New Probabilistic Bounds on Eigenvalues and Eigenvectors of Random Kernel Matrices Nima Reyhani Hideitsu Hino Ricardo Vig´ario Aalto University, School of Science Waseda University Aalto University, School of Science Helsinki, Finland Tokyo, Japan Helsinki, Finand nima.reyhani@aalto.fi
[email protected] ricardo.vigario@aalto.fi Abstract et. al., 2002) and (Jia & Liao, 2009) are good examples of such procedure. Also, the Rademacher complexity, Kernel methods are successful approaches for and therefore the excess loss of the large margin clas- different machine learning problems. This sifiers can be computed using the eigenvalues of the success is mainly rooted in using feature kernel operator, see (Mendelson & Pajor, 2005) and maps and kernel matrices. Some methods references therein. Thus, it is important to know how rely on the eigenvalues/eigenvectors of the reliably the spectrum of the kernel operator can be kernel matrix, while for other methods the estimated, using a finite samples kernel matrix. spectral information can be used to esti- The importance of kernel and its spectral decomposi- mate the excess risk. An important question tion has initiated a series of studies of the concentra- remains on how close the sample eigenval- tion of the eigenvalues and eigenvectors of the kernel ues/eigenvectors are to the population val- matrix around their expected values. Under certain ues. In this paper, we improve earlier re- rate of spectral decay of the kernel integral operator, sults on concentration bounds for eigenval- (Koltchinskii, 1998) and (Koltchinksii & Gin´e,2000) ues of general kernel matrices. For distance showed that the difference between population and and inner product kernel functions, e.g.