The Physics of Quantum Information

Total Page:16

File Type:pdf, Size:1020Kb

The Physics of Quantum Information The Physics of Quantum Information Complementarity, Uncertainty, and Entanglement Joseph M. Renes 12 December 2012 arXiv:1212.2379v1 [quant-ph] 11 Dec 2012 Habilitation TU Darmstadt, Fachbereich Physik 2011 Contents Preface 1 1 Introduction: What is Quantum Information? 5 1.1 Understanding Classical Information via the InformationGame ................ 6 1.2 ComplementarityintheInformationGame . .................. 7 1.3 EntanglementintheInformationGame . .................. 8 2 Illustrations and Motivations 11 2.1 TeleportationandSuperdenseCoding . ................... 11 2.2 QuantumError-Correction......................... ................... 12 2.3 EntanglementDistillation ........................ .................... 17 2.4 QuantumKeyDistribution.......................... .................. 18 3 Characterizing Quantum Information 23 3.1 Amplitude and Phase Predictability & Entanglement . ..................... 23 3.2 Duality&Decoupling.............................. .................. 28 3.3 EntropicCharacterizations. .. .. .. .. .. .. .. .. .. .. ..................... 31 3.4 SecretKeys&PrivateStates ........................ ................... 33 4 Processing Quantum Information 37 4.1 OptimalEntanglementDistillation . ..................... 37 4.2 OptimalStateMerging............................. .................. 43 4.3 Secret Key Distillation and Private Communication . ...................... 45 5 Duality of Protocols 47 5.1 Duality of Privacy Amplification and Information Reconciliation ................ 47 5.2 Different Approaches to Entanglement Distillation . ....................... 51 5.3 ClassicalChannelCoding.......................... ................... 54 6 Security of Quantum Key Distribution 59 6.1 NotionsofSecurity ............................... .................. 59 6.2 EntanglementinPrepareandMeasureQKD . ................. 60 6.3 PrivateStatesinQuantumKeyDistribution . .................... 64 7 Summary and Outlook 67 Bibliography 69 Included Papers 79 i Preface Complementarity is one of the central mysteries of quantum mechanics. First put forth by Bohr [1, 2, 3], complementarity holds that the attributes of a physical system familiar from classical mechan- ics do not all simultaneously exist and are not entirely independent of how they are measured. Fa- mously, if the momentum of a particle is known then its position must be unknown, and vice versa, a fact encapsulated in Heisenberg’s uncertainty relation ∆x∆p hħ/2 [4]. Even more dramatic is ≥ the wave-particle duality encountered in Young’s double-slit experiment, which illustrates the im- portant role of observation. Light passing through the double slit setup produces an interference pattern on a screen beyond the slits, as would be characteristic of a wave. But a closer examina- tion reveals that light arrives in particle-like “packets” at the screen, and the interference pattern only arises as a statistical average of these particle arrival events. This particle picture tempts us to observe which slit the light went through, which we find destroys the interference pattern! Feyn- man regarded this bizarre phenomena as characteristic of all the seemingly-paradoxical quantum behavior, claiming that the double-slit experiment is “impossible, absolutely impossible to describe classically, [and which] has in it the heart of quantum mechanics”, and that “in reality, it contains the only mystery” (emphasis original) [5]. The overarching goal of this thesis is to demonstrate that complementarity is also at the heart of quantum information theory, that it allows us to make (some) sense of just what information "quantum information" refers to, and that it is useful in understanding and constructing quantum information processing protocols. The detailed research results which form the basis of these claims are to be found in the included papers, and the aim here is to present an overview comprehensible to a more general audience.1 As we shall see in Chapter 1, quantum information can heuristically be thought of as a kind of combination of two types of normal “classical” information, specifically, classical information about the result of measuring one of two complementary observables. Due to the uncertainty principle, we can expect both pieces of information are not simultaneously realizable, and indeed the uncer- tainty principle will play a central quantitative role throughout this work. Particularly relevant will be the entropic uncertainty relation of [RB09] and its generalization in [BCC+10], which state that the more that can be known by one party about one observable, the less can be known by another party about a complementary observable. That complementary observables play an important role in quantuminformation theoryis not new tothis thesis, and Chapter 2 discusses several fundamen- tal quantum information processing tasks based on their use, such as teleportation and quantum error-correction. This chapter also provides some relevant formal background for the remainder of this work and establishes the notation used herein. Chapter 3 begins the overview of the new results obtained in the included papers. Here we show that information about complementary observables not only plays an important role, but in- deed a central one, and that possession of both complementary pieces of classical information is strictly equivalent to the existence of entanglement between the physical system the information pertains to and the system in which the information is stored. Moreover, the uncertainty principle provides a dual characterization, saying that entanglement between these two systems exists when the “environment”, i.e. any and all other degrees of freedom, has no information about either com- plementary observable. Both characterizations can be modified to describe secret keys useful in cryptography instead of entangled states. Because Chapter 3 gathers and mixes results from several 1The included papers are referenced in alphabetical style, while references to other works are numeric. 1 PREFACE of the included papers, it is entirely self-contained, whereas subsequent chapters do not go into as much detail. In Chapter 4 we show that this complementary approach is also useful in constructing quan- tum information processing protocols and understanding why they work. Especially relevant is the process of entanglement distillation, that is, extracting maximal entanglement from a imperfectly- entangled bipartite resource system. The entanglement distillation process can be built up from two instances, one for each of two complementary observables, of a simpler distillation process for classical information called information reconciliation or data compression with side information. Here partial classical correlation between two systems is refined into maximal correlation, and rec- onciling classical information about two complementary observables. Protocols for entanglement distillation can then be adapted to a large variety of quantum information processing tasks, such as quantum communication over noisy channels or distillation of secret keys. Chapter 5 extends the duality in characterizing entanglement afforded by the uncertainty prin- ciple to two fundamental information processing tasks, the information reconciliation task of es- tablishing correlations with the first party on the one hand, and the task of removing all correlations with thesecond partyon theother. Thelatteris known as privacy amplification, and it turnsout that the ability to perform one protocol implies the ability to perform the other in certain circumstances. This duality also implies alternative methods of entanglement distillation, in particular one which proceeds by destroying all classical correlations with the environment that pertain to two comple- mentary observables. We shall also see that information reconciliation and privacy amplification can be combined to enable classical communication over noisy quantum channels. Finally, Chapter 6 describes the usefulness of this approach to establishing the security of quan- tum key distribution (QKD). QKD is perhaps the most natural setting in which the uncertainty prin- ciple and corresponding issues of complementarity are immediately relevant, as the goal of this protocol is to establish a secret key between two spatially-separated parties, a shared piece of clas- sical information which no one else should know. Since the uncertainty principle can be under- stood as a limitation on who can know how much about what sorts of information, we shall see that complementarity-based arguments form the basis for the security of QKD protocols. These allow us to increase the security threshold, the maximum amount of tolerable noise, of several protocols beyond the previously-known values. The following table summarizes which included papers form the basis for the various sections. 2 Preface Chapter Section 1 Introduction 1.1 1.2 1.3 [RB09], [BCC+10] 2 Illustrations & Motivations — 3 Characterizing Quantum Information 3.1 3.2 3.3 3.4 [RB08] [Ren11] [RB09] [RB08] 4 Processing Quantum Information 4.1 4.2 4.3 [RB08] [BR09] [RB08] 5 Duality of Protocols 5.1 5.2 5.3 [Ren11] new [RR11] 6 Security of QKD 6.1 6.2 6.3 — [RG06] [RS07] [SRS08] [KR08] 3 Introduction: What is Quantum Information? 1 At a stroke, Shannon’s landmark 1948 publication A Mathematical Theory of Communication [6] es- tablished the field of information theory, laying out the fundamental lines of inquiry and answering some of the important basic questions. The fundamental problem, according to
Recommended publications
  • Introduction to Quantum Information Theory
    Introduction to Quantum Information Theory Carlos Palazuelos Instituto de Ciencias Matemáticas (ICMAT) [email protected] Madrid, Spain March 2013 Contents Chapter 1. A comment on these notes 3 Chapter 2. Postulates of quantum mechanics 5 1. Postulate I and Postulate II 5 2. Postulate III 7 3. Postulate IV 9 Chapter 3. Some basic results 13 1. No-cloning theorem 13 2. Quantum teleportation 14 3. Superdense coding 15 Chapter 4. The density operators formalism 17 1. Postulates of quantum mechanics: The density operators formalism 17 2. Partial trace 19 3. The Schmidt decomposition and purifications 20 4. Definition of quantum channel and its classical capacity 21 Chapter 5. Quantum nonlocality 25 1. Bell’s result: Correlations in EPR 25 2. Tsirelson’s theorem and Grothendieck’s theorem 27 Chapter 6. Some notions about classical information theory 33 1. Shannon’s noiseless channel coding theorem 33 2. Conditional entropy and Fano’s inequality 35 3. Shannon’s noisy channel coding theorem: Random coding 38 Chapter 7. Quantum Shannon Theory 45 1. Von Neumann entropy 45 2. Schumacher’s compression theorem 48 3. Accessible Information and Holevo bound 55 4. Classical capacity of a quantum channel 58 5. A final comment about the regularization 61 Bibliography 63 1 CHAPTER 1 A comment on these notes These notes were elaborated during the first semester of 2013, while I was preparing a course on quantum information theory as a subject for the PhD programme: Investigación Matemática at Universidad Complutense de Madrid. The aim of this work is to present an accessible introduction to some topics in the field of quantum information theory for those people who do not have any background on the field.
    [Show full text]
  • LN13.Digi.Pdf (4.880Mb)
    Jarkko Kari (Editor) Proceedings of JAC 2010 Journées Automates Cellulaires Turku Centrefor Computer Science TUCS Lecture Notes No 13, Dec 2010 Proceedings of JAC 2010 Journ´eesAutomates Cellulaires December 15-17, 2010, Turku, Finland Editor: Jarkko Kari TUCS Lecture Notes 13 December 2010 ISBN 978-952-12-2503-1 (printed) ISBN 978-952-12-2504-8 (electronic) ISSN 1797-8823 (printed) ISSN 1797-8831 (electronic) Foreword The second Symposium on Cellular Automata “Journ´eesAutomates Cellulaires” (JAC 2010) took place in Turku, Finland, on December 15-17, 2010. The first two conference days were held in the Educarium building of the University of Turku, while the talks of the third day were given onboard passenger ferry boats in the beautiful Turku archipelago, along the route Turku–Mariehamn–Turku. The con- ference was organized by FUNDIM, the Fundamentals of Computing and Discrete Mathematics research center at the mathematics department of the University of Turku. The program of the conference included 17 submitted papers that were selected by the international program committee, based on three peer reviews of each paper. These papers form the core of these proceedings. I want to thank the members of the program committee and the external referees for the excellent work that have done in choosing the papers to be presented in the conference. In addition to the submitted papers, the program of JAC 2010 included four dis- tinguished invited speakers: Michel Coornaert (Universit´ede Strasbourg, France), Bruno Durand (Universit´ede Provence, Marseille, France), Dora Giammarresi (Uni- versit`adi Roma Tor Vergata, Italy) and Martin Kutrib (Universit¨atGießen, Ger- many).
    [Show full text]
  • Efficient and Exact Quantum Compression
    Efficient and Exact Quantum Compression a; ;1 b;2 John H. Reif ∗ , Sukhendu Chakraborty aDepartment of Computer Science, Duke University, Durham, NC 27708-0129 bDepartment of Computer Science, Duke University, Durham, NC 27708-0129 Abstract We present a divide and conquer based algorithm for optimal quantum compression / de- compression, using O(n(log4 n) log log n) elementary quantum operations . Our result pro- vides the first quasi-linear time algorithm for asymptotically optimal (in size and fidelity) quantum compression and decompression. We also outline the quantum gate array model to bring about this compression in a quantum computer. Our method uses various classical algorithmic tools to significantly improve the bound from the previous best known bound of O(n3)(R. Cleve, D. P. DiVincenzo, Schumacher's quantum data compression as a quantum computation, Phys. Rev. A, 54, 1996, 2636-2650) for this operation. Key words: Quantum computing, quantum compression, algorithm 1 Introduction 1.1 Quantum Computation Quantum Computation (QC) is a computing model that applies quantum me- chanics to do computation. (Computations and methods not making use of quantum mechanics will be termed classical). A single molecule (or collection of .particles and/or atoms) may have n degrees of freedom known as qubits. Associated with each fixed setting X of the n qubits to boolean values is a basis state denoted a . Quantum mechanics allows for a linear superposition of these basis states to j i ∗ Corresponding author. Email addresses: [email protected] ( John H. Reif), [email protected] (Sukhendu Chakraborty). 1 The work is supported by NSF EMT Grants CCF-0523555 and CCF-0432038.
    [Show full text]
  • Unitary Decomposition Implemented in the Openql Programming Language for Quantum Computation A.M
    Unitary Decomposition Implemented in the OpenQL programming language for quantum computation A.M. Krol September 13th 36 Electrical Engineering, Mathematics and Computer Sciences LB 01.010 Snijderszaal Unitary Decomposition Implemented in the OpenQL programming language for quantum computation by A.M. Krol to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Friday September 13, 2019 at 15:00. Student number: 4292391 Project duration: November 20, 2018 – September 13, 2019 Thesis committee: Prof. dr. ir. K. Bertels, TU Delft, supervisor Dr. I. Ashraf, TU Delft Dr. M. Möller, TU Delft Dr. Z. Al-Ars TU Delft An electronic version of this thesis is available at http://repository.tudelft.nl/. Preface In this thesis, I explain my implementation of Unitary Decomposition in OpenQL. Unitary Decomposition is an algorithm for translating a unitary matrix into many small unitary matrices, which correspond to a circuit that can be executed on a quantum computer. It is implemented in the quantum programming framework of the QCA-group at TU Delft: OpenQL, a library for Python and C++. Unitary Decomposition is a necessary part in Quantum Associative Memory, an algorithm used in Quantum Genome Sequenc- ing. The implementation is faster than other known implementations, and generates 3 ∗ 2 ∗ (2 − 1) rotation gates for an n-qubit input gate. This is not the least-known nor the theoretical minimum amount, and there are some optimizations that can still be done to make it closer to these numbers. I would like to thank my supervisor, Prof. Koen Bertels, for the great supervision and insightful feedback.
    [Show full text]
  • Quantum Computing
    John H. Reif, Quantum Computing. Published in book “Bio-inspired and Nanoscale Integrated Computing”, Chapter 3, pp. 67-110 (edited by Mary Mehrnoosh Eshaghian-Wilner), Publisher: Wiley, Hoboken, NJ, USA, (February 2009). Chapter 3: Quantum Computing John H. Reif Department of Computer Science Duke University ‡ 3.0 Summary Quantum Computation (QC) is a type of computation where unitary and measurement operations are executed on linear superpositions of basis states. This paper provides a brief introduction to QC. We begin with a discussion of basic models for QC such as quantum TMs, quantum gates and circuits and related complexity results. We then discuss a number of topics in quan- tum information theory, including bounds for quantum communication and I/O complexity, methods for quantum data compression. and quantum er- ‡Surface address: Department of Computer Science, Duke University, Durham, NC 27708-0129. E-mail: [email protected]. This work has been supported by grants from NSF CCF-0432038 and CCF-0523555. A postscript preprint of this Chapter is available online at URL: http://www.cs.duke.edu/∼reif/paper/qsurvey/qsurvey.chapter.pdf. ror correction (that is, techniques for decreasing decoherence errors in QC), Furthermore, we enumerate a number of methodologies and technologies for doing QC. Finally, we discuss resource bounds for QC including bonds for processing time, energy and volume, particularly emphasizing challenges in determining volume bounds for observation apperatus. 3.1 Introduction 3.1.1 Reversible Computations Reversible Computations are computations where each state transformation is a reversible function, so that any computation can be reversed without loss of information.
    [Show full text]
  • Understanding Quantum Computing
    International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-6, September 2015 ISSN: 2395-3470 www.ijseas.com Understanding Quantum Computing Dr. K J Sarma, SMIEEE; Dept of Humanities and Mathematics & Academic cell Malla Reddy Engineering College (Autonomous ), Secunderabad, India, Abstract: It has been decided that Quantum estimated number of atoms in the universe and Computing (Q.C.) should be pursued, as it this enormous potential computational power is would be one of the priority research areas of the well worth harvesting.” M.A. Nielsen and I.L. future having a potential for computational Chuang [ 26 ] technology development and growth. Hence there is a need to motivate and involve The digital computers operate with the help of youngsters in research activity related to transistors. Digital computers require data to be quantum computing. There is a need to keep the encoded into binary digits (bits), each of which youngsters informed of the what, why, where, is always in one of two definite states (0 or 1), when, how of quantum computing. A review and the memory is made up of the bits. The of the origin and the progress of the binary digits for data encoding quantum developments in Quantum Computing is made computation uses qubits (quantum bits), which In this paper the author tried to review various can be in super-positions of states. aspects of the Quantum Computing like A Quantum Turing machine [40] is a theoretical Architecture, Operating system, Infrastructure model of such a computer, and is also known as required if any, links with other computing the universal quantum computer.
    [Show full text]
  • Supercomputer Simulations of Transmon Quantum Computers Quantum Simulations of Transmon Supercomputer
    IAS Series IAS Supercomputer simulations of transmon quantum computers quantum simulations of transmon Supercomputer 45 Supercomputer simulations of transmon quantum computers Dennis Willsch IAS Series IAS Series Band / Volume 45 Band / Volume 45 ISBN 978-3-95806-505-5 ISBN 978-3-95806-505-5 Dennis Willsch Schriften des Forschungszentrums Jülich IAS Series Band / Volume 45 Forschungszentrum Jülich GmbH Institute for Advanced Simulation (IAS) Jülich Supercomputing Centre (JSC) Supercomputer simulations of transmon quantum computers Dennis Willsch Schriften des Forschungszentrums Jülich IAS Series Band / Volume 45 ISSN 1868-8489 ISBN 978-3-95806-505-5 Bibliografsche Information der Deutschen Nationalbibliothek. Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografe; detaillierte Bibliografsche Daten sind im Internet über http://dnb.d-nb.de abrufbar. Herausgeber Forschungszentrum Jülich GmbH und Vertrieb: Zentralbibliothek, Verlag 52425 Jülich Tel.: +49 2461 61-5368 Fax: +49 2461 61-6103 [email protected] www.fz-juelich.de/zb Umschlaggestaltung: Grafsche Medien, Forschungszentrum Jülich GmbH Titelbild: Quantum Flagship/H.Ritsch Druck: Grafsche Medien, Forschungszentrum Jülich GmbH Copyright: Forschungszentrum Jülich 2020 Schriften des Forschungszentrums Jülich IAS Series, Band / Volume 45 D 82 (Diss. RWTH Aachen University, 2020) ISSN 1868-8489 ISBN 978-3-95806-505-5 Vollständig frei verfügbar über das Publikationsportal des Forschungszentrums Jülich (JuSER) unter www.fz-juelich.de/zb/openaccess. This is an Open Access publication distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract We develop a simulator for quantum computers composed of superconducting transmon qubits.
    [Show full text]
  • Quantum Information Processing with Superconducting Circuits: a Review
    Quantum Information Processing with Superconducting Circuits: a Review G. Wendin Department of Microtechnology and Nanoscience - MC2, Chalmers University of Technology, SE-41296 Gothenburg, Sweden Abstract. During the last ten years, superconducting circuits have passed from being interesting physical devices to becoming contenders for near-future useful and scalable quantum information processing (QIP). Advanced quantum simulation experiments have been shown with up to nine qubits, while a demonstration of Quantum Supremacy with fifty qubits is anticipated in just a few years. Quantum Supremacy means that the quantum system can no longer be simulated by the most powerful classical supercomputers. Integrated classical-quantum computing systems are already emerging that can be used for software development and experimentation, even via web interfaces. Therefore, the time is ripe for describing some of the recent development of super- conducting devices, systems and applications. As such, the discussion of superconduct- ing qubits and circuits is limited to devices that are proven useful for current or near future applications. Consequently, the centre of interest is the practical applications of QIP, such as computation and simulation in Physics and Chemistry. Keywords: superconducting circuits, microwave resonators, Josephson junctions, qubits, quantum computing, simulation, quantum control, quantum error correction, superposition, entanglement arXiv:1610.02208v2 [quant-ph] 8 Oct 2017 Contents 1 Introduction 6 2 Easy and hard problems 8 2.1 Computational complexity . .9 2.2 Hard problems . .9 2.3 Quantum speedup . 10 2.4 Quantum Supremacy . 11 3 Superconducting circuits and systems 12 3.1 The DiVincenzo criteria (DV1-DV7) . 12 3.2 Josephson quantum circuits . 12 3.3 Qubits (DV1) .
    [Show full text]
  • Chapter 5 Quantum Information Theory
    Chapter 5 Quantum Information Theory Quantum information theory is a rich subject that could easily have occupied us all term. But because we are short of time (I’m anxious to move on to quantum computation), I won’t be able to cover this subject in as much depth as I would have liked. We will settle for a brisk introduction to some of the main ideas and results. The lectures will perhaps be sketchier than in the first term, with more hand waving and more details to be filled in through homework exercises. Perhaps this chapter should have been called “quantum information theory for the impatient.” Quantum information theory deals with four main topics: (1) Transmission of classical information over quantum channels (which we will discuss). (2) The tradeoff between acquisition of information about a quantum state and disturbance of the state (briefly discussed in Chapter 4 in connec- tion with quantum cryptography, but given short shrift here). (3) Quantifying quantum entanglement (which we will touch on briefly). (4) Transmission of quantum information over quantum channels. (We will discuss the case of a noiseless channel, but we will postpone discus- sion of the noisy channel until later, when we come to quantum error- correcting codes.) These topics are united by a common recurring theme: the interpretation and applications of the Von Neumann entropy. 1 2 CHAPTER 5. QUANTUM INFORMATION THEORY 5.1 Shannon for Dummies Before we can understand Von Neumann entropy and its relevance to quan- tum information, we must discuss Shannon entropy and its relevance to clas- sical information.
    [Show full text]
  • Quantum Information Theory
    Quantum Information Theory Jun-Ting Hsieh Bingbin Liu Stanford University Stanford University [email protected] [email protected] 1 Introduction In our current digital world, everything, from computing devices to communication channels, is represented as 0s and 1s. The “information” that these bits can present has been well studied in the field of classical information theory. For example, we know the capacity and limits of data compression and the rate of reliable communication over noisy channels. Recently, perhaps due to the excitement of quantum computation, these ideas in information theory have been extended to the quantum world, leading to the field of quantum information theory. In this paper, we would like to introduce the quantum counterparts of some of the key ideas we studied in the course, including the quantum entropy measure, quantum source encoding, and touch briefly on quantum channels. 1.1 How is quantum different than classical? Compared to the classical world, quantum mechanics has several “weird” properties that make things much more convoluted. Thus, we first introduce some major differences between quantum and classical information, which are the reasons that quantum information is so interesting yet harder to analyze. Refer to Section 2 for a more detailed introduction of quantum mechanics. Qubit. The quantum version of the classical bit is the qubit. A classical bit is either 0 or 1, while a qubit can be superposition of 0 and 1. This means that it is both 0 and 1, and if we perform a measurement we will get 0 and 1 with certain probabilities. Imagine that every bit in our computer is both 0 and 1 at the same time, and if we even try to read from it, we not only get a probabilistic answer but also collapse that qubit state! Entanglement.
    [Show full text]
  • The Transmon Qubit
    The Transmon Qubit Sam Bader December 14, 2013 Contents 1 Introduction 2 2 Qubit Architecture 4 2.1 Cooper Pair Box . .4 2.1.1 Classical Hamiltonian . .4 2.1.2 Quantized Hamiltonian . .5 2.2 Capacitively-shunted CPB . .7 2.2.1 The ratio EJ =Ec .....................................7 3 Circuit QED 9 3.1 Vocabulary of Cavity QED . .9 3.1.1 Jaynes-Cummings Hamiltonian . 10 3.1.2 Effects of the coupling: resonant and dispersive limits . 10 3.1.3 Purcell Effect . 11 3.2 Translating into Circuit QED . 12 3.2.1 Why Circuit QED is easier than Cavity QED . 12 3.2.2 Circuit QED Hamiltonian . 13 4 Control and Readout Protocol 15 4.1 Measurement . 15 4.2 Single qubit gates . 16 4.2.1 Modeling drives . 16 4.2.2 Applying gates . 16 4.3 Multi-qubit gates and entanglement . 17 5 Conclusion 19 A Derivation of Classical Hamiltonians for Qubit Systems 20 A.1 Cooper Pair Box . 20 A.2 Transmon with transmission line . 21 B Quantum Circuits 23 B.1 Charge basis . 23 B.2 Phase basis . 24 C Perturbation Theory for the Transmon 25 C.1 Periodic Potentials . 25 C.2 Transforming away the offset charge . 26 C.3 Duffing Oscillator . 26 C.3.1 Relative Anharmonicity . 26 C.3.2 Number operator matrix elements . 27 1 Chapter 1 Introduction Quantum information processing is one of the most thrilling prospects to emerge from the interaction of physics and computer science. In recent decades, scientists have transitioned from merely observing microscopic systems to actually controlling those same systems on the scale of individual quanta, and the future of information processing based on these techniques will revolutionize the computing industry.
    [Show full text]
  • Entanglement Manipulation
    Entanglement Manipulation Steven T. Flammia1 1Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5 Canada (Dated: 22 March 2010) These are notes for my RIT tutorial lecture at the University of Maryland math department. I. INTRODUCTION Entanglement serves as a resource which we can use to perform novel information processing tasks, in particular communication tasks. For example, superdense coding and teleportation are two such tasks which are impossible classically; they make essential use of entanglement. In this lecture I’m going to cover dense coding and teleportation and then show how we can manipulate entanglement into a standard “currency” which will allow us to quantify how useful different states are for these tasks. Based on an operational definition, we will define a way to measure the amount of entanglement in a quantum state. We will consider the following scenario. We have two parties, Alice and Bob (labeled A and B), and they wish to communicate through a quantum or classical channel. In the literature, channel does have a technical meaning: it is a completely positive linear map, i.e. a linear map that takes density operators to density operators (and it is not necessarily surjective). We call these CP maps for short. We can consider that the channel is noisy, or we can consider a perfect channel (the identity map), but we have noisy quantum states. We will always assume that any classical channel is perfect. A and B would like to communicate classical and quantum information in the most efficient way possible using the classical and quantum channels (respectively) that they share.
    [Show full text]