American Cretaceous Ferns of the Genus Tempskya

Total Page:16

File Type:pdf, Size:1020Kb

American Cretaceous Ferns of the Genus Tempskya If you do not need this report after it has served your purpose, please return it to the Geological Survey, using the official mailing label at the end UNITED STATES DEPARTMENT OF THE INTERIOR Harold L. Ickes, Secretary GEOLOGICAL SURVEY W. C. Mendenhall, Director Professional Paper 186-F AMERICAN CRETACEOUS FERNS OF THE GENUS TEMPSKYA BY CHARLES B. READ AND ROLAND W. BROWN Shorter contributions to general geology, 1936 (Pages 105-131) UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1937 For sale by the Superintendent of Documents, Washington, D. C. ------ Price 15 cents CONTENTS Page Abstract._-_____-__-____-_-_--_-_-_-_-_________-__ 105 Systematic descriptions—Continued. Introduction __ _____________________________________ 105 Tempskyaceae—Continued. Page Historical account.__________________________________ 106 Tempskya sp___-________-_-____-__-__--_--_ 119 Bibliography._.__-__-_-.-____-_---________-_--______ 107 Synopsis. _________--__-_-__-___-__----_---_--_ 119 Systematic descriptions.____________________________ 108 Taxonomic position______________-_______-_--__---_- 120 Tempskyaceae.________________________________ 108 Affinities of Tempskya....----------------------- 120 Genus Tempskya Corda (emend.)____________ 108 Interrelationships of the species__________________ 122 Tempskya knowltoni Seward------_-__-----_-_ 112 Probable habit of Tempskya- ________________________ 122 Tempskya grandis Read and Brown, n. sp_____ 114 Stratigraphic significance of the Tempskyaceae- ._______ 124 Tempskya minor Read and Brown, n. sp_______ 117 Conclusions _._____________-_______-_--_----__---___ 129 Tempskya whitei Berry______________________ 119 ILLUSTRATIONS Page Page PLATE 27. Chart showing occurrence of Tempskya,---., 124 FIGURE 4. Sketch of Tempskya minor Read and Brown, 28-43. Species of the genus Tempskya.-- _______ 131 n. sp., showing the prominently dorsiven­ FIGURE 2. Sketch of a transverse section of Tempskya tral orientation of the stems in the false knowltoni Seward showing the dorsiventral trunk_ ________________________________ 108 orientation of the stems in the root mass__ 108 5. Sketches showing in diagrammatic fashion the 3. Sketch of a transversely cut face of Tempskya development of the leaf trace in Tempskya.. 109 grandis Read and Brown, n. sp., showing 6. Map showing Tempskya localities in the United the radial orientation of the dorsiventral States________--________-____-____.-_ 125 stems in the false trunk_________________ 108 AMERICAN CRETACEOUS FERNS OF THE GENUS TEMPSKYA By CHARLES B. READ and ROLAND W. BROWN ABSTRACT INTRODUCTION The Tempskyas are a group of ferns, known at present from In the annals of paleobotany the genus Tempskya remains of stems, leaf bases, and roots found in rocks of Cre­ taceous age in Europe and North America. They were first has long occupied a very speculative position. It recorded in 1824 by Stokes and Webb under the name Endo- was reported under the name Endogenites as early genites. In 1845 Corda, after examination of similar material as 1824 and elevated to its present status as the genus from Bohemia, established Tempskya as a genus, and some Tempskya in 1845, but its true nature was not realized years later the identity of Stokes and Webb's specimens became until 1911. Since then there has been some progress known. During the later part of the nineteenth century several investigators, among them Feistmantel, Velenovsky, and by way of occasional contributions tending to show Seward, had occasion to deal with the genus. Owing to the the diversification of the genus.. However, several very poor preservation of most of the specimens the investigators important issues remain to be decided. There are were not able to recognize the true nature of the materials, conflicting points of view concerning the habit and although they were admitted to be fern stems. The prevalent taxonomic position of Tempskya among the ferns. opinion was that the structure was similar to that of Protopteris. In 1911 Kidston and Gwynne-Vaughan published a study of It is the purpose of the writers of this paper to review a well-preserved Tempskya from the Ural Mountains and defi­ the genus and the various opinions that have been nitely established the fact that in Tempskya the large trunklike expressed concerning it. New material from the mass that is commonly preserved consists of an aggregate of western United States is described, some of which has stems bound together by a thick mat of roots into a false trunk. a significant bearing on the habits of the genus. Temp­ In America the first record of Tempskya was made in 1911, when Berry described Tempskya whitei from the Patapsco skya knowltoni Seward has been redescribed, not formation (Lower Cretaceous) of Maryland. In 1924 Seward because of any fault in Seward's account but because published an account of a very well preserved specimen from of the desirability of emphasizing the distinctive what is now known to be the Colorado shale (Upper Cretaceous) characters of this fossil by way of contrast in making near Harlowton, Mont. In that contribution considerable the specific differentiation of the other materials. space was devoted to an analysis of habit and affinities, and the conclusion was reached that the false trunk was subterranean, Little attempt has been made in the past to discuss obliquely ascending, and that the plant was of schizaeaceous the stratigraphic range of Tempskya. The writers affinities. have essayed to compile the facts concerning its occur­ The present paper sets forth the generic characters and, after rence hi an effort to estimate the value of the several presenting a summary of Tempskya knowltoni Seward, describes species as age indexes. Tempskya grandis, Tempskya minor, and Tempskya sp. from The assistance and encouragement of the officials of strata of Upper Cretaceous age in western Wyoming and adjacent portions of Idaho and Utah. A few observations are made the United States Geological Survey in the prepara­ on Tempskya whitei Berry. All these species conform to the tion of this report is acknowledged with pleasure. generic diagnosis based on Tempskya rossica as regards the J. B. Reeside, Jr., has been especially interested in the dorsiventral stems, the siphonosteles, the two-ranked leaves, and work and has given many valuable suggestions. The the diarch roots. All have developed the false-trunk habit. It is shown that this false trunk may be dorsiventral or radial late Dr. David White likewise cheerfully contributed in its symmetry and that this symmetry appears to be constant advice and constructive criticism. G. R. Mansfield, within a species. It is suggested that the radially arranged W. W. Rubey, and J. S. Williams, of the Geological false trunks must have stood upright and that the dorsiventral Survey, Prof. G. R. Wieland, of Yale University, and false 'trunk may have been characteristic of lianalike or cliff- Prof. S. H. Knight, of the University of Wyoming, climbing ferns, or even of partial epiphytes. False trunks of a have collected most of the new material during the similar type are not known among either modern ferns or other groups of fossil ferns. course of various geologic investigations in south­ The problem of the exact affinities of Tempskya is not solved. eastern Idaho and adjacent parts of Wyoming. Dr. Tempskya is unquestionably one of the Leptosporangiatae and R. S. Bassler has generously permitted the preparation may be related to any one of several families. A temporary of several unusually large thin sections in the labora­ family, the Tempskyaceae, is erected for the genus. tories of the United States National Museum, and The stratigraphic range of the genus appears to be from lower­ most Lower Cretaceous to Senonian. In western America it is K. J. Murata has prepared most of the excellent apparently restricted to the Colorado group. sections of the new material here illustrated. 105 106 SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY, 1936 HISTORICAL ACCOUNT In 1872 Feistmantel 7 suggested that Tempskya was The earliest record of Tempskya that the writers not a genus but rather a mode of preservation of several have been able to find is an account of Endogenites distinct types of fern stems. Protopteris sternbergii erosa given by Stokes and Webb : in 1824 in their Corda was suggested as one species that might be corre­ report on plant material collected in Tilgate Forest by lated with tempskyoid preservation. This opinion is Mantell. As the generic name indicates, the silicified very interesting and seems to have made a profound remains were regarded as monocotyledonous forms, impression on contemporary investigators, for several possibly palms. In 1832 Cotta 2 referred similar papers were soon published in support of this theory. material to Porosus marginatus and differed with Stokes Velenovsky 8 accepted this view and produced new and Webb in pronouncing the material to be portions evidence which seemed to corroborate this interpreta­ of a large fern stem. In the following year this same tion. opinion was expressed by Mantell 3 after a careful A very valuable account of the literature on Temp­ examination of the specimens that he had collected skya is given by Seward in his catalog of Wealden about 10 years before. In 1836 Fitton gave an account plants.9 Feistmantel's ideas were questioned but not of similar materials found near Hastings and referred definitely discarded. Seward's general conclusions them to Endogenites erosa. are as follows: In 1845 a noteworthy contribution was made by In Tempskya schimperi we have masses of branched diarch Unger,4 who inclined to the opinion that Endogenites fern roots associated with petiole axes, which occasionally afford evidence of branching; probably some forms of Tempskya and erosa was simply a mode of preservation of Protopteris Protopteris are very closely related, if not identical plants; but, and introduced evidence in support of this idea. so far as English specimens are concerned, there is an absence of In the same year Corda 5 published the results of his any direct proof of such organic connection between the two observations on large collections of petrifications and fossils, as Feistmantel and Velenovsky have previously suggested.
Recommended publications
  • Ferns of the Lower Jurassic from the Mecsek Mountains (Hungary): Taxonomy and Palaeoecology
    PalZ (2019) 93:151–185 https://doi.org/10.1007/s12542-018-0430-8 RESEARCH PAPER Ferns of the Lower Jurassic from the Mecsek Mountains (Hungary): taxonomy and palaeoecology Maria Barbacka1,2 · Evelyn Kustatscher3,4,5 · Emese R. Bodor6,7 Received: 7 July 2017 / Accepted: 26 July 2018 / Published online: 20 September 2018 © The Author(s) 2018 Abstract Ferns are the most diverse group in the Early Jurassic plant assemblage of the Mecsek Mountains in southern Hungary and, considering their abundance and diversity, are an important element of the flora. Five families were recognized so far from the locality; these are, in order of abundance, the Dipteridaceae (48% of collected fern remains), Matoniaceae (25%), Osmun- daceae (21%), Marattiaceae (6%) and Dicksoniaceae (three specimens). Ferns are represented by 14 taxa belonging to nine genera: Marattiopsis hoerensis, Todites princeps, Todites goeppertianus, Phlebopteris angustiloba, Phlebopteris kirchneri Barbacka and Kustatscher sp. nov., Matonia braunii, Thaumatopteris brauniana, Clathropteris meniscoides, Dictyophyl- lum nilssoni, Dictyophyllum rugosum, Cladophlebis denticulata, Cladophlebis haiburnensis, Cladophlebis roessertii, and Coniopteris sp. Ferns from the Mecsek Mts. are rarely found in association with other plants. They co-occur mostly with leaves of Nilssonia, leaflets of Sagenopteris, and rarely with other plants. The most commonly co-occurring fern species is P. kirchneri Barbacka and Kustatscher sp. nov. According to our statistical approach (PCA, Ward cluster analysis), the fern taxa cluster in four groups corresponding to their environmental preferences, determined by moisture and disturbance. Most taxa grew in monospecific thickets in disturbed areas; a few probably formed bushes in mixed assemblages, whereas one taxon, P. kirchneri, probably was a component of the understorey in a stable, developed succession of humid environments.
    [Show full text]
  • Middle Jurassic Plant Diversity and Climate in the Ordos Basin, China Yun-Feng Lia, B, *, Hongshan Wangc, David L
    ISSN 0031-0301, Paleontological Journal, 2019, Vol. 53, No. 11, pp. 1216–1235. © Pleiades Publishing, Ltd., 2019. Middle Jurassic Plant Diversity and Climate in the Ordos Basin, China Yun-Feng Lia, b, *, Hongshan Wangc, David L. Dilchera, b, d, E. Bugdaevae, Xiao Tana, b, d, Tao Lia, b, Yu-Ling Naa, b, and Chun-Lin Suna, b, ** aKey Laboratory for Evolution of Past Life and Environment in Northeast Asia, Jilin University, Changchun, Jilin, 130026 China bResearch Center of Palaeontology and Stratigraphy, Jilin University, Changchun, Jilin, 130026 China cFlorida Museum of Natural History, University of Florida, Gainesville, Florida, 32611 USA dDepartment of Earth and Atmospheric Sciences, Indiana University, Bloomington, Indiana, 47405 USA eFederal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, 690022 Russia *e-mail: [email protected] **e-mail: [email protected] Received April 3, 2018; revised November 29, 2018; accepted December 28, 2018 Abstract—The Ordos Basin is one of the largest continental sedimentary basins and it represents one major and famous production area of coal, oil and gas resources in China. The Jurassic non-marine deposits are well developed and cropped out in the basin. The Middle Jurassic Yan’an Formation is rich in coal and con- tains diverse plant remains. We recognize 40 species in 25 genera belonging to mosses, horsetails, ferns, cycadophytes, ginkgoaleans, czekanowskialeans and conifers. This flora is attributed to the early Middle Jurassic Epoch, possibly the Aalenian-Bajocian. The climate of the Ordos Basin during the Middle Jurassic was warm and humid with seasonal temperature and precipitation fluctuations.
    [Show full text]
  • A Biographical Index of British and Irish Botanists
    L Biographical Index of British and Irish Botanists. TTTEN & BOULGER, A BIOaEAPHICAL INDEX OF BKITISH AND IRISH BOTANISTS. BIOGRAPHICAL INDEX OF BRITISH AND IRISH BOTANISTS COMPILED BY JAMES BEITTEN, F.L.S. SENIOR ASSISTANT, DEPARTMENT OF BOTANY, BBITISH MUSEUM AKD G. S. BOULGEE, E.L. S., F. G. S. PROFESSOR OF BOTANY, CITY OF LONDON COLLEGE LONDON WEST, NEWMAN & CO 54 HATTON GARDEN 1893 LONDON PRINTED BY WEST, NEWMAN AND HATTON GAEDEN PEEFACE. A FEW words of explanation as to the object and scope of this Index may fitly appear as an introduction to the work. It is intended mainly as a guide to further information, and not as a bibliography or biography. We have been liberal in including all who have in any way contributed to the literature of Botany, who have made scientific collections of plants, or have otherwise assisted directly in the progress of Botany, exclusive of pure Horticulture. We have not, as a rule, included those who were merely patrons of workers, or those known only as contributing small details to a local Flora. Where known, the name is followed by the years of birth and death, which, when uncertain, are marked with a ? or c. [circa) ; or merely approximate dates of "flourishing" are given. Then follows the place and day of bu'th and death, and the place of burial ; a brief indication of social position or occupation, espe- cially in the cases of artisan botanists and of professional collectors; chief university degrees, or other titles or offices held, and dates of election to the Linnean and Eoyal Societies.
    [Show full text]
  • Devonian Plant Fossils a Window Into the Past
    EPPC 2018 Sponsors Academic Partners PROGRAM & ABSTRACTS ACKNOWLEDGMENTS Scientific Committee: Zhe-kun Zhou Angelica Feurdean Jenny McElwain, Chair Tao Su Walter Finsinger Fraser Mitchell Lutz Kunzmann Graciela Gil Romera Paddy Orr Lisa Boucher Lyudmila Shumilovskikh Geoffrey Clayton Elizabeth Wheeler Walter Finsinger Matthew Parkes Evelyn Kustatscher Eniko Magyari Colin Kelleher Niall W. Paterson Konstantinos Panagiotopoulos Benjamin Bomfleur Benjamin Dietre Convenors: Matthew Pound Fabienne Marret-Davies Marco Vecoli Ulrich Salzmann Havandanda Ombashi Charles Wellman Wolfram M. Kürschner Jiri Kvacek Reed Wicander Heather Pardoe Ruth Stockey Hartmut Jäger Christopher Cleal Dieter Uhl Ellen Stolle Jiri Kvacek Maria Barbacka José Bienvenido Diez Ferrer Borja Cascales-Miñana Hans Kerp Friðgeir Grímsson José B. Diez Patricia Ryberg Christa-Charlotte Hofmann Xin Wang Dimitrios Velitzelos Reinhard Zetter Charilaos Yiotis Peta Hayes Jean Nicolas Haas Joseph D. White Fraser Mitchell Benjamin Dietre Jennifer C. McElwain Jenny McElwain Marie-José Gaillard Paul Kenrick Furong Li Christine Strullu-Derrien Graphic and Website Design: Ralph Fyfe Chris Berry Peter Lang Irina Delusina Margaret E. Collinson Tiiu Koff Andrew C. Scott Linnean Society Award Selection Panel: Elena Severova Barry Lomax Wuu Kuang Soh Carla J. Harper Phillip Jardine Eamon haughey Michael Krings Daniela Festi Amanda Porter Gar Rothwell Keith Bennett Kamila Kwasniewska Cindy V. Looy William Fletcher Claire M. Belcher Alistair Seddon Conference Organization: Jonathan P. Wilson
    [Show full text]
  • University of Michigan University Library
    CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY UNIVERSITY OF MICHIGAN VOL. XN, No. 8, pp. 133-142 (3 pk., 1 fig.) FEBRUARY18, 1958 A NEW TEMPSKYA BY CHESTER A. ARNOLD MUSEUM OF PALEONTOLOGY UNIVERSITY OF MICHIGAN ANN ARBOR CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY Director: LEWISB. KELLUM The series of contributions from the Museum of Paleontology is a medium for the publication of papers based chiefly upon the collections in the Museum. When the number of pages issued is sufficient to make a volume, a title page and a table of contents will be sent to libraries on the mailing list, and to individuals upon request. A list of the separate papers may also be obtained. Correspondence should be directed to the Museum of Paleontology, University of Michigan, Ann Arbor, Michigan. VOLS.11-XIII. Parts of volumes may be obtained if available. VOLUMEXIV 1. An Upper Cretaceous Crab, Avitelmessus grapsoideus Rathbun, by Robert V. Kesling and Irving G. Reimann. Pages 1-15, with 4 plates. 2. A Chart Useful for Study of Ostracod Carapaces, by Robert V. Kesling. Pages 17-20, with 2 figures. 3. A New Genus and Species of Ostracod from the Middle Devonian Ludlow- ville Formation in Western New York, by Robert V. Kesling. Pages 21-26, with 1 plate. 4. A Peel Technique for Ostracod Carapaces, and Structures Revealed There- with in Hibbardia lacrimosa (Swartz and Oriel), by Robert V. Kesling. Pages 27-40, with 5 plates. 5. The Ontogeny and Ecology of Welleria aftonensis Warthin, a Middle De- vonian Ostracod from the Gravel Point Formation of Michigan, by Robert V.
    [Show full text]
  • The Thick- Ness
    BLUMEA 38 (1993) 167-172 A taxonomic study of the genus Matonia(Matoniaceae) Masahiro Kato Botanical Gardens, Faculty of Science, University of Tokyo, 3-7-1 Hakusan, Tokyo 112, Japan Summary A morphological comparison shows that Matonia consists of two species, M. foxworthyi and M. pectinata, which are distinguished by a few characters including the number of pinnae and the presence/absence of hairs on the costae. Introduction Matoniais a small genus which together withPhanerosorus, with two species (Kato & Iwatsuki, 1985), constitutes the phylogenetically and systematically isolatedfamily Matoniaceae(Andrews & Boureau, 1970; Kramer, 1990). A few species have been describedunderMatonia.Matoniapectinata was first described from the Malay Pe- ninsula Brown who established the by R. (Wallich, 1829) genus Matonia.Matonia sarmentosa was a second species, described by Baker (1887) and later transferred to the genus Phanerosorus by Copeland (1908). Matoniafoxworthyi was described from Sarawak by Copeland (1908). Matoniadiffers distinctly fromPhanerosorus in its pedate leaves with a central pinna. The species taxonomy of Matonia is not settled. Christensen & Holttum (1934) and Kramer (1990) doubted distinctness of M. pectinata and M. foxworthyi, and Parris et al. (1992) combined the two species into M. pectinata. Copeland (1908), Holttum (1968) and Tan & Tolentino (1987) regarded them as independent species. The differencesin these treatments are due to different evaluationof whetherthe vari- ation of diagnostic characters is continuous or discontinuous between the species (Christensen & Holttum, 1934). The most disputed character is the shape of pinna- in segments: they are falcate M. pectinata and only weakly so in M. foxworthyi. In revise the of the author an attempt to taxonomy Matonia, tested in the present study whether the two species are morphologically separable or not.
    [Show full text]
  • Osmunda Pulchella Sp. Nov. from the Jurassic of Sweden
    Bomfleur et al. BMC Evolutionary Biology (2015) 15:126 DOI 10.1186/s12862-015-0400-7 RESEARCH ARTICLE Open Access Osmunda pulchella sp. nov. from the Jurassic of Sweden—reconciling molecular and fossil evidence in the phylogeny of modern royal ferns (Osmundaceae) Benjamin Bomfleur1*, Guido W. Grimm1,2 and Stephen McLoughlin1 Abstract Background: The classification of royal ferns (Osmundaceae) has long remained controversial. Recent molecular phylogenies indicate that Osmunda is paraphyletic and needs to be separated into Osmundastrum and Osmunda s.str. Here, however, we describe an exquisitely preserved Jurassic Osmunda rhizome (O. pulchella sp. nov.) that combines diagnostic features of both Osmundastrum and Osmunda, calling molecular evidence for paraphyly into question. We assembled a new morphological matrix based on rhizome anatomy, and used network analyses to establish phylogenetic relationships between fossil and extant members of modern Osmundaceae. We re-analysed the original molecular data to evaluate root-placement support. Finally, we integrated morphological and molecular data-sets using the evolutionary placement algorithm. Results: Osmunda pulchella and five additional Jurassic rhizome species show anatomical character suites intermediate between Osmundastrum and Osmunda. Molecular evidence for paraphyly is ambiguous: a previously unrecognized signal from spacer sequences favours an alternative root placement that would resolve Osmunda s.l. as monophyletic. Our evolutionary placement analysis identifies fossil species as probable ancestral members of modern genera and subgenera, which accords with recent evidence from Bayesian dating. Conclusions: Osmunda pulchella is likely a precursor of the Osmundastrum lineage. The recently proposed root placement in Osmundaceae—based solely on molecular data—stems from possibly misinformative outgroup signals in rbcL and atpA genes.
    [Show full text]
  • Tempskya Mike Viney
    Tempskya Mike Viney Tempskya sp. Cretaceous Chippy Creek, Idaho Introduction Tempskyaceae are an extinct family of Mesozoic ferns represented by the single genus Tempskya (Tidwell, 2002, p. 153). Tempskya occurs as the silicified false trunk of a Cretaceous aged tree fern. Tempskya is referred to as a false trunk because internally it is composed of numerous small branching stems and petioles embedded in a mat of adventitious roots (Brown, 1936, p. 48). The ropelike mass of the false trunk is often club-shaped, straight or conical when found intact. The mass of intertwined roots gives the exterior a rope or cable-like appearance, see Figures 1 and 2. The flattened conical shape of the Tempskya specimen in Figure 1 is referred to as a “Cardinal’s Cap” by collectors and may represent the apex of a false trunk. Figure 1: Tempskya “Cardinal’s Cap” or Apex of False Trunk. Dakota Sandstone Formation, Cretaceous. Utah. 2 Figure 2: Tempskya Exterior Showing Cable-Like Appearance. Utah Twelve species of Cretaceous aged Tempskya have been reported from North America, eight or possibly ten from Europe, one from Japan, one from Argentina, and one from Australia (Tidwell & Wright, 2003, pp 141-143; Clifford & Dettmann, 2005, p. 71). Tempskya species are defined primarily by differences in the arrangement and makeup of tissues within the stems of the false trunks. The purpose of this paper is to help collectors explore the general anatomy of the Tempskya false trunk in transverse section. Anatomy False trunks of some Tempskya species reach diameters of 30 centimeters and lengths of 3 meters (Tidwell, 1998, p.
    [Show full text]
  • Systematics and Biogeography of the Clusioid Clade (Malpighiales) Brad R
    Eastern Kentucky University Encompass Biological Sciences Faculty and Staff Research Biological Sciences January 2011 Systematics and Biogeography of the Clusioid Clade (Malpighiales) Brad R. Ruhfel Eastern Kentucky University, [email protected] Follow this and additional works at: http://encompass.eku.edu/bio_fsresearch Part of the Plant Biology Commons Recommended Citation Ruhfel, Brad R., "Systematics and Biogeography of the Clusioid Clade (Malpighiales)" (2011). Biological Sciences Faculty and Staff Research. Paper 3. http://encompass.eku.edu/bio_fsresearch/3 This is brought to you for free and open access by the Biological Sciences at Encompass. It has been accepted for inclusion in Biological Sciences Faculty and Staff Research by an authorized administrator of Encompass. For more information, please contact [email protected]. HARVARD UNIVERSITY Graduate School of Arts and Sciences DISSERTATION ACCEPTANCE CERTIFICATE The undersigned, appointed by the Department of Organismic and Evolutionary Biology have examined a dissertation entitled Systematics and biogeography of the clusioid clade (Malpighiales) presented by Brad R. Ruhfel candidate for the degree of Doctor of Philosophy and hereby certify that it is worthy of acceptance. Signature Typed name: Prof. Charles C. Davis Signature ( ^^^M^ *-^£<& Typed name: Profy^ndrew I^4*ooll Signature / / l^'^ i •*" Typed name: Signature Typed name Signature ^ft/V ^VC^L • Typed name: Prof. Peter Sfe^cnS* Date: 29 April 2011 Systematics and biogeography of the clusioid clade (Malpighiales) A dissertation presented by Brad R. Ruhfel to The Department of Organismic and Evolutionary Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biology Harvard University Cambridge, Massachusetts May 2011 UMI Number: 3462126 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.
    [Show full text]
  • Matoniaceae (Pteridophyta) - a New Family Record for Thailand
    THAI FOR. BULL. (BOT.) 31: 47– 52. 2003. Matoniaceae (Pteridophyta) - a new family record for Thailand STUART LINDSAY*, SOMRAN SUDDEE**, DAVID J. MIDDLETON* & RACHUN POOMA** ABSTRACT. The fern species Matonia pectinata R.Br. has recently been collected in two provinces in Peninsular Thailand (Trang and Yala). These collections represent the first records for this species, the genus Matonia and the family Matoniaceae in Thailand. Trang is also the new northern limit of the known distributional range of M. pectinata. During a plant collecting trip to the Khao Banthat Mountain Range in Trang province during 2003 a very unusual fern species, clearly absent from the pteridological literature for Thailand (see Tagawa & Iwatsuki, 1979, 1985, 1988, 1989; Boonkerd & Pollawatn, 2000), was found near the summit of Phu Pha Mek. Subsequent research revealed that this species was Matonia pectinata R.Br. and that another plant (specimen at BKF but its existence unpublished) had been collected in Yala province in February 2000. These two collections represent not only the first records for M. pectinata in Thailand but also the first records for the genus Matonia and the family Matoniaceae in Thailand. Matoniaceae is a small family of primitive leptosporangiate ferns. It has a widespread and diverse fossil record (interpreted as 11 or more genera; see Holttum, 1954, 1968, Kramer, 1990, Tryon & Lugardon, 1990, Nishida et al., 1998) but, today, the family is represented by only four species in two genera that are restricted to Southeast Asia. The two genera (which differ most noticeably in their ecological preferences and frond architecture) are Matonia and Phanerosorus.
    [Show full text]
  • Paleontology of the Bears Ears National Monument
    Paleontology of Bears Ears National Monument (Utah, USA): history of exploration, study, and designation 1,2 3 4 5 Jessica Uglesich ,​ Robert J. Gay *,​ M. Allison Stegner ,​ Adam K. Huttenlocker ,​ Randall B. ​ ​ ​ ​ Irmis6 ​ 1 Friends​ of Cedar Mesa, Bluff, Utah 84512 U.S.A. 2 University​ of Texas at San Antonio, Department of Geosciences, San Antonio, Texas 78249 U.S.A. 3 Colorado​ Canyons Association, Grand Junction, Colorado 81501 U.S.A. 4 Department​ of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53706 U.S.A. 5 University​ of Southern California, Los Angeles, California 90007 U.S.A. 6 Natural​ History Museum of Utah and Department of Geology & Geophysics, University of Utah, 301 Wakara Way, Salt Lake City, Utah 84108-1214 U.S.A. *Corresponding author: [email protected] or [email protected] ​ ​ ​ Submitted September 2018 PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3442v2 | CC BY 4.0 Open Access | rec: 23 Sep 2018, publ: 23 Sep 2018 ABSTRACT Bears Ears National Monument (BENM) is a new, landscape-scale national monument jointly administered by the Bureau of Land Management and the Forest Service in southeastern Utah as part of the National Conservation Lands system. As initially designated in 2016, BENM encompassed 1.3 million acres of land with exceptionally fossiliferous rock units. Subsequently, in December 2017, presidential action reduced BENM to two smaller management units (Indian Creek and Shash Jáá). Although the paleontological resources of BENM are extensive and abundant, they have historically been under-studied. Here, we summarize prior paleontological work within the original BENM boundaries in order to provide a complete picture of the paleontological resources, and synthesize the data which were used to support paleontological resource protection.
    [Show full text]
  • University of Michigan University Library
    CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN VOL.XXI, NO.8, pp. 139-203 (4 pls., 9 figs.) JUNE 30,1967 EVOLUTION OF THE FERN GENUS OSMUNDA BY CHARLES N. MILLER, JR. MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN ANN ARBOR CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY Director: LEWISB. KELLUM The series of contributions from the Museum of Paleontology is a medium for the publication of papers based chiefly upon the collection in the Museum. When the number of pages issued is sufficient to make a volume, a title page and a table of contents will be sent to libraries on the mailing list, and to individuals upon request. A list of the separate papers may also be obtained. Correspondence should be directed to the Museum of Paleontology, The University of Michigan, Ann Arbor, Michigan. VOLS.11-XX. Parts of volumes may be obtained if available. VOLUMEXXI 1. Fossils from the Seymour Formation of Knox and Baylor Counties, Texas, and their bearing on the Late Kansan Climate of that Region, by Claude W. Hibbard and Walter W. Dalquest, Pages 1-66, with 5 plates and 8 figures. 2. Planalveolitella, a new genus of Devonian Tabulate Corals, with a rede- scription of Planalveolites faughti (Edwards and Haime), by Erwin C. Stumm, Pages 67-72, with 1 plate. 3. Neopalaeaster enigmeticus, New Stadish from Upper Mississippian Paint Creek Formation in Illinois, by Robert V. Kesling, Pages 73-85, with plates and 3 figures. 4. Tabulate Corals of the Silica Shale (Middle Devonian) of Northwestern Ohio and Southeastern Michigan, by Erwin C.
    [Show full text]