total phenolic content of extracts were and dried in the shadow for extraction. determined with Folin- Ciocalteau reagent, according 17 to the method of Slinkard and Singleton . Briefly, Plant extract preparations 0.75 mL of Folin–Ciocalteu reagent (1:9; Folin- Dried plant parts (bulbs and leaves) were Ciocalteu reagent: distilled water) and 100 mL of pulverized. Each ground sample was transferred into a sample (5 mg/mL) were put into a test tube. The beaker. Ethanol, methanol and acetone were added in mixture was allowed to stand at room temperature for the ratio of 1:10 and they were put in water bath at 5 min. 0.75 mL of 6% (w/v) Na2CO3 was added to the 55ºC for 6 h16. The extraction mixture was separated mixture and then mixed gently. The mixture was from the residue by filtration through Whatman No: 1 homogenized and allowed to stand at room filter paper. The plant residue was re-extracted twice temperature for 90 min. Total polyphenol content was with ethanol, methanol and acetone. After the determined using a spectrophotometer at 760 nm. The filtration two extracts were combined. The residual standard calibration (0.01–0.05 mg/mL) curve was solvent of methanol, ethanol and acetone extracts of plotted using gallic acid. The total phenolic content sample were removed under reduced pressure at 48- was expressed as Gallic Acid Equivalents (GAE) in 49°C using a rotary evaporator (rotavapor IKA VB mg/mL plant extract. 10, Germany). The water extract was lyophilized using a freeze dryer (Thermosavant Modulyo D, Total flavonoid content assay USA). Extracts were produced in duplicates and used Total flavonoid content was determined using the to assay the biological activity. Dowd method as adapted by Arvouet-Grand et al. 18 Plant extracts: Allium (A), Bulb-Methanol (ABM), (1994) . For each extract, 1 mL of methanolic -1 Bulb-Ethanol (ABE), Bulb-Acetone (ABA), Leaf- solution (100 μg mL ) was mixed with 1 mL of Methanol (ALM), Leaf-Ethanol (ALE), Leaf-Acetone aluminium trichloride (AlCl3) in methanol (2%). The (ALA). absorbance was read at 415 nm after 10 min against a blank sample consisting of a 1 mL of methanol and 1 Analysis of phenolic contents by HPLC mL of plant extract without AlCl3. The total flavonoid Phenolic compounds were evaluated by reversed- content was determined on a standard curve using phase High Performance Liquid Chromatography quercetin as a standard. The mean of three readings (RP-HPLC, Shimadzu Scientific Instruments). The was used and expressed as mg of quercetin conditions utilized were as follows: C-18 column equivalents (QE) per 100 mg of extract or fraction CTO-10ASVp, 4.6 mm × 250 mm, 5 μm; mobile (mgQE/g). phase was composed of solvent A (formic acid with 3% methanol) and solvent B (100% acetonitrile); In vitro antioxidant activity injection volume 20 μL, gradient elution from β-Carotene-linoleic acid assay 15-100% B; run time 45 min and flow rate was The antioxidant activity of the crude extracts was 1 mL/min. For analysis, the samples were dissolved in evaluated using the β-carotene-linoleic acid test methanol and 20 μL of this solution was injected into system with slight modifications19. 0.2 mg of β- the column. The chromatograms were examined at Carotene (Sigma-Aldrich) dissolved in 1 mL of 280 nm with a LC gradient detector. The phenolic chloroform was added to 20 μL of linoleic acid, and compounds were recognized by comparing retention 200 mg of Tween-20 emulsifier mixture. The mixture 292 INDIAN J TRADIT KNOWLE, APRIL 2019 was then evaporated at 40oC for 10 min by means of a (1986)21. The different concentrations (40-150 rotary evaporator to remove chloroform. After μg/mL) of extracts were mixed with 2.5 mL of evaporation of chloroform, 100 mL of distilled water phosphate buffer (0.2 M, pH 6.6) and 2.5 mL of saturated with oxygen, 4.8 mL of this emulsion was potassium ferricyanide [K3Fe(CN)6] (1%). The placed into test tubes which had 0.2 mg of the sample mixture was incubated at 50◦ºC for 20 min. A portion and 0.2 units of the extract in them. For control, 0.2 (2.5 mL) of TCA (10%) was added to the mixture, mL of solvent (methanol, ethanol, acetone) was which was then centrifuged for 10 min at 3000 rpm placed in test tubes instead of the extract. As soon as (MSE Mistral 2000, UK). The supernatant of solution the emulsion was added into the test tubes, initial (2.5 mL) was mixed with 2.5 mL of distilled water 3+ 2+ absorbance was measured at 470 nm with a and 0.5 mL of FeCl3 (0.1%).
Recommended publications
  • Karyologická Variabilita Vybraných Taxonů Rodu Allium V Evropě Alena
    UNIVERZITA PALACKÉHO V OLOMOUCI Přírodov ědecká fakulta Katedra botaniky Karyologická variabilita vybraných taxon ů rodu Allium v Evrop ě Diplomová práce Alena VÁ ŇOVÁ obor: T ělesná výchova - Biologie Prezen ční studium Vedoucí práce: RNDr. Martin Duchoslav, Ph.D. Olomouc 2011 Prohlašuji, že jsem zadanou diplomovou práci vypracovala samostatn ě s použitím citované literatury a konzultací. V Olomouci dne: 14.1.2011 ................................................. Pod ěkování Ráda bych pod ěkovala všem, co mi v jakémkoli ohledu pomohli. P ředevším svému vedoucímu diplomové práce RNDr. Martinu Duchoslavovi, PhD., a to nejen za cenné rady a pomoc p ři práci, ale p ředevším za velké množství trp ělivosti. Stejn ě tak d ěkuji Mgr. Míše Jandové za veškerý čas, který mi v ěnovala, Tereze P ěnkavové za pomoc ve skleníku a odd ělení fytopatologie za možnost využívat jejich laborato ří. Samoz řejm ě mé díky pat ří i všem blízkým, kte ří m ě po dobu studia podporovali. Bibliografická identifikace Jméno a p říjmení autora : Alena Vá ňová Název práce : Karyologická variabilita vybraných taxon ů rodu Allium v Evrop ě. Typ práce : Diplomová Pracovišt ě: Katedra botaniky, P řírodov ědecká fakulta Univerzity Palackého v Olomouci Vedoucí práce : RNDr. Martin Duchoslav, Ph.D. Rok obhajoby práce : 2011 Abstrakt : Diplomová práce m ěla za cíl postihnout karyologickou variabilitu (chromozomový po čet, ploidní úrove ň a DNA-ploidní úrove ň) a velikost jaderné DNA (2C) vybraných taxon ů rodu Allium pro populace získané z různých částí Evropy. Celkov ě bylo pomocí karyologických metod prov ěř eno 550 jedinc ů u 14 taxon ů rodu Allium : A. albidum, A.
    [Show full text]
  • TRU President Alan Shaver, List of Publications
    Alan Shaver President and Vice-Chancellor of Thompson Rivers University PUBLICATIONS 127. A. Shaver, B. El-Mouatassim, F. Mortini and F. Belanger-Gariepy, “The Reactions of η5- 5 C5Me5Ir(PMe3)(SH)2 and η -C5Me5Ir(PMe3)(SH)(H) with Thionylaniline (PhNSO) to give Novel S3O and S2O-Iridium complexes” Organometallics 26, 4229-4233 (2007) 126. A.Z. Rys, A.-M. Lebuis, A. Shaver and D.N. Harpp, “Rearrangement of Molybdocene tetraoxide + Cp2MoS4O4 to Give (Cp2MoS2H)2 : A Novel Hydrogen-bond Stabilized Molybdocene Disulfide Dimer”, Inorg. Chem. 45, 341-344 (2006) 124. I. Kovacs, F. Belanger-Gariepy and A. Shaver, “Synthesis and Characterization of the First Mononuclear Iron Silanethiolate Complexes Containing an Unsupported Fe-S-Si Bond System. X-Ray Crystal Structure of CpFe(CO)2SSiPh3 and Its Reaction with SO2”, Inorg. Chem.42, 2988-2991 (2003). 123. Y. Song, I.S. Butler and A. Shaver, “High Pressure Vibrational Study of the Catalyst Candidate cis- dimercaptobis(triphenylphosphine)platinum(II), cis-[(Ph3P)2Pt(SH)2]”, Spectrochimica Acta A 58, 2581- 2587 (2002). 122. A.Z. Rys, A.-M. Lebuis, A. Shaver and D.N. Harpp, “Insertion of SO2 into the S-S Bond of Cp2MoS2 and Cp2MoS2O to give Molybdocene Dithiosulfates and Bis(O-alkylthiosulfate), Respectively”, Inorg. Chem. 41, 3653-3655 (2002). 121. B. El-Mouatassim, C. Pearson and A. Shaver, “Modeling Claus-like Chemistry: The Preparation of Cp*Ir(PMe3)S4 from Cp*Ir(PMe3)(SH)2 and SO2”, Inorg. Chem. 40, 5290-5291 (2001).. 120. A. Shaver, M. El-khateeb and A.-M. Lebuis, “Insertion Reactions of (PPh3)2Pt(SR)2 with CS2, where R = H, CMe3, CHMe3, 4-C6H4Me; the Structure of (PPh3)Pt(S-4-C6H4Me)(S2CS-4-C6H4Me)”, Inorg.
    [Show full text]
  • Rising Importance of Organosulfur Species for Aerosol Properties and Future 2 Air Quality
    1 Rising Importance of Organosulfur Species for Aerosol Properties and Future 2 Air Quality 3 M. Riva1,#,¥,*, Y. Chen1,¥, Y. Zhang1,2, Z. Lei3, N. E. Olson4, H. C. Boyer Chelmo5, S. Narayan5, 4 L. D. Yee6, H. S. Green1,‡, T. Cui1, Z. Zhang1, K. Baumann7, M. Fort7, E. Edgerton7, S. H. 5 Budisulistiorini1,†, C. A. Rose1, I. O. Ribeiro8, R. L. e Oliveira8, E. O. dos Santos9, C. M. D. 6 Machado9, S. Szopa10, Y. Zhao11,§, E. G. Alves12, S. S. de Sá13, W. Hu14, E. M. Knipping15, S. L. 7 Shaw16, S. Duvoisin Junior8, R. A. F. de Souza8, B.B. Palm,14 J. L. Jimenez14, M. Glasius17, A. 8 H. Goldstein6, H. O. T. Pye1,18, A. Gold1, B. J. Turpin1, W. Vizuete1, S. T. Martin13,19, J. A. 10 5 3,4* 1* 9 Thornton , C. S. Dutcher , A. P. Ault , and J. D. Surratt 10 Affiliations: 11 1 Department of Environmental Sciences and Engineering, Gillings School of Global Public 12 Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. 13 2 Aerodyne Research Inc., Billerica, MA, USA. 14 3 Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA. 15 4 Department of Chemistry, University of Michigan, Ann Arbor, MI, USA. 16 5 Department of Mechanical Engineering, University of Minnesota-Twin Cities, Minneapolis, 17 MN, USA. 18 6 Department of Environmental Science, Policy, and Management, University of California, 19 Berkeley, CA, USA. 20 7 Atmospheric Research & Analysis, Inc., Cary, NC, USA. 21 8 Escola Superior de Tecnologia, Universidade do Estado do Amazonas, Manaus, Amazonas, 22 Brasil.
    [Show full text]
  • Ail Rocambole - Wikipédia
    25/02/13 Ail rocambole - Wikipédia Ail rocambole L'ail rocambole est le nom commun pour désigner deux espèces différentes du genre Allium : l'espèce Ail rocambole cultivée Allium sativum subsp. ophioscorodon et l'espèce sauvage Allium scorodoprasum. Ce sont des plantes herbacées vivaces par leur bulbe et caractérisé par des bulbilles florales. Description Allium scorodoprasum est une plante haute de 20 à 40 cm. Feuilles à limbe allongé, tubulaire, naissant toutes du bulbe, à gaines membraneuses, embrassantes, emboîtées les unes dans les autres. L'odeur, forte en soufre, se développe dès que les tissus sont écrasés. La tige florale est contournée en spirale en sa partie supérieure et se termine par une inflorescence renfermées avant la floraison dans une spathe écailleuse. Les fleurs sont blanchâtres ou rosées, Allium scorodoprasum groupées, mêlées à des bulbilles. Classification de Cronquist (1981) Son bulbe est formé de caïeux (gousses), ovoïdes, oblongs, comprimés latéralement, un peu arqués et Règne Plantae renfermés dans une tunique commune. Sous-règne Tracheobionta Allium sativum subsp. ophioscorodon est un groupe Division Magnoliophyta d'ail cultivé (groupe IV) aux caïeux généralement assez gros s'épluchant facilement et au gout très prononcé. Classe Liliopsida La plante est haute de 40 à 60 cm. La tige florale est Sous-classe Liliidae contourné, formant une ou deux boucles. Il est très cultivé en Europe de l'Est aussi bien pour ses gousses Ordre Liliales que pour ces feuilles et tiges florales. Famille Liliaceae Certaines variétés d'ails cultivés du groupe I dit "à tige dure" portent aussi parfois le nom de rocambole par Genre Allium analogie mais leurs hampe florale n'est jamais Nom binominal consommée.
    [Show full text]
  • Complete Chloroplast Genomes Shed Light on Phylogenetic
    www.nature.com/scientificreports OPEN Complete chloroplast genomes shed light on phylogenetic relationships, divergence time, and biogeography of Allioideae (Amaryllidaceae) Ju Namgung1,4, Hoang Dang Khoa Do1,2,4, Changkyun Kim1, Hyeok Jae Choi3 & Joo‑Hwan Kim1* Allioideae includes economically important bulb crops such as garlic, onion, leeks, and some ornamental plants in Amaryllidaceae. Here, we reported the complete chloroplast genome (cpDNA) sequences of 17 species of Allioideae, fve of Amaryllidoideae, and one of Agapanthoideae. These cpDNA sequences represent 80 protein‑coding, 30 tRNA, and four rRNA genes, and range from 151,808 to 159,998 bp in length. Loss and pseudogenization of multiple genes (i.e., rps2, infA, and rpl22) appear to have occurred multiple times during the evolution of Alloideae. Additionally, eight mutation hotspots, including rps15-ycf1, rps16-trnQ-UUG, petG-trnW-CCA , psbA upstream, rpl32- trnL-UAG , ycf1, rpl22, matK, and ndhF, were identifed in the studied Allium species. Additionally, we present the frst phylogenomic analysis among the four tribes of Allioideae based on 74 cpDNA coding regions of 21 species of Allioideae, fve species of Amaryllidoideae, one species of Agapanthoideae, and fve species representing selected members of Asparagales. Our molecular phylogenomic results strongly support the monophyly of Allioideae, which is sister to Amaryllioideae. Within Allioideae, Tulbaghieae was sister to Gilliesieae‑Leucocoryneae whereas Allieae was sister to the clade of Tulbaghieae‑ Gilliesieae‑Leucocoryneae. Molecular dating analyses revealed the crown age of Allioideae in the Eocene (40.1 mya) followed by diferentiation of Allieae in the early Miocene (21.3 mya). The split of Gilliesieae from Leucocoryneae was estimated at 16.5 mya.
    [Show full text]
  • Biological Value and Morphological Traits of Pollen of Selected Garlic Species Allium L
    ACTA AGROBOTANICA Vol. 60 (1): 67 71 2007 BIOLOGICAL VALUE AND MORPHOLOGICAL TRAITS OF POLLEN OF SELECTED GARLIC SPECIES ALLIUM L. Beata Żuraw Department of Botany, Agricultural University, 20 950 Lublin, Akademicka str. 15 e mail: [email protected] Received: 20.04.2007 Summary (A. cernuum), violet (A. aflatunense) to purple (A. atro- This study was conducted in the years 1997 1999. From purpureum). Some species form blue (A. caeruleum) or the collection of the UMCS Botanical Garden, nine species of yellow flowers (A. moly, A. flavum). Most species are garlic were selected (A. aflatunense, A. atropurpureum, A. caeru- grown for cut flowers or as ornamentals on flower beds leum, A. cernuum, A. ledebourianum, A. lineare, A. sphaeroce- due to winter hardiness and low nutritional requirements phalon, A. victorialis, A. ursinum) and one subspecies (A. scoro- (K r z y m i ń s k a , 2003). Flower easily set seeds. Seeds doprasum subsp. jajlae). Pollen grain viability was evaluated on should be sown to the seed-bed in the autumn or directly microscopic slides stained with acetocarmine, germination abi to the soil in the spring (K amenetsky and Gutter- lity on the agar medium and measurements of grains were made m a n , 2000). The easiest way of propagation is the di- on glycerin jelly slides. The studied species were characterized vision of adventitious bulbs that should be set from the by high pollen viability (87 99%) what indicates the great value middle of September up to middle of November. of garlic flowers as a source of protein rich feed for honey bee Flowers of species from the genus L.
    [Show full text]
  • Analysis of Essential Oil from Leaves and Bulbs of Allium Atroviolaceum
    Brief Communication and Method report 2020;3(1):e8 Analysis of essential oil from leaves and Bulbs of Allium atroviolaceum a a b c* Parniyan Sebtosheikh , Mahnaz Qomi , Shima Ghadami , Faraz Mojab a. Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran. b. Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran. c. School of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Article Info: Abstract: Received: September 2020 Introduction: Medicinal plants used in traditional medicine as prevention and treatment Accepted: September 2020 of disease and illness or use in foods, has a long history. Plants belonging to genera Published online: Allium have widely been acquired as food and medicine. In many countries, including September 2020 Iran, a variety of species of the genus Allium such as garlic, onions, leeks, shallots, etc use for food and medicinal uses. Methods and Results: The leaves and bulbs of Allium atroviolaceum, collected from * Corresponding Author: Borujerd (Lorestan Province, Iran) in May 2015 and their essential oils of were obtained Faraz Mojab Email: [email protected] by hydro-distillation. The oils were analyzed by gas chromatography coupled with mass spectrometry (GC/MS) and their chemical composition was identified. The major constituents of A. atroviolaceum leaves oil were dimethyl trisulfide (59.0%), ethyl linolenate (12.4%), phytol (11.4%) and in bulb oil were methyl methyl thiomethyl disulfide (61.3%), dimethyl trisulfide (15.1%) and methyl allyl disulfide (4.3%). The major constituents of both essential oils are sulfur compounds. Conclusion: The results of the present study can help to increase of our information about composition of an edible herb in Iran.
    [Show full text]
  • Comparative Estimation of Productivity of Local Forms of Elephant Garlic
    1. Ukrainian Journal of Ecology, , 212-216 ORIGINAL ARTICLE Comparative estimation of productivity of local forms of Elephant garlic O.I. Ulianych, V.V. Yatsenko, G.Ya. Slobodyanyk, L.V. Soroka, I.A. Didenko Uman National University of Horticulture, Uman, Ukraine. E-mail: [email protected] Received: 18.05.2019. Accepted: 17.06.2019 The biological peculiarities and morphological features of introduced forms of the Elephant garlic (Allium ampeloprasum L.) in comparison with the cultivar of winter garlic (Allium sativum L.) Sofiivskyi were investigated. It was found that Elephant garlic variety samples are more responsive to changing conditions of cultivation than those of Allium sativum L. The winter resistance of the elephant garlic variety samples was within the limits of 98.0-100%. Elephant garlic plants do not form aerial bulbs, but on the bottom and under the covering scales the bulb is formed from 3-5 to 10 pcs of bulbs that is they reproduce by the baby bulbils propagation. The variety samples No. 2 and No. 3 have 7.1 and 5.1 relatively of large cloves in their structure. The weight of the bulb without removing the inflorescence shoot of the cultivar Sofiivskyi was smaller than the variety samples No. 2 and No. 3 relatively by 28.4-53.3 g. With the removal of the inflorescence shoot the difference increased by 60.5-68.6 g. The yield of Elephant garlic without removing the inflorescence shoot No. 2 was lower than the standard by 1.7 t ha-1 while the variety sample No. 3 exceeded the standard by 1.1 t/ha.
    [Show full text]
  • Allium Paradoxum (M.Bieb.) G. Don (Amaryllidaceae) – a New Invasive Plant Species for the Flora of Baltic States
    Acta Biol. Univ. Daugavp. 20 (1) 2020 ISSN 1407 - 8953 ALLIUM PARADOXUM (M.BIEB.) G. DON (AMARYLLIDACEAE) – A NEW INVASIVE PLANT SPECIES FOR THE FLORA OF BALTIC STATES Pēteris Evarts-Bunders, Aiva Bojāre Evarts-Bunders P., Bojāre A. 2020. Allium paradoxum (M. Bieb.) G. Don – a new invasive plant species for the flora of Baltic States.Acta Biol. Univ. Daugavp., 20 (1): 55 – 60. Allium paradoxum (M. Bieb.) G. Don was recorded as a new species for the flora of Latvia and the Baltic States on the basis of plant material first collected by A. Bojāre and P. Evarts-Bunders in 2020. Relatively large population of this species was found in Rīga, in the Rumbula district (Eastern border of the city), on the slope of the river Daugava covered by natural vegetation, but near the private gardens zone and ruderal places. This species can be easily distinguished from other Allium species by one flat, 5-25 mm wide, keeled leaf per bulb, inflorescence with several bulbils and mostly with only one flower. The species is considered as invasive and spreading by means of bulbils. In Latvia the species has been identified in their typical habitat – disturbed forest and shrubland along the riverbank on damp soil. Key words: Allium paradoxum, Latvia, Baltic States, invasive plant, flora. Pēteris Evarts-Bunders. Institute of Life Sciences and Technology, Daugavpils University, Parādes str., 1A, Daugavpils, LV-5401, Latvia; [email protected] Aiva Bojāre. National Botanical garden, Dendroflora Department, Miera Str., 1, Salaspils, LV-2169, Latvia; [email protected] INTRODUCTION There are seven species of sedge occurring in the wild in Latvia – Allium angulosum Allium L.
    [Show full text]
  • Taxonomic Problems in Mediterranean Allium, and Relationships with Non-Mediterranean Allium Groups
    Peter Hanelt Taxonomic problems in Mediterranean Allium, and relationships with non-Mediterranean Allium groups Abstract Hanelt, P.: Taxonomic problems in Mediterranean Allium, and relationships with non-Mediter­ ranean Allium groups. - Bocconea 5: 259-265. 1996. - ISSN 1120-4060. The Mediterranean region is one of the centres of diversity of the genus Allium. Representa­ tives of 4 out of 6 subgenera occur here, reflecting the rather heterogeneous evolutionary his­ tory of Allium in the Mediterranean area. Some are representatives of the basic stock of the genus, belonging e.g. to A. subg. Rhizirideum (mainly distributed in continental temperate Eurasia, and with rather unspecialized features) and subg. Amerallium (with the subendemic A. sect. Molium and some other small, derived species groups, adapted by their growth rhythm to the Mediterranean climate with its prolonged dry season). The majority of species belong to A. subg. Allium, whose evolution and radiation can be correlated to the development of vast arid regions, open for colonization, after the shrinking of the Tethys sea in the so-called Old Medi­ terranean region. The few Mediterranean species of A. subg. Melanocrommyum represent east­ em immigrations from the Irano-Turanian province. Inlroduction The Mediterranean region is one of the centres of species diversity of the genus Allium. As computed from recent fIoras and taxonomic papers, 165 species occur in this area, i.e., almost y4Jf the world total of Allium species. In terrns of taxonomy, the Medi­ terranean species are a very heterogeneous assemblage: with the exception of two small, mainly E Asian subgenera, they represent all important subgenera of the genus, and refIect their geographic and phylogenetic diversity.
    [Show full text]
  • In Vitro Antitrichomonal Activity of Some Species of Allium
    Jundishapur J Nat Pharm Prod. 2020 February; 15(1):e89649. doi: 10.5812/jjnpp.89649. Published online 2019 December 9. Research Article In Vitro Antitrichomonal Activity of Some Species of Allium Atena Majidi 1, 2, Hajar Ziaei Hezarjaribi 3, Hojat-Allah Arab 2, Zohreh Momeni 4, Ali Davoodi 1 and Mohammad Azadbakht 1, * 1Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran 2Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran 3Department of Parasitology, School of Medicine, Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran 4Department of Parasitology and Mycology, Faculty of Medicine, Azad University, Karaj, Iran *Corresponding author: Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran. Email: [email protected] Received 2019 January 21; Revised 2019 June 03; Accepted 2019 June 09. Abstract Background: Trichomonas vaginalis infectious disease is an important worldwide health problem. Although, several drugs espe- cially metronidazole and tinidazole have been used in the treatment, their-resistant strains have been developed and unpleasant adverse effects exist. Garlic and other Allium species are old medicinal plants, which were used for infectious diseases, cardiovascular disorders and hair and skin cosmetic diseases. Objectives: We aimed to compare the anti-trichomoniasis activities of three species of Allium. Methods: The Trichomonas vaginalis strain was isolated from vaginal discharge of women with vaginitis symptoms and cultured in a modified TYM medium. After confirmation of herbarium of the plants, their extracts were prepared. For testing, 24 sterile plates were used. In all 24 homes, 200 µL of TYM were poured out.
    [Show full text]
  • The Stinking Rose: Organosulfur Compounds and ‘2
    ______ Editorial See corresponding article on page 398. The stinking rose: organosulfur compounds and ‘2 David Heher In this issue of the AJC’N, Pinto et al ( 1) showed potentially leased, the allicin reacts rapidly with the amino acid cysteine important effects of aged garlic extract derivatives. S-allylcys- derived from protein in food consumed with the garlic. Much Downloaded from https://academic.oup.com/ajcn/article/66/2/425/4655750 by guest on 24 September 2021 teine and S-allylmencaptocysteine, on LNCaP prostate cancer work remains to be done on the metabolism of naturally de- cell glutathione and polyamine concentrations in vitro. This nived organosulfur compounds such as those found in garlic work adds additional support to the body of work in animals before we can be certain that the observations made in animals and cells showing potent effects of garlic in the inhibition of and in cell culture extend to humans. tumonigenesis. Some studies showed inhibition of carcinogen- Many different phytochemicals have potent activity on adduct formation as an important mechanism of action using carcinogenesis, risk factors for cardiovascular disease, and both garlic and selenium-enriched garlic (2-5). Another study aging in animals and humans. Why have plants evolved showed that the rise in polyamines seen after colonic irradia- substances that have potent effects in animal systems’? There tion could be inhibited by pretreatment with diallyl sulfide, an are at least two hypotheses. One hypothesis is that phyto- organosulfur compound found in garlic. However. the ultimate chemicals such as digoxin from the foxglove plant f’it the interest in garlic is as a dietary constituent or supplement.
    [Show full text]