Metascience Powered by Microsoft*

Total Page:16

File Type:pdf, Size:1020Kb

Metascience Powered by Microsoft* 9/11/19 Metascience Powered by Microsoft* 1 9/11/19 Science is a Process This figure from www.sciencebuddies.org is the first thing that popus up in a google search for scientific method’ Science is done by People “Smiling Group Of Scientists In Modern Laboratory With Female Leader, Mix Race Team Of Scientific Researchers In Lab Wearing White Coats And Protective Glasses” 2 9/11/19 Science Matters https://www.pewresearch.org/fact-tank/2019/08/05/5-key-findings-about-public-trust-in-scientists-in-the-u-s/ How do we study Science? Science & Technology Information Studies Science Bibliometrics Metascience Scientometrics Infometrics Science of Science 3 9/11/19 Scientometrics: the field of The science of science (SciSci) places the measuring and analyzing the practice of science itself under the scientific literature, the impact of microscope, leading to a quantitative papers and journals, understanding of the genesis of scientific understanding scientific citations, discovery, creativity, and practice and using these such measurements developing tools and policies aimed at for policy and management accelerating scientific progress. Metascience: the use of scientific methodology to study science itself. It uses research methods to study how research is done and where improvements can be made. Metascience “provides insights into the conditions underlying creativity and the genesis of scientific discovery, with the ultimate goal of developing tools and policies that have the potential to accelerate science.” Fortunato et al. 2018, Science DATA + ANALYSIS (“big data”+ computational tools) DATA + ANALYSIS 4 9/11/19 “Scientists’ choice of research problems affects primarily their individual careers and the careers of those reliant on them. Scientists’ collective choices, however, determine the direction of scientific discovery more broadly” The sensory-evaluation team in action at UK testing lab Reading Scientific Services. Credit: RSSL Research Foci (examples) Novelty: the origin and diffusion of new ideas a–c, For research articles (24,174,022 WOS articles published between 1954 and 2014), patents (2,548,038 US patents assigned between 2002 and 2014) and software (26,900 GitHub repositories uploaded between 2011 and 2014), median citations (red curves, indexed by right y axis) increase with team size whereas the average disruption percentile (green curves, indexed by left y axis) decreases with team size. Large teams develop and small teams disrupt science and technology (Wu et al. 2019. Nature) 5 9/11/19 Scientific Careers and the factors that shape them (A) Publication record of three Nobel laureates in physics. The horizontal axis indicates the number of years after a laureate’s first publication, each circle corresponds to a research paper, and the height of the circle represents the paper’s impact, quantified by c10, the number of citations after 10 years. The highest-impact paper of a laureate is denoted with an orange circle. (B) Histogram of the occurrence of the highest-impact paper in a scientist’s sequence of publications, calculated for 10,000 scientists. The flatness of the histogram indicates that the highest-impact work can be, with the same probability, anywhere in the sequence of papers published by a scientist (49). Fig. 3 Impact in scientific careers. How scientists work: collaboration within and across disciplines Fig. 4 Size and impact of teams. Mean team size has been steadily growing over the past century. The red dashed curves represent the mean number of coauthors over all papers; the black curves consider just those papers receiving more citations than the average for the field. Black curves are systematically above the dashed red ones, meaning that high-impact work is more likely to be produced by large teams than by small ones. Each panel corresponds to one of the three main disciplinary groups of papers indexed in the WoS: (A) science and engineering, (B) social sciences, and (C) arts and humanities. 6 9/11/19 Measuring the impact of scientific productivity Fig. 5 Universality in citation dynamics. (B) Citation history of four papers published in Physical Review in 1964, selected for their distinct dynamics, displaying a “jump-decay” pattern (blue), experiencing a delayed peak (magenta), attracting a constant number of citations over time (green), or acquiring an increasing number of citations each year (red). Fig. 5 Universality in citation dynamics. (A) The citation distributions of papers published in the same discipline and year lie on the same curve for most disciplines, if the raw number of citations c of each paper is divided by the average number of citations c0 over all papers in that discipline and year. The dashed line is a lognormal fit. [Adapted from (69)] Novelty: the origin and diffusion of new ideas Measuring the impact of scientific productivity Scientific Careers and the factors that shape them How scientists work: collaboration within and across disciplines 7.
Recommended publications
  • Scientometrics1
    Scientometrics1 Loet Leydesdorff a and Staša Milojević b a Amsterdam School of Communication Research (ASCoR), University of Amsterdam, Kloveniersburgwal 48, 1012 CX Amsterdam, The Netherlands; [email protected] b School of Informatics and Computing, Indiana University, Bloomington 47405-1901, United States; [email protected]. Abstract The paper provides an overview of the field of scientometrics, that is: the study of science, technology, and innovation from a quantitative perspective. We cover major historical milestones in the development of this specialism from the 1960s to today and discuss its relationship with the sociology of scientific knowledge, the library and information sciences, and science policy issues such as indicator development. The disciplinary organization of scientometrics is analyzed both conceptually and empirically. A state-of-the-art review of five major research threads is provided. Keywords: scientometrics, bibliometrics, citation, indicator, impact, library, science policy, research management, sociology of science, science studies, mapping, visualization Cross References: Communication: Electronic Networks and Publications; History of Science; Libraries; Networks, Social; Merton, Robert K.; Peer Review and Quality Control; Science and Technology, Social Study of: Computers and Information Technology; Science and Technology Studies: Experts and Expertise; Social network algorithms and software; Statistical Models for Social Networks, Overview; 1 Forthcoming in: Micheal Lynch (Editor), International
    [Show full text]
  • Oecd Work on S&T Indicators and the Interest In
    OECD WORK ON S&T INDICATORS AND THE INTEREST IN SCIENTOMETRICS OECD – Experts dialogue, 25 March 2014 Fernando Galindo-Rueda Economic Analysis and Statistics Division OECD Directorate for Science, Technology and Industry The OECD context • International organisation. – “Better policies for better lives”. – 34 member countries, broader engagement – Secretary General, Council of Ambassadors, Secretariat and thematic Committees and working parties which oversee work • Types of outputs – Policy recommendations – Standards, rules, … – Policy relevant evidence and statistics, often co- produced with countries’ authorities – Policy analysis, qualitative and quantitative Background on S&T indicator work • Work on S&T indicators dating back to 1960s – Formalisation of guidelines on measuring R&D efforts (expenditure and personnel): • The Frascati Manual, 1963 – being revised for 6th time • Collection and dissemination of data: – Extended to work on human resources for S&T, technology balance of payments, innovation in firms, patents, … • Measurement work at OECD focused on data sources “controlled” by public authorities participating in OECD fora – Brief interest in mid 1990s in bibliometrics – “methods” working paper but no guidelines. Scientometrics at OECD • Since 2010, increasing use of bibliometric indicators in OECD flagship publications on S&T – For example, see hyperlinks in agenda. • Microdata-based approach promoted in 2010 OECD Innovation Strategy. – Promotion of microdata use and linking within countries. Approach of cross-country co-ordinated analyses. – In-house use of microdata under license (Elsevier) within OECD Micro-Data Lab. • As part of building a broader, linked microdata infrastructure. • OECD MDL brings together different administrative and public data sources. • Collaborations with external organisations – NISTEP, Scimago, MCT-Brazil and JSTA.
    [Show full text]
  • Scientometric Analysis of Research in Energy Efficiency and Citizen
    sustainability Article Scientometric Analysis of Research in Energy Efficiency and Citizen Science through Projects and Publications Daniela De Filippo 1,2,* , María Luisa Lascurain 1,2, Andres Pandiella-Dominique 1 and Elias Sanz-Casado 1,2 1 INAECU Research Institute for Higher Education and Science (UC3M-UAM), Calle Madrid 126, 28903 Getafe, Spain; [email protected] (M.L.L.); [email protected] (A.P.-D.); [email protected] (E.S.-C.) 2 Department of Library and Information Sciences, Carlos III University of Madrid, Calle Madrid 126, 28903 Getafe, Spain * Correspondence: dfi[email protected] Received: 20 March 2020; Accepted: 23 June 2020; Published: 24 June 2020 Abstract: Energy efficiency is part of the commitment to environmental sustainability made by the organizations that promote and finance research and by the researchers that make this field their subject of study. Although there is growing interest in the subject, it is worth asking whether the research has been approached considering citizens’ needs or citizens’ participation. The main objective of this study is to analyse whether energy efficiency research has adopted a citizen science perspective. Using scientometric methods, the SCOPUS and CORDIS databases were consulted and a document search strategy was developed to gather information on publications and projects. The analysis revealed that, out of 265 projects under the Seventh Framework Programme on Energy Efficiency, only seven (3%) were related to citizen science. Although there is a large volume of publications on energy efficiency (over 200,000) and a considerable number of publications on citizen science (>30,000 articles), only 336 documents were identified that deal with both topics.
    [Show full text]
  • An Analysis of Citizen Science Based Research: Usage and Publication Patterns
    RESEARCH ARTICLE An Analysis of Citizen Science Based Research: Usage and Publication Patterns Ria Follett*, Vladimir Strezov Department of Environmental Sciences, Macquarie University, North Ryde, NSW, Australia * [email protected] Abstract The use of citizen science for scientific discovery relies on the acceptance of this method by the scientific community. Using the Web of Science and Scopus as the source of peer reviewed articles, an analysis of all published articles on “citizen science” confirmed its growth, and found that significant research on methodology and validation techniques pre- ceded the rapid rise of the publications on research outcomes based on citizen science methods. Of considerable interest is the growing number of studies relying on the re-use of collected datasets from past citizen science research projects, which used data from either individual or multiple citizen science projects for new discoveries, such as for climate change research. The extent to which citizen science has been used in scientific discovery OPEN ACCESS demonstrates its importance as a research approach. This broad analysis of peer reviewed Citation: Follett R, Strezov V (2015) An Analysis of papers on citizen science, that included not only citizen science projects, but the theory and Citizen Science Based Research: Usage and methods developed to underpin the research, highlights the breadth and depth of the citizen Publication Patterns. PLoS ONE 10(11): e0143687. science approach and encourages cross-fertilization between the different disciplines. doi:10.1371/journal.pone.0143687 Editor: Stefano Goffredo, University of Bologna, ITALY Received: March 5, 2015 Introduction Accepted: November 9, 2015 Public involvement in scientific discovery can be tracked through recorded history [1] with the Published: November 23, 2015 earliest records dating back 1,910 years for locust outbreaks in China [2].
    [Show full text]
  • PDF Download Starting with Science Strategies for Introducing Young Children to Inquiry 1St Edition Ebook
    STARTING WITH SCIENCE STRATEGIES FOR INTRODUCING YOUNG CHILDREN TO INQUIRY 1ST EDITION PDF, EPUB, EBOOK Marcia Talhelm Edson | 9781571108074 | | | | | Starting with Science Strategies for Introducing Young Children to Inquiry 1st edition PDF Book The presentation of the material is as good as the material utilizing star trek analogies, ancient wisdom and literature and so much more. Using Multivariate Statistics. Michael Gramling examines the impact of policy on practice in early childhood education. Part of a series on. Schauble and colleagues , for example, found that fifth grade students designed better experiments after instruction about the purpose of experimentation. For example, some suggest that learning about NoS enables children to understand the tentative and developmental NoS and science as a human activity, which makes science more interesting for children to learn Abd-El-Khalick a ; Driver et al. Research on teaching and learning of nature of science. The authors begin with theory in a cultural context as a foundation. What makes professional development effective? Frequently, the term NoS is utilised when considering matters about science. This book is a documentary account of a young intern who worked in the Reggio system in Italy and how she brought this pedagogy home to her school in St. Taking Science to School answers such questions as:. The content of the inquiries in science in the professional development programme was based on the different strands of the primary science curriculum, namely Living Things, Energy and Forces, Materials and Environmental Awareness and Care DES Exit interview. Begin to address the necessity of understanding other usually peer positions before they can discuss or comment on those positions.
    [Show full text]
  • Women in Science and Higher Education: a Bibliometric Approach
    Women in science and higher education: A bibliometric approach Tahereh Dehdarirad ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB.
    [Show full text]
  • Ois Laruelle
    Frans;ois Laruelle --- and collaborators --- Dictio nary of Non-Philosophy -- translated by Taylor Adkins I Univocal -- Fran\:ois Laruelle ------ and collaborators -----­ To ny Brachet. Gilbert Kieffer, Laurent Leroy, Da niel Nicolet, Anne-Fran�oise Schmid, Serge Valdinoci Dictio nary of Non-Philosophy translated by Taylor Adkins I Univocal ---- DJCT!ONNAIREDE LA NON-PHILOSOPH!Eby Fran�ois Laruelle ©Editions Kime, 1998 Translated by Taylor Adkins as Dictionary ofNon-Philosophy First Edition Minneapolis©2013, Univocal Publishing Published by Univocal 123 North 3rd Street, #202 Minneapolis, MN 55401 No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including phorocopying, recording or any other information storage or retrieval system, without prior permission in writing from the publisher. Thanks to John David Ebert and Ben Woodard Designed & Printed by Jason Wagner Distributed by the University of Minnesota Press ISBN 9781937561130 Library of Congress Control Number 2013939530 TA BLE OF CONTENTS Translator's Introduction .......................................... .....................9 Preface to the English Language Edition...................... ................. 15 Preface .........................................................................................19 Theory of the Non-Philosophical Dictionary....................... .......23 Auto-position .......................... .....................................................39 Being-in-One (Being-according-to-the-One)...............................
    [Show full text]
  • Empiricism, Stances, and the Problem of Voluntarism
    Swarthmore College Works Philosophy Faculty Works Philosophy 1-1-2011 Empiricism, Stances, And The Problem Of Voluntarism Peter Baumann Swarthmore College, [email protected] Follow this and additional works at: https://works.swarthmore.edu/fac-philosophy Part of the Philosophy Commons Let us know how access to these works benefits ouy Recommended Citation Peter Baumann. (2011). "Empiricism, Stances, And The Problem Of Voluntarism". Synthese. Volume 178, Issue 1. 27-36. DOI: 10.1007/s11229-009-9519-7 https://works.swarthmore.edu/fac-philosophy/13 This work is brought to you for free by Swarthmore College Libraries' Works. It has been accepted for inclusion in Philosophy Faculty Works by an authorized administrator of Works. For more information, please contact [email protected]. Empiricism, Stances and the Problem of Voluntarism Peter Baumann Synthese 178, 2011, 207-224 Empiricism can be very roughly characterized as the view that our knowledge about the world is based on sensory experience. Our knowledge about the world is "based" on sensory experience in the sense that we could not know what we know without relying on sense experience. This leaves open the possibility that sense experience is only necessary but not sufficient for the knowledge based upon it1-as long as the non-empirical elements are not themselves sufficient for the relevant piece of knowledge.2 The basing relation is not just a genetic one but also a justificatory one: Sense experience does not only lead to beliefs which happen to count as knowledge but also qualifies them as knowledge. In his important book The Empirical Stance Bas van Fraassen characterizes traditional empiricism at one point in a more negative way-as involving the rejection of "metaphysical" explanations which proceed by postulating the existence of something not 1 "But although all our cognition commences with experience, yet it does not on that account all arise from experience." (Kant, CpR, B1).
    [Show full text]
  • Reply by Jean Bricmont and Alan Sokal
    Reply to Turnbull Krips Dusek and Fuller For Metascience Jean Bricmont Institut de Physique Theorique Universite Catholique de Louvain chemin du Cyclotron B LouvainlaNeuve BELGIUM Internet BRICMONTFYMAUCLACBE Telephone Fax Alan Sokal Department of Physics New York University Washington Place New York NY USA Internet SOKALNYUEDU Telephone Fax February Biographical Note Jean Bricmont is professor of theoretical physics at the University of Louvain Belgium Alan Sokal is professor of physics at New York University Introduction 1 In the preface to the second edition of Intel lectual Impostures we wrote that the criticisms of our b o ok can b e divided roughly into four types A very few reviewers discuss what we wrote and try to refute it Other commentators raise ob jections often p erfectly valid ones to ideas that are not in fact ours and that we may have expressly rejected in the b o ok while attributing them to us implicitly or explicitly Yet a third group of critics pretend to discuss our b o ok while actually doing something completely dierent for example attacking our p ersonalities our alleged motivations for writing the b o ok or the failings of scientists in general And nally some reviewers agree with us but think that we do not go far enough I I p xv The comments by Turnbull and Dusek fall squarely into the second and third cat egories apart from o ccasional brief excursions into category while Krips and Fuller oer a mixture of the rst and second categories It would b e a hop eless task to address al l the issues
    [Show full text]
  • Scientometrics: the Project for a Science of Science Transformed Into an Industry of Measurements
    scientiæ zudia, São Paulo, v. 12, special issue, p. 147-59, 2014 Scientometrics: the project for a science of science transformed into an industry of measurements Renato Rodrigues Kinouchi abstract This paper discusses the intellectual justification of scientometrics through the claim that it is part of the quest for a quantitative science of science. Initially, I will make a brief description of scientometrics’ his- torical background. Next, I will explain that those disciplines that have been satisfactorily mathematized always contain two distinct basic components: an axiomatic, defining the operations that can be realized with the available data, and an interpretation of their meaning. Counting papers and citations is a way to collect statistical data about scientific activities, and therefore the axiomatic basis of scientometrics comes from statistics. Regarding the interpretation of scientometrics, I will argue that the meanings attributed to their key concepts are usually borrowed from economics. Then I discuss how the promise of a science of science becomes a too well adjusted historical narrative that apparently justifies the economic con- cerns of governments and private corporations. Keywords ● Scientometrics. Citation analysis. Quantitative methods. Commoditization. The significance of science and technology for economic development is currently taken for granted as an indisputable premise of any science policy. A wide range of authors from the nineteenth century already had emphasized the connections between sci- ence, technology,
    [Show full text]
  • Are Female Scientists Less Inclined to Publish Alone? the Gender Solo Research Gap
    Professor Marek Kwiek Institute for Advanced Studies in Social Sciences and Humanities, Director UNESCO Chair in Institutional Research and Higher Education Policy Adam Mickiewicz University of Poznan, Poland [email protected] ORCID: orcid.org/0000-0001-7953-1063 Dr. Wojciech Roszka Poznan University of Economics and Business, Poznan, Poland [email protected] ORCID: orcid.org/0000-0003-4383-3259 Are Female Scientists Less Inclined to Publish Alone? The Gender Solo Research Gap Abstract Solo research is a result of individual authorship decisions which accumulate over time, accompanying academic careers. This research is the first to comprehensively study the “gender solo research gap” among all internationally visible scientists within a whole national higher education system: we examine the gap through “individual publication portfolios” constructed for each Polish university professor with at least a doctoral degree and internationally visible in the decade of 2009-2018. Solo research is a special case of academic publishing where scientists compete individually, sending clear signals about their research ability. Solo research has been expected to disappear for half a century, but it continues to exist. Our focus is on how male and female scientists of various biological ages, age groups, academic positions, and institutional types make use of, and benefit from, solo publishing. We tested the hypothesis that male and female scientists differ in their use of solo publishing, and we termed this difference “the gender solo research gap”. The highest share of solo research for both genders is noted for middle-aged scientists working as associate professors rather than for young scientists as in previous studies.
    [Show full text]
  • Finance for the Environment: a Scientometrics Analysis of Green Finance
    mathematics Article Finance for the Environment: A Scientometrics Analysis of Green Finance Rui Cai and Jianluan Guo * School of Business, Central University of Finance and Economics, Beijing 100081, China; [email protected] * Correspondence: [email protected] Abstract: To protect environmental sustainability, organizations are moving their focus towards greening the business process. Similarly to any other business function, financial management has also turned to environmentally friendly activities. Green finance is a new financial pattern that integrates environmental protection and economic profits. This paper analyses the publications on green finance, and their intellectual structure and networking. The bibliometric data on green finance research have been extracted from the Scopus database. This study finds the most productive countries, universities, authors, journals, and most prolific publications in green finance, through examining the published works. Also, the study visualizes the intellectual network by mapping bibliographic coupling (BC) and co-citation. The study’s essential contribution is the analysis of green finance developments and trajectories that can help scholars and practitioners to appreciate the trend and future studies. Keywords: green finance; environmental finance; systematic review; future research; bibliometric analysis Citation: Cai, R.; Guo, J. Finance for the Environment: A Scientometrics 1. Introduction Analysis of Green Finance. After the agrarian and industrial revolution, the negative impact of humans on the Mathematics 2021, 9, 1537. https:// environment grew, specifically due to the incredible speed and scope of these new tech- doi.org/10.3390/math9131537 nologies, and the depletion of natural materials and energy [1,2]. Therefore, a concept such as Anthropocene was evolved to depict the state of human-dominated ecosystems.
    [Show full text]