Path to High Efficiency Gasoline Engine

Total Page:16

File Type:pdf, Size:1020Kb

Path to High Efficiency Gasoline Engine Path to High Efficiency Gasoline Engine SI HCCI PPC Prof. Bengt Johansson Division of Combustion Engines Department of Energy Sciences Lund University 1 Scania diesel engine running on gasoline Group 3, 1300 [rpm] 60 ! 55 50 FR47333CVX 45 FR47334CVX FR47336CVX 40 35 30 Gross Indicated Efficiency [%] Efficiency Indicated Gross 25 20 0 2 4 6 8 10 12 14 Gross IMEP [bar] ηi=57% = Isfc =147 g/kWh (@43 MJ/kg heating value) 2 Outline • HCCI and fuel efficiency – 50% thermal efficiency • Partially premixed combustion, PPC – Background – Why gasoline is the best diesel engine fuel – 56% thermal efficiency in car size engine – 57% thermal efficiency in truck size engine – Why 55% thermal efficiency is better than 57% – How to reach 26 bar IMEP with US10 NOx, PM, HC and CO engine out 3 Outline • HCCI and fuel efficiency – 50% thermal efficiency • Partially premixed combustion, PPC – Background – Why gasoline is the best diesel engine fuel – 56% thermal efficiency in car size engine – 57% thermal efficiency in truck size engine – Why 55% thermal efficiency is better than 57% – How to reach 26 bar IMEP with US10 NOx, PM, HC and CO engine out 4 Efficiencies? 5 Energy flow in an IC engine FuelMEP Combustion efficiency QemisMEP QhrMEP QhtMEP Thermodynamic efficiency QlossMEP QexhMEP Gross Indicated efficiency IMEPgross Gas exchange efficiency PMEP Net Indicated efficiency lMEPnet Mechanical efficiency FMEP Brake efficiency BMEP = * * * η Brake η Combustion ηThermodynamic η GasExchange η Mechanical Thermodynamic efficiency Saab SVC variable compression ratio, VCR, HCCI, Rc=10:1-30:1; General Motors L850 “World engine”, HCCI, Rc=18:1, SI, Rc=18:1, SI, Rc=9.5:1 (std) Scania D12 Heavy duty diesel engine, HCCI, Rc=18:1; Fuel: US regular Gasoline 7 SAE2006-01-0205 All four efficiencies 8 Problem with HCCI: Too fast combustion 9 Phasing HCCI combustion late helps burn rate but reduce ηC 10 Magnus Christensen Ph.D. thesis 2002 Outline • HCCI and fuel efficiency – 50% thermal efficiency • Partially premixed combustion, PPC – Background – Why gasoline is the best diesel engine fuel – 56% thermal efficiency in car size engine – 57% thermal efficiency in truck size engine – Why 55% thermal efficiency is better than 57% – How to reach 26 bar IMEP with US10 NOx, PM, HC and CO engine out 11 + Clean with 3-way Background + High efficiency Catalyst Combustion concepts - Emissions of NO and - Poor low & part load x soot efficiency Spark Ignition (SI) Compression Ignition engine (Gasoline, (CI) engine (Diesel) Otto) + High efficiency Homogeneous Charge -Combustion control Compression Ignition + Ultra low NOx -Power density (HCCI) Spark Assisted Partially premixed Compression Ignition combustion (PPC) (SACI) Diesel HCCI Gasoline HCCI + Injection controlled - Less emissions advantage Partially Premixed Combustion, PPC p y 6000 1200 CI HCCI PCCI 5000 PPC 1000 4000 800 3000 600 HC [ppm] NOx [ppm] 2000 400 1000 200 -180 -160 -140 -120 -100 -80 -60 -40 -20 SOI [ATDC] Def: region between truly homogeneous combustion, HCCI, and diffusion controlled combustion, diesel 13 PPC: Effect of EGR with diesel fuel Load 8 bar IMEP Abs. Inlet Pressure 2.5 bar Engine Speed 1090 rpm Swirl Ratio 1.7 Compression Ratio 12.4:1 (Low) Scania D12 single cylinder 14 DEER2005 1 2 3 4 Lund/Delphi/Volvo PPC Project Volvo D13 Multi-cylinder engine NOx <0.3 g/kWh PM < 2 FSN using Swedish MK1 diesel fuel Adapted from 16 SAE paper 2009-01-1127 Outline • HCCI and fuel efficiency – 50% thermal efficiency • Partially premixed combustion, PPC – Background – Why gasoline is the best diesel engine fuel – 56% thermal efficiency in car size engine – 57% thermal efficiency in truck size engine – Why 55% thermal efficiency is better than 57% – How to reach 26 bar IMEP with US10 NOx, PM, HC and CO engine out 17 PPC with low cetane diesel Lic. Thesis by Henrik Nordgren 2005 and 18 presented at DEER2005 Outline • HCCI and fuel efficiency – 50% thermal efficiency • Partially premixed combustion, PPC – Background – Why gasoline is the best diesel engine fuel – 56% thermal efficiency in car size engine – 57% thermal efficiency in truck size engine – Why 55% thermal efficiency is better than 57% – How to reach 26 bar IMEP with US10 NOx, PM, HC and CO engine out 19 VOLVO D5 with Gasoline Injection SOI [TDC] Fuel MEP [bar] Percentage [%] 1 -64.00 10.88 41.28 2 -29.20 7.74 29.36 3 0.80 7.74 29.36 150 Cyl Pressure [bar] Inj Signal [a.u.] RoHR [J/CAD] 100 Load & CA50 N 2000 [rpm] Noise Load IMEPg 13.38 [bar] 50 Pin 2.57 [bar] Tin 354 [K] EGR 39 [%] 0 lambda 1.75 [-] -8020 -60 -40 -20 0 20 40 CAD [TDC] Efficiencies & Emissions ! D60 project goal 60 40 0.46 % 58 35 56 30 54 52 25 4598 ppm 50 20 48 Emissions 13 ppm Efficiency [%] 91 % 15 46 10 44 Below 42 5 Detectable Level 40 0 Indicated Gross Thermal Combustion/2 NOx*100 [g/kWh] CO [g/kWh] HC [g/kWh] Soot [FSN] dPmax 7.20 [bar/CAD] CA5 3.40 [TDC] ID -1.00 [CAD] CA50 11.35 [TDC] CA90-10 13.00 [CAD] 21 Burn rate and ηT Optimum Thermodynamic efficiency 150 Cyl Pressure [bar] Inj Signal [a.u.] Low effective RoHR [J/CAD] High heat expansion 100 losses ratio 50 0 -80 -60 -40 -20 0 20 40 CAD [TDC] Premixedness 22 Outline • HCCI and fuel efficiency – 50% thermal efficiency • Partially premixed combustion, PPC – Background – Why gasoline is the best diesel engine fuel – 56% thermal efficiency in car size engine – 57% thermal efficiency in truck size engine – Why 55% thermal efficiency is better than 57% – How to reach 26 bar IMEP with US10 NOx, PM, HC and CO engine out 23 Experimental setup, Scania D12 Bosch Common Rail Prailmax 1600 [bar] Orifices 8 [-] Orifice Diameter 0.18 [mm] Umbrella Angle 120 [deg] Engine / Dyno Spec BMEPmax 15 [bar] Vd 1951 [cm3] Swirl ratio 2.9 [-] Fuel: Gasoline or Ethanol 24 Two Test Series: High & Low Compression Ratio rc: 14.3:1 rc: 17.1:1 Low Compression Ratio PPC High Compression Ratio PPC 25 Injection Strategy It consists of two injections. The first Const. Load & CA50 one is placed @ -60 TDC to create a 1 homogeneous mixture while the second 0.8 around TDC. The stratification created 0.6 by the second injection triggers the [a.u.] combustion. The first injection must not 0.4 It must not react during the compression stroke, react during 0.2 this is achieved by using EGR. compression 0 -60 -50 -40 -30 -20 -10 0 10 CAD [TDC] Fuel amount in the pilot is a function of: 1.rc 2.RON/MON 3.EGR 26 SAE 2009-01-0944 High Compression Ratio PPC IMEP sweep @ 1300 [rpm] EGR ~ const throughout the sweep, 40-50 [%] λ~ const throughout the sweep, 1.5-1.6 [-] Tin = 308 [K] Standard piston bowl, rc: 17:1 27 SAE 2009-01-2668 Running Conditions 2.5 350 2 60 Inlet Temperature 300 1.9 Exhaust Temperature 55 2.25 1.8 250 50 1.7 200 Inlet Pressure 2 [-] 1.6 45 [C] Exhaust Pressure λ [bar] 150 EGR [%] 1.5 40 100 1.75 1.4 35 50 1.3 1.5 0 1.2 30 4 5 6 7 8 9 10 11 12 13 4 5 6 7 8 9 10 11 12 13 Gross IMEP [bar] Gross IMEP [bar] 28 Efficiencies 100 95 90 85 80 Combustion Efficiency 75 [%] Thermal Efficiency 70 Gas Exchange Efficiency Mechanical Efficiency 65 60 55 50 4 5 6 7 8 9 10 11 12 13 Gross IMEP [bar] 29 Efficiency 57% 60 Too much rate Too much heat transfer controlled combustion 55 50 45 [%] Gross Ind. Efficiency 40 Net Ind. Efficiency Brake Efficiency 35 30 2 4 6 8 10 12 14 Gross IMEP [bar] 30 Emissions 0.5 5 Obsolete injection 0.45 Gross 4.5 Net system 0.4 Brake 4 EU VI Not well tuned EGR-λ 0.35 3.5 US 10 combination 0.3 3 0.25 2.5 NOx [g/kWh] 0.2 2 Smoke [FSN] Smoke 0.15 1.5 0.1 1 0.05 0.5 0 0 2 4 6 8 10 12 14 2 4 6 8 10 12 14 Gross IMEP [bar] Gross IMEP [bar] 5 18 4.5 16 Gross 4 Gross 14 Net 3.5 Net Brake Brake 12 EU VI 3 EU VI US 10 US 10 10 2.5 8 HC [g/kWh] 2 CO [g/kWh] 6 1.5 1 4 0.5 2 0 31 0 2 4 6 8 10 12 14 2 4 6 8 10 12 14 Gross IMEP [bar] Gross IMEP [bar] Outline • HCCI and fuel efficiency – 50% thermal efficiency • Partially premixed combustion, PPC – Background – Why gasoline is the best diesel engine fuel – 56% thermal efficiency in car size engine – 57% thermal efficiency in truck size engine – Why 55% thermal efficiency is better than 57% – How to reach 26 bar IMEP with US10 NOx, PM, HC and CO engine out 32 Low Compression Ratio PPC IMEP sweep @ 1300 [rpm] EGR ~ const throughout the sweep, 40-50 [%] λ~ const throughout the sweep, 1.5-1.6 [-] Tin = 308 [K] Custom piston bowl, rc: 14.3:1 33 SAE 2010-01-0871 Efficiencies 100 95 90 85 80 Combustion Efficiency [%] 75 Thermal Efficiency 70 Gas Exchange Efficiency Mechanical Efficiency 65 60 55 50 4 6 8 10 12 14 16 18 Gross IMEP [bar] 34 Emissions 0.6 2 1.8 λ Gross Better tuned EGR- 0.5 Net 1.6 combination Brake 1.4 0.4 EU VI US 10 1.2 0.3 1 NOx [g/kWh] 0.8 Smoke [FSN] Smoke 0.2 0.6 0.4 0.1 0.2 0 0 2 4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18 Gross IMEP [bar] Gross IMEP [bar] 1.5 10 Gross 9 Gross Net Net 1.2 Brake 8 Brake EU VI EU VI US 10 7 US 10 0.9 6 5 HC [g/kWh] 0.6 CO [g/kWh] 4 3 0.3 2 1 0 35 0 2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18 Gross IMEP [bar] Gross IMEP [bar] Emissions – different fuels Ethanol 2.5 0.5 FR47330CVX 0.45 FR47331CVX Ethanol FR47333CVX FR47330CVX 0.4 FR47334CVX 2 FR47331CVX FR47335CVX FR47333CVX 0.35 FR47336CVX FR47334CVX 0.3 FR47338CVX 1.5 FR47335CVX FR47336CVX 0.25 FR47338CVX Soot [FSN] NOx [g/kWh] 0.2 1 0.15 0.1 0.5 0.05 0 0 2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20 Gross IMEP [bar] Gross IMEP [bar] 12 10 Ethanol Ethanol FR47330CVX 9 FR47330CVX 10 FR47331CVX 8 FR47331CVX FR47333CVX FR47333CVX FR47334CVX 7 FR47334CVX 8 FR47335CVX FR47335CVX FR47336CVX 6 FR47336CVX 6 FR47338CVX 5 FR47338CVX CO [g/kWh] HC [g/kWh] 4 4 3 2 2 1 0 36 0 2 4 6 8 10 12 14 16 18 20 2 4 6
Recommended publications
  • Alternative Fuels, Vehicles & Technologies Feasibility
    ALTERNATIVE FUELS, VEHICLES & TECHNOLOGIES FEASIBILITY REPORT Prepared by Eastern Pennsylvania Alliance for Clean Transportation (EP-ACT)With Technical Support provided by: Clean Fuels Ohio (CFO); & Pittsburgh Region Clean Cities (PRCC) Table of Contents Analysis Background: .................................................................................................................................... 3 1.0: Introduction – Fleet Feasibility Analysis: ............................................................................................... 3 2.0: Fleet Management Goals – Scope of Work & Criteria for Analysis: ...................................................... 4 Priority Review Criteria for Analysis: ........................................................................................................ 4 3.0: Key Performance Indicators – Existing Fleet Analysis ............................................................................ 5 4.0: Alternative Fuel Options – Summary Comparisons & Conclusions: ...................................................... 6 4.1: Detailed Propane Autogas Options Analysis: ......................................................................................... 7 Propane Station Estimate ......................................................................................................................... 8 (Station Capacity: 20,000 GGE/Year) ........................................................................................................ 8 5.0: Key Recommended Actions – Conclusion
    [Show full text]
  • Using Biodiesel Fuel in Your Engine
    RENEWABLE AND ALTERNATIVE ENERGY FACT SHEET Using Biodiesel Fuel in Your Engine Introduction Biodiesel is an engine fuel that is created by chemically reacting fatty acids and alcohol. Practically speaking, this usually means combining vegetable oil with methanol in the presence of a cata- lyst (usually sodium hydroxide). Biodiesel is much more suitable for use as an engine fuel than straight vegetable oil for a number of reasons, the most notable one being its lower viscosity. Many large and small producers have begun producing biodiesel, and the fuel can now be found in many parts of Pennsylvania and beyond either as “pure biodiesel” or a blended mixture with tradi- tional petroleum diesel (e.g., B5 is 5 percent biodiesel, 95 percent petroleum diesel). The process of making biodiesel is simple enough that farm- ers can consider producing biodiesel to meet their own needs by growing and harvesting an oil crop and converting it into biodiesel. In this way, farmers are able to “grow” their own fuel (see the Penn State Cooperative Extension publication Biodiesel Safety and Best Management Practices for Small-Scale Noncom- biodiesel fuel has less energy per unit volume than traditional mercial Production). There are many possible reasons to grow or diesel fuel. use biodiesel, including economics, support of local industry, and environmental considerations. • Fuel efficiency: fuel efficiency tends to be slightly lower when However, there is also a great deal of concern about the effect using biodiesel due to the lower energy content of the fuel. of biodiesel on engines. Many stories have been circulating about Typically, the drop-off is in the same range as the reduction in reduced performance, damage to key components, or even engine peak engine power (3–5 percent).
    [Show full text]
  • Greenhouse Gases and Light-Duty Vehicles (PDF)
    Greenhouse Gases and Light-duty Vehicles Clean Air Act Advisory Committee Meeting th Sept 18 , 2008 David Haugen National Vehicle and Fuel Emissions Laboratory Office of Transportation and Air Quality 1 Many technology options available to reduce Light Duty vehicle GHGs • Tendency is to focus on the “big hitters” – Hybrids (and PHEVs) like the Prius, “2-Mode”, and the Volt – Advanced Clean Diesels • However, there are many “small hitters” that remain available to the fleet to reduce vehicle GHGs at very affordable costs – Better engines (for efficiency, not just improved performance) – Advanced transmissions – Improved vehicle and accessories Care must be taken when combining these technologies, so appropriate benefits are predicted 2 Vehicle Technologies available to reduce GHGs from Light Duty • Engines – Reduced Engine Friction & Improved Lubricants – Variable valve timing and lift – Cylinder deactivation – Gasoline direct injection – Turbocharging with engine downsizing – Clean Diesels • Transmissions – 6-speed automatic – Automated manual • Hybrids (“mild”, “medium” and “full” – electric, plug-ins and series hydraulic) • Vehicle and Accessories – Reduced aerodynamic vehicle drag, through design – Improved low rolling resistance tires – Weight reduction – Halting or rolling back the “performance race” – Improved alternators, electrical & A/C systems and other accessories – Electric power steering 3 LD Technologies Entering Fleet 1998 2008 Multi-valve engine 40% 77% Variable valve timing negligible 58% Cylinder deactivation 0% 7% Turbocharging 1.4% 2.5% Manual transmission 13% 7% Continuously variable trans 0% 8% Hybrid 0 2.5% Diesel 0.1% 0.1% 4 Engine Technologies • Variable Valve Timing & Lift (VVT & VVL) – Also known as cam phasing – Precise control of valve opening & closing and how much they open and close.
    [Show full text]
  • DOE Transportation Strategy: Improve Internal Combustion Engine Efficiency
    DOE Transportation Strategy: Improve Internal Combustion Engine Efficiency Gurpreet Singh, Team Leader Advanced Combustion Engine Technologies Vehicle Technologies Program U.S. Department of Energy Presented at the ARPA-E Distributed Generation Workshop Alexandria, VA June 2, 2011 Program Name or Ancillary Text eere.energy.gov Outline Current state of vehicle engine technology and performance trends (efficiency and emissions) over time Headroom to improve vehicle engine efficiency Future technical pathways and potential impact DOE’s current strategy and pathways eere.energy.gov Passenger Vehicle Fuel Economy Trends Significant fuel economy increases (in spite of increases in vehicle weight, size and performance) can be largely attributed to increase in internal combustion engine efficiency. Source: Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends: 1975 through 2010, EPA. eere.energy.gov Progress In Heavy-Duty Diesel Engine Efficiency and Emissions Historical progress in heavy-duty engine efficiency and the challenge of simultaneous emissions reduction, illustrate positive impact from DOE R&D support. (Adapted from DEER presentation, courtesy of Detroit Diesel Corporation). 20 Steady State 2.0 hr) - Test NOx + HC Particulate Matter 15 1.5 g/bhp NOx Transient Test (Unregulated) 90% NOx NO + HC 10 x 1.0 Oil savings from heavy-duty vehicles alone PM (Unregulated) 2002 (1997 – 2005) represent an over 35:1 return NOx on investment (ROI) of government funds for 5 0.5 heavy-duty combustion engine R&D. PM NOx + NMHC 90% Oxides ofOxides Nitrogen ( Urban Bus PM 0 0.0 Source: Retrospective Benefit-Cost Evaluation of U.S. DOE 1970 1975 1980 1985 1990 1995 2000 2005 2010 Vehicle Advanced Combustion Engine R&D Investments: Model Year 2007 Impacts of a Cluster of Energy Technologies, U.S.
    [Show full text]
  • Development of Two-Stage Electric Turbocharging System for Automobiles
    Mitsubishi Heavy Industries Technical Review Vol. 52 No. 1 (March 2015) 71 Development of Two-stage Electric Turbocharging system for Automobiles BYEONGIL AN*1 NAOMICHI SHIBATA*2 HIROSHI SUZUKI*3 MOTOKI EBISU*1 Engine downsizing using supercharging is progressing to cope with tightening global environmental regulations. In addition, further improvement in fuel consumption is expected with such applications as ultra-high EGR, Miller cycle, and lean combustion. Mitsubishi Heavy Industries, Ltd. (MHI) has developed a two-stage electric turbocharging system to balance better drivability and improved fuel consumption by increasing the turbocharging pressure and improving the transient response. |1. Introduction Engine downsizing/downspeeding through supercharging is progressing to cope with annually enhanced improvement in fuel consumption and exhaust gas. Downsizing through direct injection and supercharging has been developed mainly in European countries where the CO2 regulations are the most stringent, and it has expedited the increase of the turbocharger installation rate in other areas. Diesel vehicles are supposed to satisfy the CO2 and exhaust gas regulation standards in 2021. However, gasoline vehicles are still not able to meet the standards even in the case of low-fuel consumption vehicles with supercharged downsizing, and further measures are required. The adoption of WLTC (Worldwide harmonized Light duty driving Test Cycle) is planned globally in and after 2017, and new regulations taking actual driving conditions into consideration are being discussed. Turbochargers are required to provide a further boost pressure and better response, as well as robust and easy to operate characteristics, for this purpose. Existing turbochargers have a time-lag and EGR response delay, and proper control is difficult.
    [Show full text]
  • Vehicle Fuel Efficiency
    Vehicle Fuel Efficiency Potential measures to encourage the uptake of more fuel efficient, low carbon emission vehicles Public Discussion Paper Prepared by Australian Transport Council (ATC) and Environment Protection and Heritage Council (EPHC) Vehicle Fuel Efficiency Working Group With support from The Australian Government September 2008 Closing date for comments: 7 November 2008 © Commonwealth of Australia 2008 This work is copyright. You may download, display, print and reproduce this material in unaltered form only (retaining this notice) for your personal, non-commercial use or use within your organisation. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. Requests and inquiries concerning reproduction and rights should be addressed to Commonwealth Copyright Administration Attorney General’s Department Robert Garran Offices National Circuit Barton ACT 2600 or posted at http://www.ag.gov.au/cca Disclaimer The discussion paper has been prepared by the Australian Transport Council/Environment Protection & Heritage Council Vehicle Fuel Efficiency Working Group. The opinions, comments and analysis expressed in the discussion paper are for discussion purposes only and cannot be taken in any way as an expression of current or future policy of the Australian Government nor any state or territory government. The views and opinions expressed do not necessarily reflect those of the Australian Government or the Minister for the Environment, Heritage and the Arts, the Minister for Infrastructure, Transport, Regional Services and Local Government, or the Minister for Climate Change and Water. While reasonable efforts have been made to ensure that the contents of this publication are factually correct, the Commonwealth does not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this publication.
    [Show full text]
  • Engine Downsizing - an Analysis Perspective
    Visit the SIMULIA Resource Center for more customer examples. Engine Downsizing - An Analysis Perspective Mark Stephenson MAHLE Powertrain MAHLE Powertrain (MPT) is constantly exploring new ways to improve the efficiency and performance of engines to meet the demanding objectives Automotive OEM’s are faced with today, i.e. to reduce fuel consumption and emissions. MPT’s key expertise lies in the development of high performance engines with low emissions and excellent fuel economy through the optimisation of gas exchange, combustion, friction and durability. This strategy is being demonstrated by the development of MAHLE’s own state of the art three- cylinder 1.2-litre downsizing technology demonstrator engine which has been designed, built and tested at Northampton in the UK. One of the objectives of the project was to design a compact engine with high specific power output by using a turbo charger combined with state of the art direct injection technology and variable valve timing. This ensures that vehicle performance targets can be met using the smallest capacity engine thus minimising throttling losses which otherwise leads to high fuel consumption. With such a high specific power output predictive analysis has played a key role in guiding, validating and optimising the design. This paper highlights the use of Abaqus to perform structural analysis of the main engine: connecting rod, crankshaft and cylinder block bottom end as well as thermo-mechanical analyses of the head and block assembly and exhaust manifolds. 1. Introduction Since the agreement to reduce average new car CO2 emissions to 140g/km by 2008, fuel consumption improvement has been one of the main drivers for engine development within the automotive industry.
    [Show full text]
  • Air Quality Impacts of Biodiesel in the United States
    WHITE PAPER MARCH 2021 AIR QUALITY IMPACTS OF BIODIESEL IN THE UNITED STATES Jane O’Malley, Stephanie Searle www.theicct.org [email protected] twitter @theicct BEIJING | BERLIN | SAN FRANCISCO | SÃO PAULO | WASHINGTON ACKNOWLEDGMENTS This study was generously funded by the David and Lucile Packard Foundation and the Norwegian Agency for Development Cooperation. International Council on Clean Transportation 1500 K Street NW, Suite 650, Washington, DC 20005 [email protected] | www.theicct.org | @TheICCT © 2021 International Council on Clean Transportation EXECUTIVE SUMMARY Since the passage of the Clean Air Act in 1970, the U.S. Environmental Protection Agency (EPA) has enacted standards to reduce vehicle exhaust emissions. These standards set emission limits for pollutants that contribute to poor air quality and associated health risks, including nitrous oxide (NOx), hydrocarbons (HC), carbon monoxide (CO), and particulate matter (PM). Although the majority of the on-road vehicle fleet in the United States is fueled by gasoline, diesel combustion makes up an overwhelming share of vehicle air pollution emissions. Air pollution emissions can be affected by blending biodiesel, composed of fatty acid methyl ester (FAME), into diesel fuel. Biodiesel increases the efficiency of fuel combustion due to its high oxygen content and high cetane number. Studies have found that biodiesel combustion results in lower emissions of PM, CO, and HC, likely for this reason. However, studies have consistently found that biodiesel blending increases NOx formation. Industry analysts, academic researchers, and government regulators have conducted extensive study on the emissions impacts of biodiesel blending over the last thirty years. The EPA concluded in a 2002 report that, on the whole, biodiesel combustion does not worsen air quality compared to conventional diesel and reaffirmed that conclusion in a 2020 proposal and subsequent rulemaking.
    [Show full text]
  • And Heavy-Duty Truck Fuel Efficiency Technology Study – Report #2
    DOT HS 812 194 February 2016 Commercial Medium- and Heavy-Duty Truck Fuel Efficiency Technology Study – Report #2 This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its content or use thereof. If trade or manufacturers’ names or products are mentioned, it is because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers. Suggested APA Format Citation: Reinhart, T. E. (2016, February). Commercial medium- and heavy-duty truck fuel efficiency technology study – Report #2. (Report No. DOT HS 812 194). Washington, DC: National Highway Traffic Safety Administration. TECHNICAL REPORT DOCUMENTATION PAGE 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT HS 812 194 4. Title and Subtitle 5. Report Date Commercial Medium- and Heavy-Duty Truck Fuel Efficiency February 2016 Technology Study – Report #2 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Thomas E. Reinhart, Institute Engineer SwRI Project No. 03.17869 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Southwest Research Institute 6220 Culebra Rd. 11. Contract or Grant No. San Antonio, TX 78238 GS-23F-0006M/DTNH22- 12-F-00428 12. Sponsoring Agency Name and Address 13.
    [Show full text]
  • Comparison of Characteristics of Spark Plug Engines Fsi, Tsi/Tfsi Type of Volkswagen Company
    SCIENTIFIC PROCEEDINGS XXIII INTERNATIONAL SCIENTIFIC-TECHNICAL CONFERENCE "trans & MOTAUTO ’15" ISSN 1310-3946 COMPARISON OF CHARACTERISTICS OF SPARK PLUG ENGINES FSI, TSI/TFSI TYPE OF VOLKSWAGEN COMPANY PhD. Eng. Krzysztof Miksiewicz Faculty of Mechanical Engineering – Wroclaw University of Technology, Poland [email protected] Abstract: The use of direct injection in spark ignition engines, significantly facilitated the use of chargers in these engines. This resulted lately in the significant popularization of direct injection engines, initially freely sucking and in final result turbocharged. The greatest popularity on the market gained engines of Volkswagen company, named FSI and TFSI / TSI. Application of Common Rail systems allowed not only to improve the characteristics of the engine by increasing the accuracy in dispensing fuel into individual cylinders. The most important gain is the possibility of second injection of the fuel to the cylinder after the intake valve is closed. On the one hand it allows better control of the load in the cylinder, at first with the piston crown, and now with shaping the injection by the injector. KEYWORDS: TRANSPORT, COMBUSTION ENGINES, FUEL INJECTION, STRATIFIED INJECTION, CHARGE ENGINES 1. Introduction Light-red color indicates the characteristics of power of the 1.6 FSI Petrol engines recently lost competitiveness against turbocharged engine, and the purple its torque. Dark-red color indicates the diesel engines. Previously used indirect injection technology, was engine power of 1.4 TSI and blue, its torque. It is clear that the a restriction in supercharging those engines, so that the most curve under the turbo-charged engine is steeper and more quickly effective way of raising the torque of the engine was increasing its reaches its maximum.
    [Show full text]
  • Summary of Current Status of Alternative Fuels and Vehicles
    1. INTRODUCTION Motor vehicles are the underlying source for two major global issues the United States (U.S.) faces: 1) the dependence on foreign oil from unstable political regions, and 2) the increase in carbon dioxide (CO2) emissions, a leading contributor of greenhouse gases (GHGs) that affect Earth’s climate. There are 200 million drivers traveling 10 trillion vehicle miles each year in the U.S. In the Denver region alone, vehicles are driven more than 70 million miles each day. Dependence on foreign oil: A matter of U.S. Security The U.S. uses about 14.5 million barrels of oil per day for transportation (which equates to 609 million gallons) and imports more than 60% of its petroleum, two-thirds of which is used to fuel vehicles in the form of gasoline and diesel. The demand for petroleum imports is increasing and with much of the worldwide petroleum resources located in politically volatile countries, the U.S. is vulnerable to supply disruptions. Climate Change While the U.S. contains only 5% of the world’s population, it is responsible for 25% of global GHG emissions. Transportation accounts for 28% of GHG emissions in the U.S., second to electric power Figure 1 (Figure 1). It is the 2006 U.S. Greenhouse Gas Emissions fastest growing by sector (Million Metric Tons CO2 Equivalent) source of GHGs, Residential accounting for 47% of Commericial 5% the net increase in 6% total U.S. GHG Agriculture emissions since 1990. 8% Trends in Colorado are similar, with Electric Power electric power being 34% the lead source of Industry 19% CO2 emissions at 42%, followed by transportation at 31% Transportation (Figure 2).
    [Show full text]
  • High Efficiency VCR Engine with Variable Valve Actuation and New Supercharging Technology
    AMR 2015 NETL/DOE Award No. DE-EE0005981 High Efficiency VCR Engine with Variable Valve Actuation and new Supercharging Technology June 12, 2015 Charles Mendler, ENVERA PD/PI David Yee, EATON Program Manager, PI, Supercharging Scott Brownell, EATON PI, Valvetrain This presentation does not contain any proprietary, confidential, or otherwise restricted information. ENVERA LLC Project ID Los Angeles, California ACE092 Tel. 415 381-0560 File 020408 2 Overview Timeline Barriers & Targets Vehicle-Technology Office Multi-Year Program Plan Start date1 April 11, 2013 End date2 December 31, 2017 Relevant Barriers from VT-Office Program Plan: Percent complete • Lack of effective engine controls to improve MPG Time 37% • Consumer appeal (MPG + Performance) Budget 33% Relevant Targets from VT-Office Program Plan: • Part-load brake thermal efficiency of 31% • Over 25% fuel economy improvement – SI Engines • (Future R&D: Enhanced alternative fuel capability) Budget Partners Total funding $ 2,784,127 Eaton Corporation Government $ 2,212,469 Contributing relevant advanced technology Contractor share $ 571,658 R&D as a cost-share partner Expenditure of Government funds Project Lead Year ending 12/31/14 $733,571 ENVERA LLC 1. Kick-off meeting 2. Includes no-cost time extension 3 Relevance Research and Development Focus Areas: Variable Compression Ratio (VCR) Approx. 8.5:1 to 18:1 Variable Valve Actuation (VVA) Atkinson cycle and Supercharging settings Advanced Supercharging High “launch” torque & low “stand-by” losses Systems integration Objectives 40% better mileage than V8 powered van or pickup truck without compromising performance. GMC Sierra 1500 baseline. Relevance to the VT-Office Program Plan: Advanced engine controls are being developed including VCR, VVA and boosting to attain high part-load brake thermal efficiency, and exceed VT-Office Program Plan mileage targets, while concurrently providing power and torque values needed for consumer appeal.
    [Show full text]