What Effects Do Enzymes Have on Chemical Reactions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Carbohydrates Carbohydrates Are One of the Main Macronutrients
Carbohydrates Carbohydrates are one of the main macronutrients. They provide an essential source of energy. They are mainly found in plants, where they are manufactured by photosynthesis. Photosynthesis Photosynthesis is the process by which green plants use sunlight to make sugar (glucose) from carbon dioxide and water. How photosynthesis occurs Plant roots absorb water (H2O) from the soil. Leaves take in carbon dioxide (CO2) from the air. Chlorophyll (green pigment) in leaves absorbs energy from the sun. Result Glucose (sugar) (C6H12O6) is formed. Oxygen (O2) is released into the air. Equation for photosynthesis light energy 6CO2 + 6H2O — C6H12O6 + 6O2 chlorophyll Carbon + dioxide water — glucose + oxygen Elemental composition of carbohydrates Carbohydrates are made up of three elements: carbon (C), hydrogen (H) and oxygen (O). Monosaccharides Structure Chemical formula Examples Sources A simple sugar that C6H12O6 Glucose Fruit contains one simple Fructose Fruit and honey sugar unit. It is the Galactose Digested milk smallest unit of a carbohydrate. Chemical structure Disaccharides Structure Chemical formula Examples Sources Formed when two C12H22O11 Maltose Barley monosaccharides (glucose + glucose) Table sugar join, resulting in the Sucrose Milk loss of a water (H2O) (glucose + fructose) molecule Lactose (condensation (glucose + galactose) reaction). Chemical structure Polysaccharides Structure Chemical formula Examples Sources Formed when three (C6H10O5)n Starch Cereals and potatoes or more (n refers to the Pectin Fruit monosaccharides join number of Glycogen Meat together, resulting in monosaccharides Gums Plants and seaweed the loss of a water joined together) Cellulose Skins of fruit and (H2O) molecule with (dietary fibre) vegetables each new link Nuts (condensation reaction). Chains can be straight or branched. -
Lactose Tolerance Blood Test
Lactose tolerance blood test Lactose tolerance tests measure the ability of your intestines to break down lactose, a type of sugar found in milk and other dairy products. How the test is performed The lactose tolerance blood test looks for glucose in your blood. Your body creates glucose when lactose breaks down. For this test, several blood samples will be taken before and after you drink the lactose solution described above. For information on how a blood sample is obtained, see venipuncture. How to prepare for the test You should not eat for 8 hours before the test. Avoid strenuous exercise for 8 hours before the test. How the test will feel There should not be any pain or discomfort when giving a breath sample. When the needle is inserted to draw blood, some people feel moderate pain, while others feel only a prick or stinging sensation. Afterward, there may be some throbbing. Why the test is performed Your doctor may order these tests if you have signs of lactose intolerance. Normal Values The breath test is considered normal if the increase in hydrogen is less than 12 parts per million over your fasting (pre-test) level. The blood test is considered normal if your glucose level rises more than 30 mg/dL within 2 hours of drinking the lactose solution. A rise of 20-30 mg/dL is inconclusive. Note: Normal value ranges may vary slightly among different laboratories. Talk to your doctor about the meaning of your specific test results. The examples above show the common measurements for results for these tests. -
LACTOSE & D-GALACTOSE (Rapid)
www.megazyme.com LACTOSE & D-GALACTOSE (Rapid) ASSAY PROCEDURE K-LACGAR 02/21 Incorporating A Procedure For The Analysis Of “Low- Lactose” Or “Lactose-Free” Samples Containing High Levels Of Monosaccharides (Improved Rapid Format) (*115 Assays per Kit) * The number of tests per kit can be doubled if all volumes are halved The reagents provided in this kit are also suitable for use with AOAC method 2006.06 – Lactose in milk. Patented: US 7,785,771 B2 and EP1 828 407 (GB, FR, IE, DE) © Megazyme 2021 INTRODUCTION: Lactose, or milk sugar, is a white crystalline disaccharide. It is formed in the mammary glands of all lactating animals and is present in their milk. Lactose yields D-galactose and D-glucose on hydrolysis by lactase (β-galactosidase), an enzyme found in gastric juice. People who lack this enzyme after childhood cannot digest milk and are said to be lactose intolerant. Common symptoms of lactose intolerance include nausea, cramps, gas and diarrhoea, which begin about 30 minutes to 2 hours after eating or drinking foods containing lactose. Between 30 and 50 million Americans are lactose intolerant, with certain ethnic and racial populations being more widely affected than others; as many as 75 percent of all African-Americans and Native Americans and 90 percent of Asian-Americans are lactose intolerant. The condition is least common among persons of northern European descent. Enzymic methods for the measurement of lactose are well known and are generally based on the hydrolysis of lactose to D-galactose and D-glucose with β-galactosidase, followed by determination of either D-galactose or D-glucose. -
Analysis Fo Sugars in Maple Syrup
APPLICATION NOTE Liquid Chromatography Author: Jamie Foss PerkinElmer, Inc. Shelton, CT Analysis of Sugars in Maple Syrup by Hydrophilic Interaction Introduction Maple syrup is a popular natural Chromatography (HILIC) sweetener that the U.S. Food and Drug Administration defines as the with Refractive Index Detection liquid food derived by concentrating and heat-treating sap from the maple tree.1 Sucrose is the primary sugar found in maple syrup, along with lesser amounts of glucose, fructose and complex carbohydrates.2 Often, the total sugar content of maple syrup is based solely on the amount of sucrose, and does not consider the other sugar sources.2 Maple syrup also contains various other components including minerals, vitamins, amino acids, organic acids, and phytohormones.3 The sugar composition of maple syrup differs from honey, which is dominated by both glucose and fructose, and can contain other sugars such as sucrose and maltose, in much smaller concentrations.3 The analysis of simple sugars is commonly performed using high performance liquid chromatography (HPLC). Often, hydrophilic interaction chromatography (HILIC) is used with refractive index (RI) detection owing to the polarity of the sugars, and the lack of a suitable chromophore for UV detection. Therefore, this work describes a simple HILIC-RI method for the analysis of four common sugars found in maple syrup. The structures of these four sugars are shown in Figure 1. Fructose Glucose Sucrose Maltose Figure 1. Chemical structures of the four sugars analyzed in this study. Experimental Table 1. LC Parameters. PerkinElmer Brownlee Analytical Amino, 3 µm, Hardware and Software Column 150 x 4.6 mm (Part# N9303501) Chromatographic separation was achieved using a PerkinElmer LC 300 HPLC system, consisting of an LC 300 10K psi pump and an Solvent A: 75:25 Acetonitrile:Water Solvent Program: Isocratic LC 300 autosampler equipped with an integrated column oven. -
Fructose, Glucose, and Sucrose in Nature
3/13/2017 Fructose, Glucose, and Sucrose In Nature Fructose, Glucose, and Sucrose In Nature By Rex Mahnensmith | Submitted On July 04, 2016 Fructose, glucose and sucrose are often referred to as fruit sugars, and indeed they are. These sugars exist in virtually all tree fruits, in virtually all vine fruits, and in virtually all berries. Fructose, glucose, and sucrose exist in most root vegetables, as well. Fructose and glucose are circular molecules, very similar to each other. Each has 6 carbon atoms, 6 oxygen atoms, and 12 hydrogen atoms. However, the compounds differ slightly in the arrangements of these atoms. Both exist as straight chain molecules and as circular molecules. Both are highly reactive and will react with each other easily, forming sucrose. Glucose and fructose are two products of photosynthesis, whereby plants inspire carbon dioxide from the atmosphere and react this carbon dioxide molecule with water, forming simple single sugars or "monosaccharides." The photosynthetic steps are complex yet precise, yielding glucose principally, then fructose, and ultimately sucrose, which is the result of fructose combining with glucose to form a double sugar or "disaccharide." In the experimental setting, under direct observation, glucose, fructose, and sucrose appear almost simultaneously through the photosynthetic process. The sugar compositions of glucose, fructose, and sucrose differ from plant to plant. http://ezinearticles.com/?Fructose,Glucose,andSucroseInNature&id=9460795 1/3 3/13/2017 Fructose, Glucose, and Sucrose In Nature For example, apples, figs, bananas, grapes, and pears are relatively rich with free fructose sugars when fructosetoglucose ratios within these fruits are analyzed. -
Lactose Intolerance Brochure
Lactose Intolerance Albert F. Chiemprabha, M.D. Pierce D. Dotherow, M.D. Reed B. Hogan, M.D. James H. Johnston, III, M.D. Ronald P. Kotfila, M.D. Billy W. Long, M.D. J. Trippe McNeese, M.D. Paul B. Milner, M.D. Michelle A. Petro, M.D. Vonda Reeves-Darby, M.D. Sara Rippel, M.D., Pediatric GI Matt Runnels, M.D. Vishwanath N. Shenoy, M.D. James Q. Sones, II, M.D. April Ulmer, M.D., Pediatric GI James A. Underwood, Jr., M.D. Mark E. Wilson, M.D. Cindy Haden Wright, M.D. Keith Brown, M.D., Pathologist Samuel Hensley, M.D., Pathologist Jackson Madison Vicksburg 1421 N. State Street, Ste 203 106 Highland Way 1815 Mission 66 Jackson, MS 39202 Madison, MS 39110 Vicksburg, MS 39180 601/355-1234 601/355-1234 601/638-8801 Fax 601/352-4882 • 800/880-1231 www.msgastrodocs.com ©2011 GI Associates & Endoscopy Center. All rights reserved. Dairy Products Calcium Content Lactose Content Table of contents Ice cream/ice milk (8 oz.) 176 mg. 6-7g Milk 291-316 mg. 12-13g (whole, low-fat, skim, buttermilk, 8 oz.) Processed cheese (1 oz.) 159-215 mg. 12-13g Sour cream (4 oz.) 134 mg. 4-5g Yogurt (plain, 8 oz.) 274-415 mg. 12-13g Fish/Seafood Calcium Content Lactose Content Oysters (1 cup, raw) 226 mg. 0 Salmon with bones (canned, 3 oz.) 167 mg. 0 Sardines (3 oz.) 371 mg. 0 Shrimp (canned, 3 oz.) 98 mg. 0 Other Calcium Content Lactose Content Molasses (2 tbsp.) 274 mg. -
Glucose Syrup the Chef’S Magic Ingredient! CENTURIES of GASTRONOMIC TRADITION
Glucose syrup The chef’s magic ingredient! CENTURIES OF GASTRONOMIC TRADITION A product with a proud heritage which plays a significant role in European gastronomy, glucose syrup is used in gourmet foods by pâtissiers, confectioners and chefs alike. This high- quality, plant-based product has been produced in Europe for over a century. In the EU, with its grain-based agriculture, glucose syrup is derived from wheat and maize; EU starch manufacturers source their products exclusively from conventional (non-GMO) crops. Glucose syrup is a sugar made from the hydrolysis (breaking down) of starch. It is available in liquid, solid and transparent form (similar to honey). It was discovered in the 9th century in Japan, and originally derived from sweet potatoes; the glucose syrup manufacturing process was developed in the 19th century by the German scientist, Kirchhoff. A number of culinary specialities benefit from the unique qualities of this ingredient. Bakery products: e.g. pastries, macaroons, cakes etc. Confectionery products: e.g. sweets, lozenges, nougat etc. Glucose syrup plays a vital role in these delicacies... A delight to the eyes and taste buds alike. Still have questions about starch and starch-based ingredients in food? VISIT WWW.STARCHINFOOD.EU TO LEARN MORE. GLUCOSE SYRUP AND DIET EFSA (The European Food Safety Authority)) recommends that carbohydrates should form 45- 60% of our overall energy intake, stating that “enjoyed occasionally and in reasonable quantity, sweetened products are compatible with a balanced diet”. Glucose syrups are part of the simple carbohydrate family, with the same calorific value as all other sugars (sucrose or white sugar, lactose, etc.) i.e. -
Glucose-Galactose Malabsorption J
Arch Dis Child: first published as 10.1136/adc.42.226.592 on 1 December 1967. Downloaded from Arch. Dis. Childh., 1967, 42, 592. Glucose-galactose Malabsorption J. M. ABRAHAM, B. LEVIN, V. G. OBERHOLZER, and ALEX RUSSELL* From Queen Elizabeth Hospitalfor Children, Hackney Road, London E.2 Primary disaccharidase deficiency is a well-known electrolytaemia. On the 16th day, therefore, feeds cause of diarrhoea in infancy. The offending were changed to Nutramigen without improvement, and disaccharide appears in the stool after ingestion due 9 days later this was substituted by Velactin. Both of to the absence in the intestinal mucosa of the appro- these low-lactose preparations contain, in addition to protein, large amounts of dextrin and starch, and priate splitting enzyme. A much rarer cause of Nutramigen also includes maltose, while Velactin also has diarrhoea in this period is a failure of absorption of glucose and sucrose. All these carbohydrates on the monosaccharides, glucose and galactose, in the digestion give rise to glucose. The diarrhoea now presence of histologically normal mucosa and full decreased and the stools became less liquid; but disaccharidase activity. The clinical and bio- there was no weight gain (Fig. 1) and glucose was still chemical picture of this newly-described entity is present in the stools. After 12 days on this regime, an characteristic. Watery diarrhoea, with glucose extensive rash developed on the buttocks and groins, and/or galactose in the stools, develops within three with stomatitis (Fig. 2), anaemia, hypokalaemia, and days of milk feeding and continues as long as the hyperchloraemic acidosis (Na 138, K 2-4, Cl 112, standard bicarbonate 13*7 mEq/l.). -
Lactose Intolerance
Lactose Intolerance Enzyme Digestion Lab Activity SCIENTIFIC BIO AX! Introduction F Intestinal gas, bloating, and stomach cramps—oh my! This can be a common concern for a majority of the world’s population who lack the enzyme to digest certain foods. Milk and dairy products, for example, cause problems for many people who lack the enzyme required to digest lactose, the main carbohydrate found in milk. This lab activity illustrates the use of a commercial enzyme product called Lactaid™ as an aid in milk digestion. Concepts • Enzyme • Disaccharide • Metabolism Materials Galactose, 2 g Balloons, 4 Lactaid™, ½ tablet, Graduated cylinder, 10 mL Lactose, 4 g Mini soda bottles, 4 Sucrose, 2 g Resealable plastic bag Yeast, suspension, 40 mL Water bath, 35–40 °C Safety Precautions Wear chemical splash goggles, chemical-resistant gloves, and a chemical-resistant apron. Wash hands thoroughly with soap and water before leaving the laboratory. Follow all laboratory safety guidelines. Please review current Safety Data Sheets for additional safety, handling, and disposal information. Procedure 1. Obtain a warm water bath (35–40 °C) or an insulating block. Place the test Lactose tubes in the insulating block or test tube rack. plus Lactose Sucrose Galactose Lactaid 2. Weigh out the dry ingredients prior to the demonstration. 3. Review the summary diagram of the demonstration setup shown in Figure 1. 4. Clearly label each test tube as shown in Figure 1. 5. Place 2 g of the appropriate dry sugar into each test tube, as shown in Figure 1. 6. Add pre-ground Lactaid™ tablet to one flask containing 2 g lactose, as shown in Figure 1. -
Intestinal Absorption of Sucrose in Man: Interrelation of Hydrolysis and Monosaccharide Product Absorption
Intestinal absorption of sucrose in man: interrelation of hydrolysis and monosaccharide product absorption. G M Gray, F J Ingelfinger J Clin Invest. 1966;45(3):388-398. https://doi.org/10.1172/JCI105354. Research Article Find the latest version: https://jci.me/105354/pdf Journal of Clinical Inxestigation Vol. 45, No. 3, 1966 Intestinal Absorption of Sucrose in Man: Interrelation of Hydrolysis and Monosaccharide Product Absorption * GARY M. GRAY t AND FRANZ J. INGELFINGER (From the Evans Memorial Department of Clinical Research, University Hospital, and the Department of Medicine, Boston University School of Medicine, Boston University Medical Center, Boston, Mass.) Disaccharides are hydrolyzed by their specific amounts of the hydrolysis products accumulate enzymes present in the intestinal mucosa (1-3). intraluminally during the process of sucrose ab- Although some current textbooks still state that sorption in man and that these monosaccharides these enzymes are secreted into the intestinal lu- appear to move back from their mucosal site of hy- men (4-7), the concentrations of monosaccharide drolysis to the lumen (13). products free in intestinal contents during disac- The present work is concerned with the rela- charide absorption in vitro (8-10) have been found tion of hydrolysis of sucrose to the absorption of insufficient to support the concept of intraluminal its monosaccharide components, glucose, an ac- hydrolysis. In addition, the low disaccharidase tively absorbed monosaccharide (14, 15, 17), and activity of intestinal contents during the absorp- fructose, which is passively absorbed (14, 15). tion process in vivo (11-13) strongly suggests that the disaccharide either enters the cell before Methods being hydrolyzed or else is hydrolyzed at the cell Thirty-two normal young subjects were studied on 105 surface by mucosa-bound enzyme. -
What Is Lactose Intolerance? Lactose Intolerance Means You Have Symptoms Such As Bloating, Diarrhea, and Gas After You Have Milk Or Milk Products
What is lactose? Lactose* is a sugar found in milk and milk products. The small intestine produces lactase, an enzyme that breaks down lactose. The small intestine is an organ that breaks down the food you eat. Enzymes are proteins that help to cause chemical changes in the body. What is lactose intolerance? Lactose intolerance means you have symptoms such as bloating, diarrhea, and gas after you have milk or milk products. If your small intestine does not produce much lactase, you cannot break down much lactose. Lactose that does not break down goes to your colon. The colon is an organ that absorbs water from stool and changes it from a liquid to a solid form. In your colon, bacteria that normally live in the colon break down the lactose and create fluid and gas, causing you to have symptoms. *See the Pronunciation Guide for tips on how to say the words in bold type. What I need to know about Lactose Intolerance 1 The causes of low lactase in your small intestine can include the following: ● In some people, the small intestine makes less lactase starting at about age 2, which may lead to symptoms of lactose intolerance. Other people start to have symptoms later, when they are teenagers or adults. ● Infection, disease, or other problems that harm the small intestine can cause low lactase levels. Low lactase levels can cause you to become lactose intolerant until your small intestine heals. ● Being born early may cause babies to be lactose intolerant for a short time after they are born. -
The Direct Determination of Sucrose in the Presence of Reducing Sugars M A
Louisiana State University LSU Digital Commons LSU Agricultural Experiment Station Reports LSU AgCenter 1916 The direct determination of sucrose in the presence of reducing sugars M A. Schneller Follow this and additional works at: http://digitalcommons.lsu.edu/agexp Recommended Citation Schneller, M A., "The direct determination of sucrose in the presence of reducing sugars" (1916). LSU Agricultural Experiment Station Reports. 207. http://digitalcommons.lsu.edu/agexp/207 This Article is brought to you for free and open access by the LSU AgCenter at LSU Digital Commons. It has been accepted for inclusion in LSU Agricultural Experiment Station Reports by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. 1916 Louisiana Bulletin No. 155 July, Agricultural Experiment Station Of3 THE LOUISIANA STATE UNIVERSITY AND A. & A. COLLEGE BATON ROUGE The Direct Determination of Sucrose in the Presence of Reducing Sugars BY AV. A. SCHNELLER 2 THE DIRECT DETERMINATION OF SUCROSE IN THE PRESENCE OF REDUCING SUGARS The methods proposed for the direct determination of sucrose in the presence of reducing sugars have not proved quite successful and none has con^e into general use. They are based on the destruction of the rotary power of reducing sugar by the action of alkali, effecting a rearrangement of the glucose and fructose molecules and their transformation into an inactive mixture of glucose, fructose and mannose. The various analytical methods are reviewed in Browne's; Handbook of Sugar Analysis, p. 302, also in Louisiana Bulletin No. 135, p. 47, where a modification of the method of Pellet and Lameland, employing hydrogen peroxide in addition to alkali is described by Cross and Taggart They found Pellet's method unreliable, but although their own modification gave results in close agreement with Clerget's inversion method for sugar house products, it yielded too low figures with pure sucrose.