Nucleosomes Around a Mismatched Base Pair Are Excluded Via an Msh2-Dependent Reaction with the Aid of SNF2 Family Atpase Smarcad1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
List of Genes Associated with Sudden Cardiac Death (Scdgseta) Gene
List of genes associated with sudden cardiac death (SCDgseta) mRNA expression in normal human heart Entrez_I Gene symbol Gene name Uniprot ID Uniprot name fromb D GTEx BioGPS SAGE c d e ATP-binding cassette subfamily B ABCB1 P08183 MDR1_HUMAN 5243 √ √ member 1 ATP-binding cassette subfamily C ABCC9 O60706 ABCC9_HUMAN 10060 √ √ member 9 ACE Angiotensin I–converting enzyme P12821 ACE_HUMAN 1636 √ √ ACE2 Angiotensin I–converting enzyme 2 Q9BYF1 ACE2_HUMAN 59272 √ √ Acetylcholinesterase (Cartwright ACHE P22303 ACES_HUMAN 43 √ √ blood group) ACTC1 Actin, alpha, cardiac muscle 1 P68032 ACTC_HUMAN 70 √ √ ACTN2 Actinin alpha 2 P35609 ACTN2_HUMAN 88 √ √ √ ACTN4 Actinin alpha 4 O43707 ACTN4_HUMAN 81 √ √ √ ADRA2B Adrenoceptor alpha 2B P18089 ADA2B_HUMAN 151 √ √ AGT Angiotensinogen P01019 ANGT_HUMAN 183 √ √ √ AGTR1 Angiotensin II receptor type 1 P30556 AGTR1_HUMAN 185 √ √ AGTR2 Angiotensin II receptor type 2 P50052 AGTR2_HUMAN 186 √ √ AKAP9 A-kinase anchoring protein 9 Q99996 AKAP9_HUMAN 10142 √ √ √ ANK2/ANKB/ANKYRI Ankyrin 2 Q01484 ANK2_HUMAN 287 √ √ √ N B ANKRD1 Ankyrin repeat domain 1 Q15327 ANKR1_HUMAN 27063 √ √ √ ANKRD9 Ankyrin repeat domain 9 Q96BM1 ANKR9_HUMAN 122416 √ √ ARHGAP24 Rho GTPase–activating protein 24 Q8N264 RHG24_HUMAN 83478 √ √ ATPase Na+/K+–transporting ATP1B1 P05026 AT1B1_HUMAN 481 √ √ √ subunit beta 1 ATPase sarcoplasmic/endoplasmic ATP2A2 P16615 AT2A2_HUMAN 488 √ √ √ reticulum Ca2+ transporting 2 AZIN1 Antizyme inhibitor 1 O14977 AZIN1_HUMAN 51582 √ √ √ UDP-GlcNAc: betaGal B3GNT7 beta-1,3-N-acetylglucosaminyltransfe Q8NFL0 -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Multiple Cellular Proteins Interact with LEDGF/P75 Through a Conserved Unstructured Consensus Motif
ARTICLE Received 19 Jan 2015 | Accepted 1 Jul 2015 | Published 6 Aug 2015 DOI: 10.1038/ncomms8968 Multiple cellular proteins interact with LEDGF/p75 through a conserved unstructured consensus motif Petr Tesina1,2,3,*, Katerˇina Cˇerma´kova´4,*, Magdalena Horˇejsˇ´ı3, Katerˇina Procha´zkova´1, Milan Fa´bry3, Subhalakshmi Sharma4, Frauke Christ4, Jonas Demeulemeester4, Zeger Debyser4, Jan De Rijck4,**, Va´clav Veverka1,** & Pavlı´na Rˇeza´cˇova´1,3,** Lens epithelium-derived growth factor (LEDGF/p75) is an epigenetic reader and attractive therapeutic target involved in HIV integration and the development of mixed lineage leukaemia (MLL1) fusion-driven leukaemia. Besides HIV integrase and the MLL1-menin complex, LEDGF/p75 interacts with various cellular proteins via its integrase binding domain (IBD). Here we present structural characterization of IBD interactions with transcriptional repressor JPO2 and domesticated transposase PogZ, and show that the PogZ interaction is nearly identical to the interaction of LEDGF/p75 with MLL1. The interaction with the IBD is maintained by an intrinsically disordered IBD-binding motif (IBM) common to all known cellular partners of LEDGF/p75. In addition, based on IBM conservation, we identify and validate IWS1 as a novel LEDGF/p75 interaction partner. Our results also reveal how HIV integrase efficiently displaces cellular binding partners from LEDGF/p75. Finally, the similar binding modes of LEDGF/p75 interaction partners represent a new challenge for the development of selective interaction inhibitors. 1 Institute of Organic Chemistry and Biochemistry of the ASCR, v.v.i., Flemingovo nam. 2, 166 10 Prague, Czech Republic. 2 Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicna 5, 128 44 Prague, Czech Republic. -
UC San Diego Electronic Theses and Dissertations
UC San Diego UC San Diego Electronic Theses and Dissertations Title Negative Correlation between SMARCAD1 and Histone Citrulline Protein Expression in Cancer and Non-cancerous Cell Lines Permalink https://escholarship.org/uc/item/5078x69h Author Zhao, Tianyi Publication Date 2016 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Negative Correlation between SMARCAD1 and Histone Citrulline Protein Expression in Normal and Cancer Cell Lines A Thesis submitted in partial satisfaction of the requirements of the degree Master of Science in Bioengineering by Tianyi Zhao Committee in charge: Professor Sheng Zhong, Chair Professor Prashant Gulab Ram Mali Professor Yingxiao Wang 2016 Copyright Tianyi Zhao, 2016 All rights reserved. The Thesis of Tianyi Zhao is approved and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2016 iii Table of Contens Signature Page ..................................................................................................... iii Table of Contents ................................................................................................. iv List of Figures ....................................................................................................... v List of Tables ....................................................................................................... vii List of Graph ...................................................................................................... -
Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia. -
De Novo POGZ Mutations in Sporadic
Matsumura et al. Journal of Molecular Psychiatry (2016) 4:1 DOI 10.1186/s40303-016-0016-x SHORT REPORT Open Access De novo POGZ mutations in sporadic autism disrupt the DNA-binding activity of POGZ Kensuke Matsumura1, Takanobu Nakazawa2*, Kazuki Nagayasu2, Nanaka Gotoda-Nishimura1, Atsushi Kasai1, Atsuko Hayata-Takano1, Norihito Shintani1, Hidenaga Yamamori3, Yuka Yasuda3, Ryota Hashimoto3,4 and Hitoshi Hashimoto1,2,4 Abstract Background: A spontaneous de novo mutation is a new mutation appeared in a child that neither the parent carries. Recent studies suggest that recurrent de novo loss-of-function mutations identified in patients with sporadic autism spectrum disorder (ASD) play a key role in the etiology of the disorder. POGZ is one of the most recurrently mutated genes in ASD patients. Our laboratory and other groups have recently found that POGZ has at least 18 independent de novo possible loss-of-function mutations. Despite the apparent importance, these mutations have never previously been assessed via functional analysis. Methods: Using wild-type, the Q1042R-mutated, and R1008X-mutated POGZ, we performed DNA-binding experiments for proteins that used the CENP-B box sequence in vitro. Data were statistically analyzed by one-way ANOVA followed by Tukey-Kramer post hoc tests. Results: This study reveals that ASD-associated de novo mutations (Q1042R and R1008X) in the POGZ disrupt its DNA-binding activity. Conclusions: Here, we report the first functional characterization of de novo POGZ mutations identified in sporadic ASD cases. These findings provide important insights into the cellular basis of ASD. Keywords: Autism spectrum disorder, Recurrent mutation, De novo mutation, POGZ, DNA-binding activity Background including CHD8, ARID1B, SYNGAP1, DYRK1A, SCN2A, The genetic etiology of autism spectrum disorder (ASD) ANK2, ADNP, DSCAM, CHD2, KDM5B, SUV420H1, remains poorly understood. -
Loss of ISWI Atpase SMARCA5 (SNF2H) in Acute Myeloid Leukemia Cells Inhibits Proliferation and Chromatid Cohesion
International Journal of Molecular Sciences Article Loss of ISWI ATPase SMARCA5 (SNF2H) in Acute Myeloid Leukemia Cells Inhibits Proliferation and Chromatid Cohesion 1, 1, 1 2,3,4 1 Tomas Zikmund y , Helena Paszekova y , Juraj Kokavec , Paul Kerbs , Shefali Thakur , Tereza Turkova 1, Petra Tauchmanova 1, Philipp A. Greif 2,3,4 and Tomas Stopka 1,* 1 Biocev, 1st Medical Faculty, Charles University, 25250 Vestec, Czech Republic; [email protected] (T.Z.); [email protected] (H.P.); [email protected] (J.K.); [email protected] (S.T.); [email protected] (T.T.); [email protected] (P.T.) 2 Department of Medicine III, University Hospital, LMU Munich, D-80539 Munich, Germany; [email protected] (P.K.); [email protected] (P.A.G.) 3 German Cancer Consortium (DKTK), partner site Munich, D-80336 Munich, Germany 4 German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany * Correspondence: [email protected]; Tel.: +420-32587-3001 These authors contributed equally. y Received: 26 February 2020; Accepted: 16 March 2020; Published: 18 March 2020 Abstract: ISWI chromatin remodeling ATPase SMARCA5 (SNF2H) is a well-known factor for its role in regulation of DNA access via nucleosome sliding and assembly. SMARCA5 transcriptionally inhibits the myeloid master regulator PU.1. Upregulation of SMARCA5 was previously observed in CD34+ hematopoietic progenitors of acute myeloid leukemia (AML) patients. Since high levels of SMARCA5 are necessary for intensive cell proliferation and cell cycle progression of developing hematopoietic stem and progenitor cells in mice, we reasoned that removal of SMARCA5 enzymatic activity could affect the cycling or undifferentiated state of leukemic progenitor-like clones. -
POGZ Gene Pogo Transposable Element Derived with ZNF Domain
POGZ gene pogo transposable element derived with ZNF domain Normal Function The POGZ gene provides instructions for making a protein that is found in the cell nucleus. The POGZ protein is part of a group known as zinc finger proteins, which contain one or more short regions called zinc finger domains. These regions include a specific pattern of protein building blocks (amino acids) and one or more charged atoms of zinc (zinc ions). The folded configuration of the zinc finger domain stabilizes the protein and allows it to attach (bind) to other molecules. In the cell nucleus, the POGZ protein attaches (binds) to chromatin, which is the network of DNA and proteins that packages DNA into chromosomes. Binding of the POGZ protein is part of the process that changes the structure of chromatin (chromatin remodeling) to alter how tightly regions of DNA are packaged. Chromatin remodeling is one way gene activity (expression) is regulated; when DNA is tightly packed gene expression is lower than when DNA is loosely packed. Regulation of gene expression by the POGZ protein is thought to be important to brain development, but the specific function of POGZ in the brain is not well understood. Health Conditions Related to Genetic Changes White-Sutton syndrome At least 17 POGZ gene mutations have been found to cause White-Sutton syndrome. This disorder is characterized by intellectual disability, specific facial features, and other signs and symptoms affecting various parts of the body, particularly vision problems and gastrointestinal problems. Most affected individuals have features of autism spectrum disorder (ASD), a varied condition characterized by impaired social skills, communication problems, and repetitive behaviors. -
Molecular Mechanism of LEDGF/P75 Dimerization
Article Molecular Mechanism of LEDGF/p75 Dimerization Graphical Abstract Authors Vanda Lux, Tine Brouns, Katerina Cerma ´ kova´ , ..., Frauke Christ, Zeger Debyser, Va´ clav Veverka Correspondence [email protected] (Z.D.), [email protected] (V.V.) In Brief Dimerization is an important process regulating eukaryotic transcription. Lux et al. use a combination of biophysical and biochemical techniques to investigate the dimerization mechanism of LEDGF/p75, the H3K36 methylation reader, and its effect on molecular interactions with other proteins. Highlights d Full-length LEDGF/p75 forms dimers with a low micromolar KD d LEDGF/p75 residues 345–467 is the minimal stable dimerization domain d LEDGF dimer is stabilized by domain swapping and additional electrostatic stapling d LEDGF dimerization does not impair binding of interaction partners Lux et al., 2020, Structure 28, 1288–1299 December 1, 2020 ª 2020 Elsevier Ltd. https://doi.org/10.1016/j.str.2020.08.012 ll ll Article Molecular Mechanism of LEDGF/p75 Dimerization Vanda Lux,1,7 Tine Brouns,2,7 Katerina Cerma´ kova´ ,1,3 Pavel Srb,1 Milan Fa´ bry,4 Marcela Ma´ dlı´kova´ ,1 Magdalena Horejsı´,4 Zdenek Kukacka, 5 Petr Nova´ k,5 Michael Kugler,1 Jirı´ Brynda,1,4 Jan DeRijck,2 Frauke Christ,2 Zeger Debyser,2,* and Va´ clav Veverka1,6,8,* 1Structural Biology, Institute of Organic Chemistry and Biochemistry of the CAS, Prague 16000, Czech Republic 2Molecular Virology and Gene Therapy, KU Leuven, Molecular Virology and Gene Therapy, Leuven, 3000 Flanders, Belgium 3Department -
"The Genecards Suite: from Gene Data Mining to Disease Genome Sequence Analyses". In: Current Protocols in Bioinformat
The GeneCards Suite: From Gene Data UNIT 1.30 Mining to Disease Genome Sequence Analyses Gil Stelzer,1,5 Naomi Rosen,1,5 Inbar Plaschkes,1,2 Shahar Zimmerman,1 Michal Twik,1 Simon Fishilevich,1 Tsippi Iny Stein,1 Ron Nudel,1 Iris Lieder,2 Yaron Mazor,2 Sergey Kaplan,2 Dvir Dahary,2,4 David Warshawsky,3 Yaron Guan-Golan,3 Asher Kohn,3 Noa Rappaport,1 Marilyn Safran,1 and Doron Lancet1,6 1Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel 2LifeMap Sciences Ltd., Tel Aviv, Israel 3LifeMap Sciences Inc., Marshfield, Massachusetts 4Toldot Genetics Ltd., Hod Hasharon, Israel 5These authors contributed equally to the paper 6Corresponding author GeneCards, the human gene compendium, enables researchers to effectively navigate and inter-relate the wide universe of human genes, diseases, variants, proteins, cells, and biological pathways. Our recently launched Version 4 has a revamped infrastructure facilitating faster data updates, better-targeted data queries, and friendlier user experience. It also provides a stronger foundation for the GeneCards suite of companion databases and analysis tools. Improved data unification includes gene-disease links via MalaCards and merged biological pathways via PathCards, as well as drug information and proteome expression. VarElect, another suite member, is a phenotype prioritizer for next-generation sequencing, leveraging the GeneCards and MalaCards knowledgebase. It au- tomatically infers direct and indirect scored associations between hundreds or even thousands of variant-containing genes and disease phenotype terms. Var- Elect’s capabilities, either independently or within TGex, our comprehensive variant analysis pipeline, help prepare for the challenge of clinical projects that involve thousands of exome/genome NGS analyses. -
Association of Polymorphisms in the LEDGF/P75 Gene (PSIP1) with Susceptibility to HIV-1 Infection and Disease Progression
Association of polymorphisms in the LEDGF/p75 gene (PSIP1) with susceptibility to HIV-1 infection and disease progression Paradise Madlalaa,b, Rik Gijsbersc, Frauke Christc, Anneleen Hombrouckc, Lise Wernerd, Koleka Mlisanad, Ping Ane, Salim S. Abdool Karimd, Cheryl A. Winklere, Zeger Debyserc and Thumbi Ndung’ua,d Objective: LEDGF/p75, encoded by the PSIP1 gene, interacts with HIV-1 integrase and targets HIV-1 integration into active genes. We investigated the influence of poly- morphisms in PSIP1 on HIV-1 acquisition and disease progression in black South Africans. Methods: Integrase binding domain of LEDGF/p75 was sequenced in 126 participants. Four haplotype tagging SNPs rs2277191, rs1033056, rs12339417 and rs10283923 referred to as SNP1, SNP2, SNP3 and SNP4, respectively, and one exonic SNP rs61744944 (SNP5, Q472L) were genotyped in 195 HIV-1 seronegative, 52 primary and 403 chronically infected individuals using TaqMan assays. LEDGF/p75 expression was quantified by real-time RT-PCR. The impact of Q472L mutation on the interaction with HIV_1 IN was measured by AlphaScreen. Results: rs2277191 (SNP1) A was more frequent among seropositives (P ¼ 0.06, Fish- er’s exact test). Among individuals followed longitudinally SNP1A trended towards association with higher likelihood of HIV-1 acquisition [relative hazard (RH) ¼ 2.21, P ¼ 0.08; Cox model] and it was also associated with rapid disease progression (RH ¼ 5.98, P ¼ 0.04; Cox model) in the recently infected (primary infection) cohort. rs12339417 (SNP3)C was associated with slower decline of CD4þ T cells (P ¼ 0.02) and lower messenger RNA (mRNA) levels of LEDGF/p75 (P < 0.01). -
PAX3-FOXO1 Candidate Interactors
Supplementary Table S1: PAX3-FOXO1 candidate interactors Total number of proteins: 230 Nuclear proteins : 201 Exclusive unique peptide count RH4 RMS RMS RMS Protein name Gen name FLAG#1 FLAG#2 FLAG#3 FLAG#4 Chromatin regulating complexes Chromatin modifying complexes: 6 Proteins SIN 3 complex Histone deacetylase complex subunit SAP18 SAP18 2664 CoRESt complex REST corepressor 1 RCOR1 2223 PRC1 complex E3 ubiquitin-protein ligase RING2 RNF2/RING1B 1420 MLL1/MLL complex Isoform 14P-18B of Histone-lysine N-methyltransferase MLL MLL/KMT2A 0220 WD repeat-containing protein 5 WDR5 2460 Isoform 2 of Menin MEN1 3021 Chromatin remodelling complexes: 22 Proteins CHD4/NuRD complex Isoform 2 of Chromodomain-helicase-DNA-binding protein 4 CHD4 3 21 6 0 Isoform 2 of Lysine-specific histone demethylase 1A KDM1A/LSD1a 3568 Histone deacetylase 1 HDAC1b 3322 Histone deacetylase 2 HDAC2b 96710 Histone-binding protein RBBP4 RBBP4b 10 7 6 7 Histone-binding protein RBBP7 RBBP7b 2103 Transcriptional repressor p66-alpha GATAD2A 6204 Metastasis-associated protein MTA2 MTA2 8126 SWI/SNF complex BAF SMARCA4 isoform SMARCA4/BRG1 6 13 10 0 AT-rich interactive domain-containing protein 1A ARID1A/BAF250 2610 SWI/SNF complex subunit SMARCC1 SMARCC1/BAF155c 61180 SWI/SNF complex subunit SMARCC2 SMARCC2/BAF170c 2200 Isoform 2 of SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D member 1 SMARCD1/BAF60ac 2004 Isoform 2 of SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D member 3 SMARCD3/BAF60cc 7209