Calculus Convergence and Divergence

Total Page:16

File Type:pdf, Size:1020Kb

Calculus Convergence and Divergence CALCULUS CONVERGENCE AND DIVERGENCE TEST NAME SERIES CONVERGES DIVERGES ADDITIONAL INFO 1 nth TERM TEST an if lim an =0 One should perform this n 6 n=1 !1 test first for divergence. X 1 n 1 GEOMETRIC anr − if 1 <r<1 if r 1 If convergent, converges − | |≥ a n=1 SERIES TEST to sn = 1 r X − 1 1 P-SERIES TEST if p>1 if p 1 Can be used for compar- np n=1 ison tests. X 1 INTEGRAL f(x) if 1 f(x) dx if 1 f(x) dx f(x) has to be continu- 1 · 1 · TEST n=1 converges. diverges. ous, positive, decreasing X R R on [1, ). 1 1 DIRECT a if 0 a b , and if 0 b a , and For convergence, find a n n n n n COMPARISON n=1 1 1 larger convergent series. X bn converges. bn diverges. TEST n=1 n=1 For divergence, find a P P smaller divergent series. 1 1 1 LIMIT an if bn converges, if bn diverges, If necessary, apply COMPARISON n=1 n=1 n=1 L’Hospital’s Rule. X an an TEST andP lim > 0. andP lim > 0. Inconclusive if n bn n bn a !1 !1 lim n = 0 or . n !1 bn 1 1 n+1 ALTERNATING ( 1) an if an+1 an, and if lim an = 0. To prove convergence − n 6 SERIES TEST n=1 lim an = 0. !1 prove that the sequence X n !1 is decreasing and its limit is zero. 1 an+1 an+1 RATIO TEST an if lim < 1. if lim > 1. The test fails if n a n a n=1 !1 n !1 n an+1 X lim = 1. n a !1 n 1 n n ROOT TEST an if lim an < 1. if lim an > 1. The test fails if n | | n | | n n=1 !1 !1 lim an = 1. X p p n !1 | | p csusm.edu/stemsc xxx @csusm_stemcenter Tel: North: 760-750-4101 South: 760-750-7324 CALCULUS CONVERGENCE AND DIVERGENCE DEFINITION OF CONVERGENCE AND DIVERGENCE 1 An infinite series an = a1 + a2 + a3 + ... is convergent if the sequence sn of partial sums, where n=1 { } P n each partial sum is denoted as sn = an = a1 + a2 + ...+ an, is convergent. n=1 If the sequence sn is divergent, thenP the series is called divergent. { } ABSOLUTELY CONVERGENT CONDITIONALLY CONVERGENT Aseries an is called absolutely convergent if Aseries an is called conditionally convergent the series of the absolute values an is if it is convergent but not absolutely convergent. convergent.P | | P P 1 1 1 1 1 1 1 1 c an = c an (an + bn)= an + bn (an bn)= an bn n=1 · · n=1 n=1 n=1 n=1 n=1 − n=1 − n=1 P P P P P P P P POWER SERIES 1 n 2 3 A power series is a series of the form cnx = c0 + c1x + c2x + c3x + ... where x is a variable and n=0 the cn’s are called the coefficients of theP series. 1 n 2 A series of the form cn(x a) = c0 + c1(x a)+c2(x a) + ... is called a power series in (x a) n=0 − − − − or a power series centeredP at a or a power series about a. 1 n For a given power series cn(x a) there are only three possibilities: n=0 − P (i) The series converges only when x = a. (ii) The series converges for all x. (iii) There is a positive number R such that the series converges if x a <Rand diverges if x a >R. | − | | − | 1 1 =1+x + x2 + x3 + ...= xn x < 1 1 x | | n=0 − X 1 n If the power series cn(x a) has radius of convergence R>0, then the function defined by n=0 − 1 Pn f(x)= cn(x a) is di↵erentiable on the interval (a R, a + R) and n=0 − − P 1 n 1 (i) f 0(x)= ncn(x a) − . n=0 − P 1 (x a)n+1 (ii) f(x)=C + cn −n+1 . n=0 R P csusm.edu/stemsc xxx @csusm_stemcenter Tel: North: 760-750-4101 South: 760-750-7324.
Recommended publications
  • Abel's Identity, 131 Abel's Test, 131–132 Abel's Theorem, 463–464 Absolute Convergence, 113–114 Implication of Condi
    INDEX Abel’s identity, 131 Bolzano-Weierstrass theorem, 66–68 Abel’s test, 131–132 for sequences, 99–100 Abel’s theorem, 463–464 boundary points, 50–52 absolute convergence, 113–114 bounded functions, 142 implication of conditional bounded sets, 42–43 convergence, 114 absolute value, 7 Cantor function, 229–230 reverse triangle inequality, 9 Cantor set, 80–81, 133–134, 383 triangle inequality, 9 Casorati-Weierstrass theorem, 498–499 algebraic properties of Rk, 11–13 Cauchy completeness, 106–107 algebraic properties of continuity, 184 Cauchy condensation test, 117–119 algebraic properties of limits, 91–92 Cauchy integral theorem algebraic properties of series, 110–111 triangle lemma, see triangle lemma algebraic properties of the derivative, Cauchy principal value, 365–366 244 Cauchy sequences, 104–105 alternating series, 115 convergence of, 105–106 alternating series test, 115–116 Cauchy’s inequalities, 437 analytic functions, 481–482 Cauchy’s integral formula, 428–433 complex analytic functions, 483 converse of, 436–437 counterexamples, 482–483 extension to higher derivatives, 437 identity principle, 486 for simple closed contours, 432–433 zeros of, see zeros of complex analytic on circles, 429–430 functions on open connected sets, 430–432 antiderivatives, 361 on star-shaped sets, 429 for f :[a, b] Rp, 370 → Cauchy’s integral theorem, 420–422 of complex functions, 408 consequence, see deformation of on star-shaped sets, 411–413 contours path-independence, 408–409, 415 Cauchy-Riemann equations Archimedean property, 5–6 motivation, 297–300
    [Show full text]
  • Ch. 15 Power Series, Taylor Series
    Ch. 15 Power Series, Taylor Series 서울대학교 조선해양공학과 서유택 2017.12 ※ 본 강의 자료는 이규열, 장범선, 노명일 교수님께서 만드신 자료를 바탕으로 일부 편집한 것입니다. Seoul National 1 Univ. 15.1 Sequences (수열), Series (급수), Convergence Tests (수렴판정) Sequences: Obtained by assigning to each positive integer n a number zn z . Term: zn z1, z 2, or z 1, z 2 , or briefly zn N . Real sequence (실수열): Sequence whose terms are real Convergence . Convergent sequence (수렴수열): Sequence that has a limit c limznn c or simply z c n . For every ε > 0, we can find N such that Convergent complex sequence |zn c | for all n N → all terms zn with n > N lie in the open disk of radius ε and center c. Divergent sequence (발산수열): Sequence that does not converge. Seoul National 2 Univ. 15.1 Sequences, Series, Convergence Tests Convergence . Convergent sequence: Sequence that has a limit c Ex. 1 Convergent and Divergent Sequences iin 11 Sequence i , , , , is convergent with limit 0. n 2 3 4 limznn c or simply z c n Sequence i n i , 1, i, 1, is divergent. n Sequence {zn} with zn = (1 + i ) is divergent. Seoul National 3 Univ. 15.1 Sequences, Series, Convergence Tests Theorem 1 Sequences of the Real and the Imaginary Parts . A sequence z1, z2, z3, … of complex numbers zn = xn + iyn converges to c = a + ib . if and only if the sequence of the real parts x1, x2, … converges to a . and the sequence of the imaginary parts y1, y2, … converges to b. Ex.
    [Show full text]
  • Arxiv:1207.1472V2 [Math.CV]
    SOME SIMPLIFICATIONS IN THE PRESENTATIONS OF COMPLEX POWER SERIES AND UNORDERED SUMS OSWALDO RIO BRANCO DE OLIVEIRA Abstract. This text provides very easy and short proofs of some basic prop- erties of complex power series (addition, subtraction, multiplication, division, rearrangement, composition, differentiation, uniqueness, Taylor’s series, Prin- ciple of Identity, Principle of Isolated Zeros, and Binomial Series). This is done by simplifying the usual presentation of unordered sums of a (countable) family of complex numbers. All the proofs avoid formal power series, double series, iterated series, partial series, asymptotic arguments, complex integra- tion theory, and uniform continuity. The use of function continuity as well as epsilons and deltas is kept to a mininum. Mathematics Subject Classification: 30B10, 40B05, 40C15, 40-01, 97I30, 97I80 Key words and phrases: Power Series, Multiple Sequences, Series, Summability, Complex Analysis, Functions of a Complex Variable. Contents 1. Introduction 1 2. Preliminaries 2 3. Absolutely Convergent Series and Commutativity 3 4. Unordered Countable Sums and Commutativity 5 5. Unordered Countable Sums and Associativity. 9 6. Sum of a Double Sequence and The Cauchy Product 10 7. Power Series - Algebraic Properties 11 8. Power Series - Analytic Properties 14 References 17 arXiv:1207.1472v2 [math.CV] 27 Jul 2012 1. Introduction The objective of this work is to provide a simplification of the theory of un- ordered sums of a family of complex numbers (in particular, for a countable family of complex numbers) as well as very easy proofs of basic operations and properties concerning complex power series, such as addition, scalar multiplication, multipli- cation, division, rearrangement, composition, differentiation (see Apostol [2] and Vyborny [21]), Taylor’s formula, principle of isolated zeros, uniqueness, principle of identity, and binomial series.
    [Show full text]
  • INFINITE SERIES in P-ADIC FIELDS
    INFINITE SERIES IN p-ADIC FIELDS KEITH CONRAD 1. Introduction One of the major topics in a course on real analysis is the representation of functions as power series X n anx ; n≥0 where the coefficients an are real numbers and the variable x belongs to R. In these notes we will develop the theory of power series over complete nonarchimedean fields. Let K be a field that is complete with respect to a nontrivial nonarchimedean absolute value j · j, such as Qp with its absolute value j · jp. We will look at power series over K (that is, with coefficients in K) and a variable x coming from K. Such series share some properties in common with real power series: (1) There is a radius of convergence R (a nonnegative real number, or 1), for which there is convergence at x 2 K when jxj < R and not when jxj > R. (2) A power series is uniformly continuous on each closed disc (of positive radius) where it converges. (3) A power series can be differentiated termwise in its disc of convergence. There are also some contrasts: (1) The convergence of a power series at its radius of convergence R does not exhibit mixed behavior: it is either convergent at all x with jxj = R or not convergent at P n all x with jxj = R, unlike n≥1 x =n on R, where R = 1 and there is convergence at x = −1 but not at x = 1. (2) A power series can be expanded around a new point in its disc of convergence and the new series has exactly the same disc of convergence as the original series.
    [Show full text]
  • 11.3-11.4 Integral and Comparison Tests
    11.3-11.4 Integral and Comparison Tests The Integral Test: Suppose a function f(x) is continuous, positive, and decreasing on [1; 1). Let an 1 P R 1 be defined by an = f(n). Then, the series an and the improper integral 1 f(x) dx either BOTH n=1 CONVERGE OR BOTH DIVERGE. Notes: • For the integral test, when we say that f must be decreasing, it is actually enough that f is EVENTUALLY ALWAYS DECREASING. In other words, as long as f is always decreasing after a certain point, the \decreasing" requirement is satisfied. • If the improper integral converges to a value A, this does NOT mean the sum of the series is A. Why? The integral of a function will give us all the area under a continuous curve, while the series is a sum of distinct, separate terms. • The index and interval do not always need to start with 1. Examples: Determine whether the following series converge or diverge. 1 n2 • X n2 + 9 n=1 1 2 • X n2 + 9 n=3 1 1 n • X n2 + 1 n=1 1 ln n • X n n=2 Z 1 1 p-series: We saw in Section 8.9 that the integral p dx converges if p > 1 and diverges if p ≤ 1. So, by 1 x 1 1 the Integral Test, the p-series X converges if p > 1 and diverges if p ≤ 1. np n=1 Notes: 1 1 • When p = 1, the series X is called the harmonic series. n n=1 • Any constant multiple of a convergent p-series is also convergent.
    [Show full text]
  • Rearrangement of Divergent Fourier Series
    The Australian Journal of Mathematical Analysis and Applications AJMAA Volume 14, Issue 1, Article 3, pp. 1-9, 2017 A NOTE ON DIVERGENT FOURIER SERIES AND λ-PERMUTATIONS ANGEL CASTILLO, JOSE CHAVEZ, AND HYEJIN KIM Received 20 September, 2016; accepted 4 February, 2017; published 20 February, 2017. TUFTS UNIVERSITY,DEPARTMENT OF MATHEMATICS,MEDFORD, MA 02155, USA [email protected] TEXAS TECH UNIVERSITY,DEPARTMENT OF MATHEMATICS AND STATISTICS,LUBBOCK, TX 79409, USA [email protected] UNIVERSITY OF MICHIGAN-DEARBORN,DEPARTMENT OF MATHEMATICS AND STATISTICS,DEARBORN, MI 48128, USA [email protected] ABSTRACT. We present a continuous function on [−π, π] whose Fourier series diverges and it cannot be rearranged to converge by a λ-permutation. Key words and phrases: Fourier series, Rearrangements, λ-permutations. 2000 Mathematics Subject Classification. Primary 43A50. ISSN (electronic): 1449-5910 c 2017 Austral Internet Publishing. All rights reserved. This research was conducted during the NREUP at University of Michigan-Dearborn and it was sponsored by NSF-Grant DMS-1359016 and by NSA-Grant H98230-15-1-0020. We would like to thank Y. E. Zeytuncu for valuable discussion. We also thank the CASL and the Department of Mathematics and Statistics at the University of Michigan-Dearborn for providing a welcoming atmosphere during the summer REU program. 2 A. CASTILLO AND J. CHAVEZ AND H. KIM 1.1. Fourier series. The Fourier series associated with a continuous function f on [−π, π] is defined by ∞ X inθ fe(θ) ∼ ane , n=−∞ where Z π 1 −inθ an = f(θ)e dθ . 2π −π Here an’s are called the Fourier coefficients of f and we denote by fethe Fourier series associ- ated with f.
    [Show full text]
  • 3.3 Convergence Tests for Infinite Series
    3.3 Convergence Tests for Infinite Series 3.3.1 The integral test We may plot the sequence an in the Cartesian plane, with independent variable n and dependent variable a: n X The sum an can then be represented geometrically as the area of a collection of rectangles with n=1 height an and width 1. This geometric viewpoint suggests that we compare this sum to an integral. If an can be represented as a continuous function of n, for real numbers n, not just integers, and if the m X sequence an is decreasing, then an looks a bit like area under the curve a = a(n). n=1 In particular, m m+2 X Z m+1 X an > an dn > an n=1 n=1 n=2 For example, let us examine the first 10 terms of the harmonic series 10 X 1 1 1 1 1 1 1 1 1 1 = 1 + + + + + + + + + : n 2 3 4 5 6 7 8 9 10 1 1 1 If we draw the curve y = x (or a = n ) we see that 10 11 10 X 1 Z 11 dx X 1 X 1 1 > > = − 1 + : n x n n 11 1 1 2 1 (See Figure 1, copied from Wikipedia) Z 11 dx Now = ln(11) − ln(1) = ln(11) so 1 x 10 X 1 1 1 1 1 1 1 1 1 1 = 1 + + + + + + + + + > ln(11) n 2 3 4 5 6 7 8 9 10 1 and 1 1 1 1 1 1 1 1 1 1 1 + + + + + + + + + < ln(11) + (1 − ): 2 3 4 5 6 7 8 9 10 11 Z dx So we may bound our series, above and below, with some version of the integral : x If we allow the sum to turn into an infinite series, we turn the integral into an improper integral.
    [Show full text]
  • 1 Approximating Integrals Using Taylor Polynomials 1 1.1 Definitions
    Seunghee Ye Ma 8: Week 7 Nov 10 Week 7 Summary This week, we will learn how we can approximate integrals using Taylor series and numerical methods. Topics Page 1 Approximating Integrals using Taylor Polynomials 1 1.1 Definitions . .1 1.2 Examples . .2 1.3 Approximating Integrals . .3 2 Numerical Integration 5 1 Approximating Integrals using Taylor Polynomials 1.1 Definitions When we first defined the derivative, recall that it was supposed to be the \instantaneous rate of change" of a function f(x) at a given point c. In other words, f 0 gives us a linear approximation of f(x) near c: for small values of " 2 R, we have f(c + ") ≈ f(c) + "f 0(c) But if f(x) has higher order derivatives, why stop with a linear approximation? Taylor series take this idea of linear approximation and extends it to higher order derivatives, giving us a better approximation of f(x) near c. Definition (Taylor Polynomial and Taylor Series) Let f(x) be a Cn function i.e. f is n-times continuously differentiable. Then, the n-th order Taylor polynomial of f(x) about c is: n X f (k)(c) T (f)(x) = (x − c)k n k! k=0 The n-th order remainder of f(x) is: Rn(f)(x) = f(x) − Tn(f)(x) If f(x) is C1, then the Taylor series of f(x) about c is: 1 X f (k)(c) T (f)(x) = (x − c)k 1 k! k=0 Note that the first order Taylor polynomial of f(x) is precisely the linear approximation we wrote down in the beginning.
    [Show full text]
  • Series: Convergence and Divergence Comparison Tests
    Series: Convergence and Divergence Here is a compilation of what we have done so far (up to the end of October) in terms of convergence and divergence. • Series that we know about: P∞ n Geometric Series: A geometric series is a series of the form n=0 ar . The series converges if |r| < 1 and 1 a1 diverges otherwise . If |r| < 1, the sum of the entire series is 1−r where a is the first term of the series and r is the common ratio. P∞ 1 2 p-Series Test: The series n=1 np converges if p1 and diverges otherwise . P∞ • Nth Term Test for Divergence: If limn→∞ an 6= 0, then the series n=1 an diverges. Note: If limn→∞ an = 0 we know nothing. It is possible that the series converges but it is possible that the series diverges. Comparison Tests: P∞ • Direct Comparison Test: If a series n=1 an has all positive terms, and all of its terms are eventually bigger than those in a series that is known to be divergent, then it is also divergent. The reverse is also true–if all the terms are eventually smaller than those of some convergent series, then the series is convergent. P P P That is, if an, bn and cn are all series with positive terms and an ≤ bn ≤ cn for all n sufficiently large, then P P if cn converges, then bn does as well P P if an diverges, then bn does as well. (This is a good test to use with rational functions.
    [Show full text]
  • The Summation of Power Series and Fourier Series
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Computational and Applied Mathematics 12&13 (1985) 447-457 447 North-Holland The summation of power series and Fourier . series I.M. LONGMAN Department of Geophysics and Planetary Sciences, Tel Aviv University, Ramat Aviv, Israel Received 27 July 1984 Abstract: The well-known correspondence of a power series with a certain Stieltjes integral is exploited for summation of the series by numerical integration. The emphasis in this paper is thus on actual summation of series. rather than mere acceleration of convergence. It is assumed that the coefficients of the series are given analytically, and then the numerator of the integrand is determined by the aid of the inverse of the two-sided Laplace transform, while the denominator is standard (and known) for all power series. Since Fourier series can be expressed in terms of power series, the method is applicable also to them. The treatment is extended to divergent series, and a fair number of numerical examples are given, in order to illustrate various techniques for the numerical evaluation of the resulting integrals. Keywork Summation of series. 1. Introduction We start by considering a power series, which it is convenient to write in the form s(x)=/.Q-~2x+&x2..., (1) for reasons which will become apparent presently. Here there is no intention to limit ourselves to alternating series since, even if the pLkare all of one sign, x may take negative and even complex values. It will be assumed in this paper that the pLk are real.
    [Show full text]
  • A Quotient Rule Integration by Parts Formula Jennifer Switkes ([email protected]), California State Polytechnic Univer- Sity, Pomona, CA 91768
    A Quotient Rule Integration by Parts Formula Jennifer Switkes ([email protected]), California State Polytechnic Univer- sity, Pomona, CA 91768 In a recent calculus course, I introduced the technique of Integration by Parts as an integration rule corresponding to the Product Rule for differentiation. I showed my students the standard derivation of the Integration by Parts formula as presented in [1]: By the Product Rule, if f (x) and g(x) are differentiable functions, then d f (x)g(x) = f (x)g(x) + g(x) f (x). dx Integrating on both sides of this equation, f (x)g(x) + g(x) f (x) dx = f (x)g(x), which may be rearranged to obtain f (x)g(x) dx = f (x)g(x) − g(x) f (x) dx. Letting U = f (x) and V = g(x) and observing that dU = f (x) dx and dV = g(x) dx, we obtain the familiar Integration by Parts formula UdV= UV − VdU. (1) My student Victor asked if we could do a similar thing with the Quotient Rule. While the other students thought this was a crazy idea, I was intrigued. Below, I derive a Quotient Rule Integration by Parts formula, apply the resulting integration formula to an example, and discuss reasons why this formula does not appear in calculus texts. By the Quotient Rule, if f (x) and g(x) are differentiable functions, then ( ) ( ) ( ) − ( ) ( ) d f x = g x f x f x g x . dx g(x) [g(x)]2 Integrating both sides of this equation, we get f (x) g(x) f (x) − f (x)g(x) = dx.
    [Show full text]
  • Beyond Mere Convergence
    Beyond Mere Convergence James A. Sellers Department of Mathematics The Pennsylvania State University 107 Whitmore Laboratory University Park, PA 16802 [email protected] February 5, 2002 – REVISED Abstract In this article, I suggest that calculus instruction should include a wider variety of examples of convergent and divergent series than is usually demonstrated. In particular, a number of convergent series, P k3 such as 2k , are considered, and their exact values are found in a k≥1 straightforward manner. We explore and utilize a number of math- ematical topics, including manipulation of certain power series and recurrences. During my most recent spring break, I read William Dunham’s book Euler: The Master of Us All [3]. I was thoroughly intrigued by the material presented and am certainly glad I selected it as part of the week’s reading. Of special interest were Dunham’s comments on series manipulations and the power series identities developed by Euler and his contemporaries, for I had just completed teaching convergence and divergence of infinite series in my calculus class. In particular, Dunham [3, p. 47-48] presents Euler’s proof of the Basel Problem, a challenge from Jakob Bernoulli to determine the 1 P 1 exact value of the sum k2 . Euler was the first to solve this problem by k≥1 π2 proving that the sum equals 6 . I was reminded of my students’ interest in this result when I shared it with them just weeks before. I had already mentioned to them that exact values for relatively few families of convergent series could be determined.
    [Show full text]