Chen Jingrun, China's Famous Mathematician: Devastated by Brain

Total Page:16

File Type:pdf, Size:1020Kb

Chen Jingrun, China's Famous Mathematician: Devastated by Brain NEUROSURGICAL FOCUS Neurosurg Focus 41 (1):E11, 2016 Chen Jingrun, China’s famous mathematician: devastated by brain injuries on the doorstep to solving a fundamental mathematical puzzle Ting Lei, MD,1 Evgenii Belykh, MD,1 Alexander B. Dru, BA,2 Kaan Yagmurlu, MD,1 Ali M. Elhadi, MD,1 Peter Nakaji, MD,1 and Mark C. Preul, MD1 1Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and 2University of Arizona College of Medicine, Tucson, Arizona Chen Jingrun (1933–1996), perhaps the most prodigious mathematician of his time, focused on the field of analytical number theory. His work on Waring’s problem, Legendre’s conjecture, and Goldbach’s conjecture led to progress in ana- lytical number theory in the form of “Chen’s Theorem,” which he published in 1966 and 1973. His early life was ravaged by the Second Sino-Japanese War and the Chinese Cultural Revolution. On the verge of solving Goldbach’s conjecture in 1984, Chen was struck by a bicyclist while also bicycling and suffered severe brain trauma. During his hospitalization, he was also found to have Parkinson’s disease. Chen suffered another serious brain concussion after a fall only a few months after recovering from the bicycle crash. With significant deficits, he remained hospitalized for several years with- out making progress while receiving modern Western medical therapies. In 1988 traditional Chinese medicine experts were called in to assist with his treatment. After a year of acupuncture and oxygen therapy, Chen could control his basic bowel and bladder functions, he could walk slowly, and his swallowing and speech improved. When Chen was unable to produce complex work or finish his final work on Goldbach’s conjecture, his mathematical pursuits were taken up vigor- ously by his dedicated students. He was able to publish Youth Math, a mathematics book that became an inspiration in Chinese education. Although he died in 1996 at the age of 63 after surviving brutal political repression, being deprived of neurological function at the very peak of his genius, and having to be supported by his wife, Chen ironically became a symbol of dedication, perseverance, and motivation to his students and associates, to Chinese youth, to a nation, and to mathematicians and scientists worldwide. http://thejns.org/doi/abs/10.3171/2016.2.FOCUS1595 Key WORds brain trauma; Chen Jingrun; Chinese Cultural Revolution; Goldbach’s conjecture; history of neurosurgery; Parkinson’s disease HEN Jingrun (Fig. 1), one of the world’s greatest ed next announcement to the scientific and mathematics mathematicians, focused on the field of analytical communities was to be a full solution of Goldbach’s con- number theory. Although he made significant ad- jecture, but an unfortunate series of brain injuries altered vancementsC on Waring’s problem (Edward Waring, 1736– his life and substantially affected the science of mathemat- 1798) and Legendre’s conjecture (Adrien-Marie Legen- ics and Chinese education. dre, 1752–1833), he is best known for “Chen’s Theorem,” a significant step in his work on the search for a solution to Goldbach’s conjecture, posited by the German (Prussian) Chen’s Early Life mathematician Christian Goldbach (1690–1764). In 1966 Chen Jingrun was born on May 22, 1933, in Fuzhou, and 1973, Chen published two papers to explain that every Fujian Province, China, during a period of Chinese civil sufficiently large even integer can be written as the sum war. His father, Chen Yuanjun, was a post office clerk and of a prime and a semiprime.7,8 Chen’s work proved to be his mother cared for the family. Chen’s family consisted a milestone in the study of Goldbach’s conjecture, one of of 12 children, only 6 of whom currently survive. Chen the oldest unsolved mathematical problems, and in num- was the third child of his family, which lived on a meager ber progression theory in general. Chen’s anxiously await- income. Although poor, Chen’s parents sought to provide SUBMITTED February 27, 2015. ACCEPTED February 23, 2016. INCLUDE WHEN CITING DOI: 10.3171/2016.2.FOCUS1595. ©AANS, 2016 Neurosurg Focus Volume 41 • July 2016 1 Unauthenticated | Downloaded 10/09/21 02:35 AM UTC T. Lei et al. him significant traumatic emotional stress; Chen often spoke of being plagued by lifelong panic attacks and flash- backs to these events. It was not until September 9, 1945, that the Japanese troops in China (excluding Manchuria) formally stopped their military actions in the region. Chen’s childhood continued to be a struggle, even in the relative sanctuary of elementary school. He was fre- quently bullied and beaten by classmates who picked on him because of his thin, weak stature. As if life was not hard enough, Chen lost his mother in 1947 to tuberculosis when he was 13 years old. Chen began to find solace in his studies, particularly mathematics, where he was happiest when working on tedious algebraic equations. After the occupation ended, Chen returned to Fuzhou with his family and started his formal education at Sanyi Middle School. In 1948, Chen was admitted to Fuzhou Ying hua High School. Here, he met his mathematics teach- er, Shen Yuan, who also was a director of the Aviation De- partment of Tsinghua University. Shen was a knowledge- able and passionate teacher known to mix his teachings with concrete applications to foster interest and apprecia- tion for the esoteric topics covered in his class. One day, Shen lectured on a famous number theory problem in his class called Goldbach’s conjecture. Chen recounted his teacher’s vivid description of the significance of the prob- lem: “Mathematics is the science of the queen, number theory is the crown of mathematics, and Goldbach’s con- jecture is the pearl on the crown.” Playfully, Shen told his students that he dreamt that one of them would prove the conjecture. Everyone laughed except Chen. On December 18, 1989, Chen published a memoir for The Daily Worker FIG. 1. Chen Jingrun (May 22, 1933–March 19, 1996) during his early newspaper and stated, “I did not laugh, did not dare to academic years. laugh. I was worried my classmates would know my vi- sion. But I never forgot this lesson to always remember the pearl on the crown and to never forget my aspirations or and instill the traditional strong tenets of perseverance in ideals.”22 all aspects of life, as they struggled to send their children Goldbach’s conjecture, one of the oldest and most fa- to school and obtain even basic health care.9 mous unsolved problems in number theory and mathemat- On July 7, 1937, war erupted with the Chinese War of ics, was created by Goldbach, and proposed in a series of Resistance against Japan, also known as the Second Sino- letters in June 1742 to Leonhard Euler (Fig. 2). The Gold- Japanese War. By October 26, 1937, the invading Japanese bach conjecture states simply that all positive even inte- army had advanced to occupy the Golden Gate after mov- gers of 4 or more can be expressed as the sum of 2 primes. ing across the Strait of Taiwan in a prelude to the inva- The set of integers are numbers that can be written with- sion of Fujian. At that time, Chen’s father, Chen Yuanjun, out a fractional component, consisting of zero, the natural was deployed to be a director of the Sanyuan County post numbers, and the additive inverses of natural numbers. A office, which was set up in an old temple in the nearby prime number is a natural number greater than 1 that has mountains. no positive divisors other than 1 and itself. For example, 3 The next 8 years in Fuzhou were marked by the hor- is a prime number because its only positive divisors are 1 rors of unrelenting conflicts and foreign military occupa- and 3; 4 is not a prime number because 4 has 1, 2, and 4 as tion. On April 21, 1941, and September 27, 1944, Japan positive divisors, not just 1 and 4. made aggressive moves in the Fujian Province that were On June 7, 1742, Goldbach wrote to Euler proposing characterized by multiple bombing campaigns that rav- that every integer that can be written as the sum of 2 aged the civilian populace. These raids also resulted in primes can also be written as the sum of as many primes vast destruction of public and personal property and the as one wishes, until all terms are units. Goldbach then pro- enslavement of survivors. Natives who could escape the posed a second conjecture in the margin of his letter, that concentration camps established for survivors fled to the every integer greater than 2 can be written as the sum of 3 mountains where Chen lived. Thousands of refugees were primes. He considered 1 to be a prime number, a conven- quickly followed by the Japanese soldiers, and this haven tion subsequently abandoned. The 2 conjectures are now was soon taken over by the Japanese, who interrogated and known to be equivalent, but this did not seem to be an is- tortured most of the inhabitants. The horrific memories sue at the time. A modern version of Goldbach’s marginal and sights that Chen experienced as a young child caused conjecture states that every integer greater than 5 can be 2 Neurosurg Focus Volume 41 • July 2016 Unauthenticated | Downloaded 10/09/21 02:35 AM UTC China’s famous mathematician Chen Jingrun Chen’s Academic Life In 1949, Chen (Fig. 3 left) was admitted to the Math- ematical Physics Department of Xiamen University.
Recommended publications
  • Scalar Curvature and Geometrization Conjectures for 3-Manifolds
    Comparison Geometry MSRI Publications Volume 30, 1997 Scalar Curvature and Geometrization Conjectures for 3-Manifolds MICHAEL T. ANDERSON Abstract. We first summarize very briefly the topology of 3-manifolds and the approach of Thurston towards their geometrization. After dis- cussing some general properties of curvature functionals on the space of metrics, we formulate and discuss three conjectures that imply Thurston’s Geometrization Conjecture for closed oriented 3-manifolds. The final two sections present evidence for the validity of these conjectures and outline an approach toward their proof. Introduction In the late seventies and early eighties Thurston proved a number of very re- markable results on the existence of geometric structures on 3-manifolds. These results provide strong support for the profound conjecture, formulated by Thur- ston, that every compact 3-manifold admits a canonical decomposition into do- mains, each of which has a canonical geometric structure. For simplicity, we state the conjecture only for closed, oriented 3-manifolds. Geometrization Conjecture [Thurston 1982]. Let M be a closed , oriented, 2 prime 3-manifold. Then there is a finite collection of disjoint, embedded tori Ti 2 in M, such that each component of the complement M r Ti admits a geometric structure, i.e., a complete, locally homogeneous RiemannianS metric. A more detailed description of the conjecture and the terminology will be given in Section 1. A complete Riemannian manifold N is locally homogeneous if the universal cover N˜ is a complete homogenous manifold, that is, if the isometry group Isom N˜ acts transitively on N˜. It follows that N is isometric to N=˜ Γ, where Γ is a discrete subgroup of Isom N˜, which acts freely and properly discontinuously on N˜.
    [Show full text]
  • Generalized Riemann Hypothesis Léo Agélas
    Generalized Riemann Hypothesis Léo Agélas To cite this version: Léo Agélas. Generalized Riemann Hypothesis. 2019. hal-00747680v3 HAL Id: hal-00747680 https://hal.archives-ouvertes.fr/hal-00747680v3 Preprint submitted on 29 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Generalized Riemann Hypothesis L´eoAg´elas Department of Mathematics, IFP Energies nouvelles, 1-4, avenue de Bois-Pr´eau,F-92852 Rueil-Malmaison, France Abstract (Generalized) Riemann Hypothesis (that all non-trivial zeros of the (Dirichlet L-function) zeta function have real part one-half) is arguably the most impor- tant unsolved problem in contemporary mathematics due to its deep relation to the fundamental building blocks of the integers, the primes. The proof of the Riemann hypothesis will immediately verify a slew of dependent theorems (Borwien et al.(2008), Sabbagh(2002)). In this paper, we give a proof of Gen- eralized Riemann Hypothesis which implies the proof of Riemann Hypothesis and Goldbach's weak conjecture (also known as the odd Goldbach conjecture) one of the oldest and best-known unsolved problems in number theory. 1. Introduction The Riemann hypothesis is one of the most important conjectures in math- ematics.
    [Show full text]
  • Towards the Poincaré Conjecture and the Classification of 3-Manifolds John Milnor
    Towards the Poincaré Conjecture and the Classification of 3-Manifolds John Milnor he Poincaré Conjecture was posed ninety- space SO(3)/I60 . Here SO(3) is the group of rota- nine years ago and may possibly have tions of Euclidean 3-space, and I60 is the subgroup been proved in the last few months. This consisting of those rotations which carry a regu- note will be an account of some of the lar icosahedron or dodecahedron onto itself (the Tmajor results over the past hundred unique simple group of order 60). This manifold years which have paved the way towards a proof has the homology of the 3-sphere, but its funda- and towards the even more ambitious project of mental group π1(SO(3)/I60) is a perfect group of classifying all compact 3-dimensional manifolds. order 120. He concluded the discussion by asking, The final paragraph provides a brief description of again translated into modern language: the latest developments, due to Grigory Perelman. A more serious discussion of Perelman’s work If a closed 3-dimensional manifold has will be provided in a subsequent note by Michael trivial fundamental group, must it be Anderson. homeomorphic to the 3-sphere? The conjecture that this is indeed the case has Poincaré’s Question come to be known as the Poincaré Conjecture. It At the very beginning of the twentieth century, has turned out to be an extraordinarily difficult Henri Poincaré (1854–1912) made an unwise claim, question, much harder than the corresponding which can be stated in modern language as follows: question in dimension five or more,2 and is a If a closed 3-dimensional manifold has key stumbling block in the effort to classify the homology of the sphere S3 , then it 3-dimensional manifolds.
    [Show full text]
  • New Formulas for Semi-Primes. Testing, Counting and Identification
    New Formulas for Semi-Primes. Testing, Counting and Identification of the nth and next Semi-Primes Issam Kaddouraa, Samih Abdul-Nabib, Khadija Al-Akhrassa aDepartment of Mathematics, school of arts and sciences bDepartment of computers and communications engineering, Lebanese International University, Beirut, Lebanon Abstract In this paper we give a new semiprimality test and we construct a new formula for π(2)(N), the function that counts the number of semiprimes not exceeding a given number N. We also present new formulas to identify the nth semiprime and the next semiprime to a given number. The new formulas are based on the knowledge of the primes less than or equal to the cube roots 3 of N : P , P ....P 3 √N. 1 2 π( √N) ≤ Keywords: prime, semiprime, nth semiprime, next semiprime 1. Introduction Securing data remains a concern for every individual and every organiza- tion on the globe. In telecommunication, cryptography is one of the studies that permits the secure transfer of information [1] over the Internet. Prime numbers have special properties that make them of fundamental importance in cryptography. The core of the Internet security is based on protocols, such arXiv:1608.05405v1 [math.NT] 17 Aug 2016 as SSL and TSL [2] released in 1994 and persist as the basis for securing dif- ferent aspects of today’s Internet [3]. The Rivest-Shamir-Adleman encryption method [4], released in 1978, uses asymmetric keys for exchanging data. A secret key Sk and a public key Pk are generated by the recipient with the following property: A message enciphered Email addresses: [email protected] (Issam Kaddoura), [email protected] (Samih Abdul-Nabi) 1 by Pk can only be deciphered by Sk and vice versa.
    [Show full text]
  • The Process of Student Cognition in Constructing Mathematical Conjecture
    ISSN 2087-8885 E-ISSN 2407-0610 Journal on Mathematics Education Volume 9, No. 1, January 2018, pp. 15-26 THE PROCESS OF STUDENT COGNITION IN CONSTRUCTING MATHEMATICAL CONJECTURE I Wayan Puja Astawa1, I Ketut Budayasa2, Dwi Juniati2 1Ganesha University of Education, Jalan Udayana 11, Singaraja, Indonesia 2State University of Surabaya, Ketintang, Surabaya, Indonesia Email: [email protected] Abstract This research aims to describe the process of student cognition in constructing mathematical conjecture. Many researchers have studied this process but without giving a detailed explanation of how students understand the information to construct a mathematical conjecture. The researchers focus their analysis on how to construct and prove the conjecture. This article discusses the process of student cognition in constructing mathematical conjecture from the very beginning of the process. The process is studied through qualitative research involving six students from the Mathematics Education Department in the Ganesha University of Education. The process of student cognition in constructing mathematical conjecture is grouped into five different stages. The stages consist of understanding the problem, exploring the problem, formulating conjecture, justifying conjecture, and proving conjecture. In addition, details of the process of the students’ cognition in each stage are also discussed. Keywords: Process of Student Cognition, Mathematical Conjecture, qualitative research Abstrak Penelitian ini bertujuan untuk mendeskripsikan proses kognisi mahasiswa dalam mengonstruksi konjektur matematika. Beberapa peneliti mengkaji proses-proses ini tanpa menjelaskan bagaimana siswa memahami informasi untuk mengonstruksi konjektur. Para peneliti dalam analisisnya menekankan bagaimana mengonstruksi dan membuktikan konjektur. Artikel ini membahas proses kognisi mahasiswa dalam mengonstruksi konjektur matematika dari tahap paling awal.
    [Show full text]
  • History of Mathematics
    History of Mathematics James Tattersall, Providence College (Chair) Janet Beery, University of Redlands Robert E. Bradley, Adelphi University V. Frederick Rickey, United States Military Academy Lawrence Shirley, Towson University Introduction. There are many excellent reasons to study the history of mathematics. It helps students develop a deeper understanding of the mathematics they have already studied by seeing how it was developed over time and in various places. It encourages creative and flexible thinking by allowing students to see historical evidence that there are different and perfectly valid ways to view concepts and to carry out computations. Ideally, a History of Mathematics course should be a part of every mathematics major program. A course taught at the sophomore-level allows mathematics students to see the great wealth of mathematics that lies before them and encourages them to continue studying the subject. A one- or two-semester course taught at the senior level can dig deeper into the history of mathematics, incorporating many ideas from the 19th and 20th centuries that could only be approached with difficulty by less prepared students. Such a senior-level course might be a capstone experience taught in a seminar format. It would be wonderful for students, especially those planning to become middle school or high school mathematics teachers, to have the opportunity to take advantage of both options. We also encourage History of Mathematics courses taught to entering students interested in mathematics, perhaps as First Year or Honors Seminars; to general education students at any level; and to junior and senior mathematics majors and minors. Ideally, mathematics history would be incorporated seamlessly into all courses in the undergraduate mathematics curriculum in addition to being addressed in a few courses of the type we have listed.
    [Show full text]
  • Leonhard Euler: His Life, the Man, and His Works∗
    SIAM REVIEW c 2008 Walter Gautschi Vol. 50, No. 1, pp. 3–33 Leonhard Euler: His Life, the Man, and His Works∗ Walter Gautschi† Abstract. On the occasion of the 300th anniversary (on April 15, 2007) of Euler’s birth, an attempt is made to bring Euler’s genius to the attention of a broad segment of the educated public. The three stations of his life—Basel, St. Petersburg, andBerlin—are sketchedandthe principal works identified in more or less chronological order. To convey a flavor of his work andits impact on modernscience, a few of Euler’s memorable contributions are selected anddiscussedinmore detail. Remarks on Euler’s personality, intellect, andcraftsmanship roundout the presentation. Key words. LeonhardEuler, sketch of Euler’s life, works, andpersonality AMS subject classification. 01A50 DOI. 10.1137/070702710 Seh ich die Werke der Meister an, So sehe ich, was sie getan; Betracht ich meine Siebensachen, Seh ich, was ich h¨att sollen machen. –Goethe, Weimar 1814/1815 1. Introduction. It is a virtually impossible task to do justice, in a short span of time and space, to the great genius of Leonhard Euler. All we can do, in this lecture, is to bring across some glimpses of Euler’s incredibly voluminous and diverse work, which today fills 74 massive volumes of the Opera omnia (with two more to come). Nine additional volumes of correspondence are planned and have already appeared in part, and about seven volumes of notebooks and diaries still await editing! We begin in section 2 with a brief outline of Euler’s life, going through the three stations of his life: Basel, St.
    [Show full text]
  • Chen Prime Liczby Pierwsze Chena
    Chen Prime Liczby pierwsze Chena Chen Jingrun • Data urodzenia: 22 maj 1933 • Data śmierci: 19 marzec 1996 Pochodzi z wielodzietnej rodziny z Fuzhou, Fujian, Chiny. W 1953 roku skończył wydział matematyki na Uniwersytecie w Xiamen. Jego prace nad przypuszczeniem o bliźniaczych liczbach pierwszych oraz hipotezą Goldbacha doprowadziły do postępu analitycznej teorii liczb. Największym jego osiągnięciem było tzw. twierdzenie Chena stanowiące słabszą wersję słynnej hipotezy Goldbacha. Nazwiskiem Chen Jingruna została nazwana planetoida 7681 Chenjingrun odkryta w 1996 roku Hipoteza Goldbacha • jeden z najstarszych nierozwiązanych problemów w teorii liczb, liczy sobie ponad 250 lat • W 1742 roku, w liście do Leonharda Eulera, Christian Goldbach postawił hipotezę: każda liczba naturalna większa niż 2 może być przedstawiona w postaci sumy trzech liczb pierwszych (ta sama liczba pierwsza może być użyta dwukrotnie) Euler po otrzymaniu listu stwierdził iż hipotezę Goldbacha można uprościć i przedstawić ją w następujący sposób: każda liczba naturalna parzysta większa od 2 jest sumą dwóch liczb pierwszych Powyższą hipotezę do dzisiaj nazywaną "hipotezą Goldbacha" sformułował w rezultacie Euler, jednak nazwa nie została zmieniona. Oto kilka prostych przykładów: 4=2+2 6=3+3 8=3+5 10=3+7=5+5 … 100=53+47… Dzięki użyciu komputerów udało się pokazać, że hipoteza Goldbacha jest prawdziwa dla liczb naturalnych mniejszych niż 4 × 1017 (przez przedstawienie każdej z tych liczb w postaci sumy dwóch liczb pierwszych). Co więcej, większość współczesnych matematyków
    [Show full text]
  • Leonhard Euler Moriam Yarrow
    Leonhard Euler Moriam Yarrow Euler's Life Leonhard Euler was one of the greatest mathematician and phsysicist of all time for his many contributions to mathematics. His works have inspired and are the foundation for modern mathe- matics. Euler was born in Basel, Switzerland on April 15, 1707 AD by Paul Euler and Marguerite Brucker. He is the oldest of five children. Once, Euler was born his family moved from Basel to Riehen, where most of his childhood took place. From a very young age Euler had a niche for math because his father taught him the subject. At the age of thirteen he was sent to live with his grandmother, where he attended the University of Basel to receive his Master of Philosphy in 1723. While he attended the Universirty of Basel, he studied greek in hebrew to satisfy his father. His father wanted to prepare him for a career in the field of theology in order to become a pastor, but his friend Johann Bernouilli convinced Euler's father to allow his son to pursue a career in mathematics. Bernoulli saw the potentional in Euler after giving him lessons. Euler received a position at the Academy at Saint Petersburg as a professor from his friend, Daniel Bernoulli. He rose through the ranks very quickly. Once Daniel Bernoulli decided to leave his position as the director of the mathmatical department, Euler was promoted. While in Russia, Euler was greeted/ introduced to Christian Goldbach, who sparked Euler's interest in number theory. Euler was a man of many talents because in Russia he was learning russian, executed studies on navigation and ship design, cartography, and an examiner for the military cadet corps.
    [Show full text]
  • Goldbach's Conjecture
    Irish Math. Soc. Bulletin Number 86, Winter 2020, 103{106 ISSN 0791-5578 Goldbach's Conjecture: if it's unprovable, it must be true PETER LYNCH Abstract. Goldbach's Conjecture is one of the best-known unsolved problems in mathematics. Over the past 280 years, many brilliant mathematicians have tried and failed to prove it. If a proof is found, it will likely involve some radically new idea or approach. If the conjecture is unprovable using the usual axioms of set theory, then it must be true. This is because, if a counter-example exists, it can be found by a finite search. In 1742, Christian Goldbach wrote a letter to Leonhard Euler proposing that every integer greater than 2 is the sum of three primes. Euler responded that this would follow from the simpler statement that every even integer greater than 2 is the sum of two primes. Goldbach's Conjecture is one of the best-known unsolved problems in mathematics. It is a simple matter to check the conjecture for the first few cases: 4=2+2 6=3+3 8=5+3 10 = 7 + 3 12 = 7 + 5 14 = 11 + 3 16 = 13 + 3 18 = 13 + 5 20 = 17 + 3 ········· But, with an infinite number of cases, this approach can never prove the conjecture. If, for an even number 2n we have 2n = p1 + p2 where p1 and p2 are primes, then obviously p + p n = 1 2 (1) 2 If every even number can be partitioned in this way, then any number, even or odd, must be the arithmetic average, or mean, of two primes.
    [Show full text]
  • Goldbach, Christian
    CHRISTIAN GOLDBACH (March 18, 1690 – November 20, 1764) by HEINZ KLAUS STRICK, Germany One of the most famous, still unproven conjectures of number theory is: • Every even number greater than 2 can be represented as the sum of two prime numbers. The scholar CHRISTIAN GOLDBACH made this simple mathematical statement to his pen pal LEONHARD EULER in 1742 as an assumption. (In the original version it said: Every natural number greater than 2 can be represented as the sum of three prime numbers, since at that time the number 1 was still considered a prime number.) All attempts to prove this theorem have so far failed. Even the offer of a prize of one million dollars hardly led to any progress. CHEN JINGRUN (1933-1996, Chinese stamp on the left), student of HUA LUOGENG (1910-1985, stamp on the right), the most important Chinese mathematician of the 20th century, succeeded in 1966 in making the "best approximation" to GOLDBACH's conjecture. CHEN JINGRUN was able to prove that any sufficiently large even number can be represented as the sum of a prime number and another number that has at most two prime factors. Among the first even numbers are those that have only one GOLDBACH decomposition: 4 = 2 + 2; 6 = 3 + 3; 8 = 3 + 5; 12 = 5 + 7. For larger even numbers one finds a "tendency" to increase the number of possibilities, but even then there is always a number that has only a few decompositions, such as 98 = 19 + 79 = 31 + 67 = 37 + 61. See the graph below and The On-Line Encyclopedia of Integer Sequences A045917.
    [Show full text]
  • Conjecture of Twin Primes (Still Unsolved Problem in Number Theory) an Expository Essay
    Surveys in Mathematics and its Applications ISSN 1842-6298 (electronic), 1843-7265 (print) Volume 12 (2017), 229 { 252 CONJECTURE OF TWIN PRIMES (STILL UNSOLVED PROBLEM IN NUMBER THEORY) AN EXPOSITORY ESSAY Hayat Rezgui Abstract. The purpose of this paper is to gather as much results of advances, recent and previous works as possible concerning the oldest outstanding still unsolved problem in Number Theory (and the most elusive open problem in prime numbers) called "Twin primes conjecture" (8th problem of David Hilbert, stated in 1900) which has eluded many gifted mathematicians. This conjecture has been circulating for decades, even with the progress of contemporary technology that puts the whole world within our reach. So, simple to state, yet so hard to prove. Basic Concepts, many and varied topics regarding the Twin prime conjecture will be cover. Petronas towers (Twin towers) Kuala Lumpur, Malaysia 2010 Mathematics Subject Classification: 11A41; 97Fxx; 11Yxx. Keywords: Twin primes; Brun's constant; Zhang's discovery; Polymath project. ****************************************************************************** http://www.utgjiu.ro/math/sma 230 H. Rezgui Contents 1 Introduction 230 2 History and some interesting deep results 231 2.1 Yitang Zhang's discovery (April 17, 2013)............... 236 2.2 "Polymath project"........................... 236 2.2.1 Computational successes (June 4, July 27, 2013)....... 237 2.2.2 Spectacular progress (November 19, 2013)........... 237 3 Some of largest (titanic & gigantic) known twin primes 238 4 Properties 240 5 First twin primes less than 3002 241 6 Rarefaction of twin prime numbers 244 7 Conclusion 246 1 Introduction The prime numbers's study is the foundation and basic part of the oldest branches of mathematics so called "Arithmetic" which supposes the establishment of theorems.
    [Show full text]