Lectures on Random Matrix Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Workshop on Applied Matrix Positivity International Centre for Mathematical Sciences 19Th – 23Rd July 2021
Workshop on Applied Matrix Positivity International Centre for Mathematical Sciences 19th { 23rd July 2021 Timetable All times are in BST (GMT +1). 0900 1000 1100 1600 1700 1800 Monday Berg Bhatia Khare Charina Schilling Skalski Tuesday K¨ostler Franz Fagnola Apanasovich Emery Cuevas Wednesday Jain Choudhury Vishwakarma Pascoe Pereira - Thursday Sharma Vashisht Mishra - St¨ockler Knese Titles and abstracts 1. New classes of multivariate covariance functions Tatiyana Apanasovich (George Washington University, USA) The class which is refereed to as the Cauchy family allows for the simultaneous modeling of the long memory dependence and correlation at short and intermediate lags. We introduce a valid parametric family of cross-covariance functions for multivariate spatial random fields where each component has a covariance function from a Cauchy family. We present the conditions on the parameter space that result in valid models with varying degrees of complexity. Practical implementations, including reparameterizations to reflect the conditions on the parameter space will be discussed. We show results of various Monte Carlo simulation experiments to explore the performances of our approach in terms of estimation and cokriging. The application of the proposed multivariate Cauchy model is illustrated on a dataset from the field of Satellite Oceanography. 1 2. A unified view of covariance functions through Gelfand pairs Christian Berg (University of Copenhagen) In Geostatistics one examines measurements depending on the location on the earth and on time. This leads to Random Fields of stochastic variables Z(ξ; u) indexed by (ξ; u) 2 2 belonging to S × R, where S { the 2-dimensional unit sphere { is a model for the earth, and R is a model for time. -
Doubling Algorithms with Permuted Lagrangian Graph Bases
DOUBLING ALGORITHMS WITH PERMUTED LAGRANGIAN GRAPH BASES VOLKER MEHRMANN∗ AND FEDERICO POLONI† Abstract. We derive a new representation of Lagrangian subspaces in the form h I i Im ΠT , X where Π is a symplectic matrix which is the product of a permutation matrix and a real orthogonal diagonal matrix, and X satisfies 1 if i = j, |Xij | ≤ √ 2 if i 6= j. This representation allows to limit element growth in the context of doubling algorithms for the computation of Lagrangian subspaces and the solution of Riccati equations. It is shown that a simple doubling algorithm using this representation can reach full machine accuracy on a wide range of problems, obtaining invariant subspaces of the same quality as those computed by the state-of-the-art algorithms based on orthogonal transformations. The same idea carries over to representations of arbitrary subspaces and can be used for other types of structured pencils. Key words. Lagrangian subspace, optimal control, structure-preserving doubling algorithm, symplectic matrix, Hamiltonian matrix, matrix pencil, graph subspace AMS subject classifications. 65F30, 49N10 1. Introduction. A Lagrangian subspace U is an n-dimensional subspace of C2n such that u∗Jv = 0 for each u, v ∈ U. Here u∗ denotes the conjugate transpose of u, and the transpose of u in the real case, and we set 0 I J = . −I 0 The computation of Lagrangian invariant subspaces of Hamiltonian matrices of the form FG H = H −F ∗ with H = H∗,G = G∗, satisfying (HJ)∗ = HJ, (as well as symplectic matrices S, satisfying S∗JS = J), is an important task in many optimal control problems [16, 25, 31, 36]. -
2.2 Kernel and Range of a Linear Transformation
2.2 Kernel and Range of a Linear Transformation Performance Criteria: 2. (c) Determine whether a given vector is in the kernel or range of a linear trans- formation. Describe the kernel and range of a linear transformation. (d) Determine whether a transformation is one-to-one; determine whether a transformation is onto. When working with transformations T : Rm → Rn in Math 341, you found that any linear transformation can be represented by multiplication by a matrix. At some point after that you were introduced to the concepts of the null space and column space of a matrix. In this section we present the analogous ideas for general vector spaces. Definition 2.4: Let V and W be vector spaces, and let T : V → W be a transformation. We will call V the domain of T , and W is the codomain of T . Definition 2.5: Let V and W be vector spaces, and let T : V → W be a linear transformation. • The set of all vectors v ∈ V for which T v = 0 is a subspace of V . It is called the kernel of T , And we will denote it by ker(T ). • The set of all vectors w ∈ W such that w = T v for some v ∈ V is called the range of T . It is a subspace of W , and is denoted ran(T ). It is worth making a few comments about the above: • The kernel and range “belong to” the transformation, not the vector spaces V and W . If we had another linear transformation S : V → W , it would most likely have a different kernel and range. -
23. Kernel, Rank, Range
23. Kernel, Rank, Range We now study linear transformations in more detail. First, we establish some important vocabulary. The range of a linear transformation f : V ! W is the set of vectors the linear transformation maps to. This set is also often called the image of f, written ran(f) = Im(f) = L(V ) = fL(v)jv 2 V g ⊂ W: The domain of a linear transformation is often called the pre-image of f. We can also talk about the pre-image of any subset of vectors U 2 W : L−1(U) = fv 2 V jL(v) 2 Ug ⊂ V: A linear transformation f is one-to-one if for any x 6= y 2 V , f(x) 6= f(y). In other words, different vector in V always map to different vectors in W . One-to-one transformations are also known as injective transformations. Notice that injectivity is a condition on the pre-image of f. A linear transformation f is onto if for every w 2 W , there exists an x 2 V such that f(x) = w. In other words, every vector in W is the image of some vector in V . An onto transformation is also known as an surjective transformation. Notice that surjectivity is a condition on the image of f. 1 Suppose L : V ! W is not injective. Then we can find v1 6= v2 such that Lv1 = Lv2. Then v1 − v2 6= 0, but L(v1 − v2) = 0: Definition Let L : V ! W be a linear transformation. The set of all vectors v such that Lv = 0W is called the kernel of L: ker L = fv 2 V jLv = 0g: 1 The notions of one-to-one and onto can be generalized to arbitrary functions on sets. -
On the Range-Kernel Orthogonality of Elementary Operators
140 (2015) MATHEMATICA BOHEMICA No. 3, 261–269 ON THE RANGE-KERNEL ORTHOGONALITY OF ELEMENTARY OPERATORS Said Bouali, Kénitra, Youssef Bouhafsi, Rabat (Received January 16, 2013) Abstract. Let L(H) denote the algebra of operators on a complex infinite dimensional Hilbert space H. For A, B ∈ L(H), the generalized derivation δA,B and the elementary operator ∆A,B are defined by δA,B(X) = AX − XB and ∆A,B(X) = AXB − X for all X ∈ L(H). In this paper, we exhibit pairs (A, B) of operators such that the range-kernel orthogonality of δA,B holds for the usual operator norm. We generalize some recent results. We also establish some theorems on the orthogonality of the range and the kernel of ∆A,B with respect to the wider class of unitarily invariant norms on L(H). Keywords: derivation; elementary operator; orthogonality; unitarily invariant norm; cyclic subnormal operator; Fuglede-Putnam property MSC 2010 : 47A30, 47A63, 47B15, 47B20, 47B47, 47B10 1. Introduction Let H be a complex infinite dimensional Hilbert space, and let L(H) denote the algebra of all bounded linear operators acting on H into itself. Given A, B ∈ L(H), we define the generalized derivation δA,B : L(H) → L(H) by δA,B(X)= AX − XB, and the elementary operator ∆A,B : L(H) → L(H) by ∆A,B(X)= AXB − X. Let δA,A = δA and ∆A,A = ∆A. In [1], Anderson shows that if A is normal and commutes with T , then for all X ∈ L(H) (1.1) kδA(X)+ T k > kT k, where k·k is the usual operator norm. -
Structure-Preserving Flows of Symplectic Matrix Pairs
STRUCTURE-PRESERVING FLOWS OF SYMPLECTIC MATRIX PAIRS YUEH-CHENG KUO∗, WEN-WEI LINy , AND SHIH-FENG SHIEHz Abstract. We construct a nonlinear differential equation of matrix pairs (M(t); L(t)) that are invariant (Structure-Preserving Property) in the class of symplectic matrix pairs X12 0 IX11 (M; L) = S2; S1 X = [Xij ]1≤i;j≤2 is Hermitian ; X22 I 0 X21 where S1 and S2 are two fixed symplectic matrices. Furthermore, its solution also preserves de- flating subspaces on the whole orbit (Eigenvector-Preserving Property). Such a flow is called a structure-preserving flow and is governed by a Riccati differential equation (RDE) of the form > > W_ (t) = [−W (t);I]H [I;W (t) ] , W (0) = W0, for some suitable Hamiltonian matrix H . We then utilize the Grassmann manifolds to extend the domain of the structure-preserving flow to the whole R except some isolated points. On the other hand, the Structure-Preserving Doubling Algorithm (SDA) is an efficient numerical method for solving algebraic Riccati equations and nonlinear matrix equations. In conjunction with the structure-preserving flow, we consider two special classes of sym- plectic pairs: S1 = S2 = I2n and S1 = J , S2 = −I2n as well as the associated algorithms SDA-1 k−1 and SDA-2. It is shown that at t = 2 ; k 2 Z this flow passes through the iterates generated by SDA-1 and SDA-2, respectively. Therefore, the SDA and its corresponding structure-preserving flow have identical asymptotic behaviors. Taking advantage of the special structure and properties of the Hamiltonian matrix, we apply a symplectically similarity transformation to reduce H to a Hamiltonian Jordan canonical form J. -
Low-Level Image Processing with the Structure Multivector
Low-Level Image Processing with the Structure Multivector Michael Felsberg Bericht Nr. 0202 Institut f¨ur Informatik und Praktische Mathematik der Christian-Albrechts-Universitat¨ zu Kiel Olshausenstr. 40 D – 24098 Kiel e-mail: [email protected] 12. Marz¨ 2002 Dieser Bericht enthalt¨ die Dissertation des Verfassers 1. Gutachter Prof. G. Sommer (Kiel) 2. Gutachter Prof. U. Heute (Kiel) 3. Gutachter Prof. J. J. Koenderink (Utrecht) Datum der mundlichen¨ Prufung:¨ 12.2.2002 To Regina ABSTRACT The present thesis deals with two-dimensional signal processing for computer vi- sion. The main topic is the development of a sophisticated generalization of the one-dimensional analytic signal to two dimensions. Motivated by the fundamental property of the latter, the invariance – equivariance constraint, and by its relation to complex analysis and potential theory, a two-dimensional approach is derived. This method is called the monogenic signal and it is based on the Riesz transform instead of the Hilbert transform. By means of this linear approach it is possible to estimate the local orientation and the local phase of signals which are projections of one-dimensional functions to two dimensions. For general two-dimensional signals, however, the monogenic signal has to be further extended, yielding the structure multivector. The latter approach combines the ideas of the structure tensor and the quaternionic analytic signal. A rich feature set can be extracted from the structure multivector, which contains measures for local amplitudes, the local anisotropy, the local orientation, and two local phases. Both, the monogenic signal and the struc- ture multivector are combined with an appropriate scale-space approach, resulting in generalized quadrature filters. -
A Guided Tour to the Plane-Based Geometric Algebra PGA
A Guided Tour to the Plane-Based Geometric Algebra PGA Leo Dorst University of Amsterdam Version 1.15{ July 6, 2020 Planes are the primitive elements for the constructions of objects and oper- ators in Euclidean geometry. Triangulated meshes are built from them, and reflections in multiple planes are a mathematically pure way to construct Euclidean motions. A geometric algebra based on planes is therefore a natural choice to unify objects and operators for Euclidean geometry. The usual claims of `com- pleteness' of the GA approach leads us to hope that it might contain, in a single framework, all representations ever designed for Euclidean geometry - including normal vectors, directions as points at infinity, Pl¨ucker coordinates for lines, quaternions as 3D rotations around the origin, and dual quaternions for rigid body motions; and even spinors. This text provides a guided tour to this algebra of planes PGA. It indeed shows how all such computationally efficient methods are incorporated and related. We will see how the PGA elements naturally group into blocks of four coordinates in an implementation, and how this more complete under- standing of the embedding suggests some handy choices to avoid extraneous computations. In the unified PGA framework, one never switches between efficient representations for subtasks, and this obviously saves any time spent on data conversions. Relative to other treatments of PGA, this text is rather light on the mathematics. Where you see careful derivations, they involve the aspects of orientation and magnitude. These features have been neglected by authors focussing on the mathematical beauty of the projective nature of the algebra. -
The Kernel of a Linear Transformation Is a Vector Subspace
The kernel of a linear transformation is a vector subspace. Given two vector spaces V and W and a linear transformation L : V ! W we define a set: Ker(L) = f~v 2 V j L(~v) = ~0g = L−1(f~0g) which we call the kernel of L. (some people call this the nullspace of L). Theorem As defined above, the set Ker(L) is a subspace of V , in particular it is a vector space. Proof Sketch We check the three conditions 1 Because we know L(~0) = ~0 we know ~0 2 Ker(L). 2 Let ~v1; ~v2 2 Ker(L) then we know L(~v1 + ~v2) = L(~v1) + L(~v2) = ~0 + ~0 = ~0 and so ~v1 + ~v2 2 Ker(L). 3 Let ~v 2 Ker(L) and a 2 R then L(a~v) = aL(~v) = a~0 = ~0 and so a~v 2 Ker(L). Math 3410 (University of Lethbridge) Spring 2018 1 / 7 Example - Kernels Matricies Describe and find a basis for the kernel, of the linear transformation, L, associated to 01 2 31 A = @3 2 1A 1 1 1 The kernel is precisely the set of vectors (x; y; z) such that L((x; y; z)) = (0; 0; 0), so 01 2 31 0x1 001 @3 2 1A @yA = @0A 1 1 1 z 0 but this is precisely the solutions to the system of equations given by A! So we find a basis by solving the system! Theorem If A is any matrix, then Ker(A), or equivalently Ker(L), where L is the associated linear transformation, is precisely the solutions ~x to the system A~x = ~0 This is immediate from the definition given our understanding of how to associate a system of equations to M~x = ~0: Math 3410 (University of Lethbridge) Spring 2018 2 / 7 The Kernel and Injectivity Recall that a function L : V ! W is injective if 8~v1; ~v2 2 V ; ((L(~v1) = L(~v2)) ) (~v1 = ~v2)) Theorem A linear transformation L : V ! W is injective if and only if Ker(L) = f~0g. -
Linear Transformations on Matrices
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 198, 1974 LINEAR TRANSFORMATIONSON MATRICES BY D. I. DJOKOVICO) ABSTRACT. The real orthogonal group 0(n), the unitary group U(n) and the symplec- tic group Sp (n) are embedded in a standard way in the real vector space of n x n real, complex and quaternionic matrices, respectively. Let F be a nonsingular real linear transformation of the ambient space of matrices such that F(G) C G where G is one of the groups mentioned above. Then we show that either F(x) ■ ao(x)b or F(x) = ao(x')b where a, b e G are fixed, x* is the transpose conjugate of the matrix x and o is an automorphism of reals, complexes and quaternions, respectively. 1. Introduction. In his survey paper [4], M. Marcus has stated seven conjec- tures. In this paper we shall study the last two of these conjectures. Let D be one of the following real division algebras R (the reals), C (the complex numbers) or H (the quaternions). As usual we assume that R C C C H. We denote by M„(D) the real algebra of all n X n matrices over D. If £ G D we denote by Ï its conjugate in D. Let A be the automorphism group of the real algebra D. If D = R then A is trivial. If D = C then A is cyclic of order 2 with conjugation as the only nontrivial automorphism. If D = H then the conjugation is not an isomorphism but an anti-isomorphism of H. -
The Sturm-Liouville Problem and the Polar Representation Theorem
THE STURM-LIOUVILLE PROBLEM AND THE POLAR REPRESENTATION THEOREM JORGE REZENDE Grupo de Física-Matemática da Universidade de Lisboa Av. Prof. Gama Pinto 2, 1649-003 Lisboa, PORTUGAL and Departamento de Matemática, Faculdade de Ciências da Universidade de Lisboa e-mail: [email protected] Dedicated to the memory of Professor Ruy Luís Gomes Abstract: The polar representation theorem for the n-dimensional time-dependent linear Hamiltonian system Q˙ = BQ + CP , P˙ = −AQ − B∗P , with continuous coefficients, states that, given two isotropic solu- tions (Q1,P1) and (Q2,P2), with the identity matrix as Wronskian, the formula Q2 = r cos ϕ, Q1 = r sin ϕ, holds, where r and ϕ are continuous matrices, det r =6 0 and ϕ is symmetric. In this article we use the monotonicity properties of the matrix ϕ arXiv:1006.5718v1 [math.CA] 29 Jun 2010 eigenvalues in order to obtain results on the Sturm-Liouville prob- lem. AMS Subj. Classification: 34B24, 34C10, 34A30 Key words: Sturm-Liouville theory, Hamiltonian systems, polar representation. 1. Introduction Let n = 1, 2,.... In this article, (., .) denotes the natural inner 1 product in Rn. For x ∈ Rn one writes x2 =(x, x), |x| =(x, x) 2 . If ∗ M is a real matrix, we shall denote M its transpose. Mjk denotes the matrix entry located in row j and column k. In is the identity n × n matrix. Mjk can be a matrix. For example, M can have the four blocks M11, M12, M21, M22. In a case like this one, if M12 = M21 =0, we write M = diag (M11, M22). -
DECOMPOSITION of SYMPLECTIC MATRICES INTO PRODUCTS of SYMPLECTIC UNIPOTENT MATRICES of INDEX 2∗ 1. Introduction. Decomposition
Electronic Journal of Linear Algebra, ISSN 1081-3810 A publication of the International Linear Algebra Society Volume 35, pp. 497-502, November 2019. DECOMPOSITION OF SYMPLECTIC MATRICES INTO PRODUCTS OF SYMPLECTIC UNIPOTENT MATRICES OF INDEX 2∗ XIN HOUy , ZHENGYI XIAOz , YAJING HAOz , AND QI YUANz Abstract. In this article, it is proved that every symplectic matrix can be decomposed into a product of three symplectic 0 I unipotent matrices of index 2, i.e., every complex matrix A satisfying AT JA = J with J = n is a product of three −In 0 T 2 matrices Bi satisfying Bi JBi = J and (Bi − I) = 0 (i = 1; 2; 3). Key words. Symplectic matrices, Product of unipotent matrices, Symplectic Jordan Canonical Form. AMS subject classifications. 15A23, 20H20. 1. Introduction. Decomposition of elements in a matrix group into products of matrices with a special nature (such as unipotent matrices, involutions and so on) is a popular topic studied by many scholars. In the n × n matrix k ring Mn(F ) over a field F , a unipotent matrix of index k refers to a matrix A satisfying (A − In) = 0. Fong and Sourour in [4] proved that every matrix in the group SLn(C) (the special linear group over complex field C) is a product of three unipotent matrices (without limitation on the index). Wang and Wu in [6] gave a further result that every matrix in the group SLn(C) is a product of four unipotent matrices of index 2. In particular, decompositions of symplectic matrices have drawn considerable attention from numerous 0 I scholars (see [1, 3]).